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Abstract: Recently, environmental and ecological concerns have become a major issue owing to the
shortage of resources, high cost, and so forth. In my research, I present an innovative, environmentally
friendly, and economical way to prepare nanocellulose from grass wastes with a sodium hypochlorite
(NaClO) solution of different concentrations (1–6% mol) at different times 10–80 min, washed with
distilled water, and treated with ultrasonic waves. The optimum yield of the isolated cellulose was
95%, 90%, and 87% NaClO at 25 ◦C for 20 min and with NaOH and H2SO4 at 25 ◦C with 5% M,
respectively. The obtained samples were characterized by dynamic light scattering (DLS), Fourier-
transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). The effect of test temperature
and reaction times on the crystallinity index (IC) of GNFC with different treated mediums was carried
out and investigated. The IC was analyzed using the diffraction pattern and computed according to
the Segal empirical method (method A), and the sum of the area under the crystalline adjusted peaks
(method B) and their values proved that the effect of temperature is prominent. In both methods,
GNFC/H2SO4 had the highest value followed by GNFC/NaOH, GNFC/NaClO and real sample
nano fiber cellulose (RSNFC). The infrared spectral features showed no distinct changes of the four
cellulose specimens at different conditions. The particle size distribution data proved that low acid
concentration hydrolysis was not sufficient to obtain nano-sized cellulose particles. The Zeta potential
was higher in accordance with (GNFC/H2SO4 > GNFC/NaOH > GNFC/NaClO), indicating the acid
higher effect.

Keywords: grass nanofiber cellulose (GNFC); NaClO; NaOH and H2SO4; crystallinity index; Zeta
potential; XRD; SEM; particle size distribution

1. Introduction

Nanocellulose presents a significant achievement in science and technology, due to
its regular atomic arrangement, stiffness comparable to steel, and successful use as an
organic filler material in biopolymer nanocomposites, [1]. Moreover, Blessy et al. [2]
stated that cellulose has low cytotoxicity, biocompatibility, good mechanical properties,
high chemical stability, and cost effectiveness, which makes it a suitable candidate for
biomedical applications. Zou et al. [3] designed and fabricated a mussel-inspired, low-cost,
polydopamine-filled cellulose aerogel with both super hydrophilicity and under water
super oleophobicity. Zhenghao et al. [4] concluded that cellulose, lignin, and lignocel-
lulose not only protect the environment but also reduce dependence on fossil resources.
Kusmono et al. [5] used ramie fibers accompanied by sulfuric acid hydrolysis, with a
high crystallinity (90.77%), small diameter (6.67 nm), and length (145.61 nm). Lu et al. [6]
applied the ultrasonic wave and microwave-assisted technique (SUMAT) for the prepa-
ration of nanocellulose. Syafri et al. [7] used the solution casting method for fabricating
nanocellulose from water hyacinth (Eichhornia crassipes).

Chen et al. [8] showed that XRD profiles of Cr(NO) hydrolysis to isolate cellulose
nanocrystals CNCCr(NO) had major peaks at around 2θ = 22.50◦ (200). Sangeetha et al. [9]
showed intensive peaks at 2θ = 16.39◦, 20.62◦, and 22.60◦, and Garvey et al. [10] showed
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XRD peaks at 15.00◦, 22.50◦, and 34.85◦. Ju et al. [11] mentioned that the crystalline
and amorphous peaks deconvolution on which the crystalline cellulose is represented by
several intense peaks at (1ı̄0), (110), (102), (200), and (004). Yazdani et al. [12] showed
that the amorphous subtraction method used to fit the amorphous component intensity
profile. Agarwal et al. [13] and Segal et al. [14] calculated IC by subtracting the amorphous
contribution approximately at 2θ = 18◦ as follows:

IC = 100 × [(I22.5◦ − I18
◦)/I22.5◦].

Khukutapan et al. [15] used autoclaving cabbage outer leaves for the production
of nano-fibrillated cellulose with a crystallinity index (CI) of 50.70% and cellulose con-
tent of 49.20% dry mass. Hu et al. [16] isolated fibrils from bamboo fiber (BF) with
the assistance of negatively charged parts with the yield above 70.00% using the ul-
trasonic homogenization. Barbash et al. [17] treated bleached softwood sulfate pulp
mechanochemically. Barbash et al. [18] prepared nanocellulose from organosolv straw
pulp (OSP). Thakur et al. [19] concluded that cellulosic waste features dependents on the
method of extraction. Sharma et al. [20] found that the cellulose is the biosynthetic product
of plants, animals, and bacteria. Chen et al. [8] reported feasibility and practicability of the
hydrolysis using CNCCr(NO) from native cellulosic feedstock that exhibited a higher crys-
tallinity (86.50% ± 00.30%) and high yield (83.60% ± 00.60%). Mazela et al. [21] attempted
to evaluate hybrid cellulose treatment, using a combination of a chemical method and ultra-
sound of medium frequency. Zhang et al. [22] showed that when the bagasse nanocellulose
was rod-like and its content in PHB was 1 wt.%, the toughness of PHB (polyhydroxybu-
tyrate) composite was the best. Park et al. [23] illustrated the effect of cellulose crystallinity
on its accessibility, lignin/hemicellulose contents and distribution, porosity, and particle
size. Chargot et al. [24] obtained nanocellulose from apple pomace. Trache et al. [25] illus-
trated the recent advances in the nanocellulose preparetion. Thomas et al. [26] used Acacia
caesia fiber for the isolation of nanocellulose whiskers. Barbash et al. [27] used Miscanthus
giganteus stalks to make organosolvent pulp and nanocellulose that has a crystallinity
index of 76.50%. Yahya et al. [28] found that oil palm (Elaeisguineensis) empty fruit bunch
(OPEFB) has nanocellulose yield of 81.37%. Duan and Yu [29] concluded that the jute
fibers nanocellulose has high yield of 80%. Ma et al. [30] extracted nanocellulose from
Xanthoceras sorbifolia husks through a series of chemical treatments, after which the obtained
nanocellulose had a rod-like shape and diameter of 38 nm.

The present work aimed at investigating the effect of sonicated NaClO medium on the
production of GNFC at different concentrations, test temperatures, and reaction time. The ef-
fect of sonication on GNFC/NaClO, GNFC/NaOH, and GNFC/H2SO4 systems in aqueous
media on the crystallinity index (IC) was evaluated at different medium concentrations,
test periods, and reaction times. SEM, XRD, FT-IR, HPLC, and Zeta potential technique
were used. The size distribution of GNFC/NaClO, GNFC/NaOH, and GNFC/H2SO4 as
measured by particle size analysis was obtained.

2. Experimental
2.1. Materials and Chemicals

Garden grass cellulose fibers were isolated and mowed in large quantities periodically
from the vegetation cover of large areas of stadium floors, parks, and public gardens
followed by 90.00% ethanol treatment at 70 ◦C. To isolate fibers, pigments, dusts, and fats
were removed from the purified grass by washing with water. Bleaching with 120 mL of
household bleaching agent (5% NaClO and 5% NaOH), carried out followed by drying.
The product mixed with acetic anhydride (100 mL), glacial acetic acid (100 mL), and sulfuric
acid (10 mL) and cooled to 7 ◦C 35 g used.

2.2. Preparation of KGNFC (Alkali Grass Nanofiber Cellulose)

The grass rinsed with NaOH solution, water, and finally with H2O2 (hydrogen per-
oxide) 3 times consecutively. As H2O2 dissolved hemicellulose, the color turned from
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green to white leaving only the cellulose in the mixture and it had 97.00% purity after
drying. Sulphuric acid (98.00% concentration) was added to cellulose colloid (5 g cellulose
powder + 250 mL water) under constant stirring condition for 3 h.

The suspension produced heated at 50 ◦C for 2 h and diluted 10 times with distilled
water ice-cooled to prevent the acid hydrolysis reaction. The resulting white colloidal
suspension centrifuged at 8000 rpm for 20 min followed by dialysis to remove excess acid
and ultra-sonication for 45 min in ice cooled condition and lyophilized [31].

2.3. Preparation CGNFC (Acidic Grass Nanofiber Cellulose)

The fibers purified fibers hydrolyzed using 5% sulfuric acid at different conditions
using two parameters (temperature and hydrolysis time) with H2SO4 of a constant con-
centration of 5 wt.% under different temperatures of 25 ◦C, 40 ◦C, 60 ◦C, and 80 ◦C and
10, 20, 40, 60, and 80 min to get the optimum temperature and time with high yield
%. Centrifugation was conducted at 4500 rpm for 20 min to abolish the acid solution.
Cellulose nanofiber (CNF) precipitates were collected and rinsed with distilled water to
neutral condition. Then the ultra-sonication of CNFs suspension performed for 20 min and
50% amplitude to obtain the uniform cellulose nanofiber (CNF) suspensions [14,32,33].

2.4. Innovative Preparation of Grass Nanofiber Cellulose (IGNFC)

The collected grass was washed with rinsed water and ground mechanically with
sodium hypochlorite of different concentrations, 1, 1.5, 2.5, and 5.0 mol, for 10, 20, 40,
60, and 80 min at 25 ◦C, 40 ◦C, 60 ◦C, and 80 ◦C. After that, the product was repeatedly
washed with rinsed water and treated with ultrasonic waves, and the size of the particles
was determined, (Figure 1). All methods of GNFC preparation methods are compared by
studying particle size and yield using LDS, SEM, XRY, HPLC, and EDX methods and Zeta
potential analysis.

Figure 1. Preparation of cellulose from grass by sodium hypochlorite. (a) Type of grass, (b) mechanical
cutting with NaClO, (c) after treatment, (d) after dying, and (e) after treatment by ultrasound waves.

2.4.1. Characterizations
Fourier Transform Infrared (FT-IR) Spectroscopy

Perkin-Elmer RX X2 Infrared spectrometer spectra used for RSNFC, GNFC/NaOH,
GNFC/NaClO, and GNFC/H2SO4 using 4500-500 cm−1 wave range, 1 cm−1 intervals and
4 cm−1 scanning resolution.

X-ray Diffraction (XRD)

Four samples were prepared from untreated grass fiber, and three synthesized nanocel-
lulose: NAFC (nano acid cellulose), NKFC (nano alkaline cellulose), and NSFC (nano
sodium hypochlorite cellulose). Three pellets were prepared, and measured in reflection
mode, in the range 2θ = 5◦–80◦ with Philips powder diffractometer with Cu Kα radiation
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(k = 0.154 nm), using Ni-filtered Cu Kα radiation (λ = 1.5406 Å) at 40 kV and 30 mA [34].
XRD studies were performed to evaluate the effect of each treating medium on the crys-
tallinity behaviors of native cellulose and yielded nanocellulose specimens. The (IC) calcu-
lated using two methods, the first (A method) according to the Segal empirical method [14]
as in Equation (1):

CrI% = [(I200 − Iam)/I200] × 100 (1)

where, I200 is the crystallites peak intensity at 2θ = 22.5◦ and Iam is the amorphous cellulose
intensity at 2θ = 18◦–19◦.

The second approach (B method) is a deconvolution according to [8,35] as in Equation (2):

IC% = [Acryst/(Acryst + Aamorph)] × 100 (2)

where Acryst is the calculated area under X-ray and Aamorph is the total area under the X-ray
pattern. The crystallite size (t) calculated according to Scherrer equation, [14]:

t = [Kλ/(β1/2 cos θ)] (3)

where K = 0.89 is Scherrer constant, λ = 1.54060 Å is the radiation wavelength, β1/2 equal
the full width at the half maximum (FWHM) of (200) diffraction peak in radians, and θ is
the corresponding Bragg’s angle.

SEM Analysis

The cellulose microstructure morphology examined using a JEOL JSM-7001F TTLS
(JEOL Ltd., Tokio, Japan) SEM with 5 kV accelerating voltage of 5 kV, 10 mm working
distance of about 10 mm.

Determination of GNFC Yield

The oscillating ultrasonic frequency used was 40 kHz with an output of ultrasonic
power of 40 KW. The nanocellulose yield was calculated according to the relation (4) [16–19];

Y = {[(m1 − m2) × V1]/mV2} × 100% (4)

where Y is the yield of GNFCs, m1 and V1 are the GNFC mass and volume and weight
bottle, m2 and V2 are the mass and volume bottle weight. m is the mass of grass fibers.

High-Performance Liquid Chromatography (HPLC)

HPLC was carried out using (HPLC, Shimadzu Corp., Kyoto, Japan). With a rotary
shaker agitation of 25 mL of GNFC solution added in a flask with 50 mg GNFCs, the suspen-
sion produced filtered using a membrane filter (Millipore 0.45 lm pore size). The filtrates
were analyzed for residual GNFC. HCl used to adjust the solution’s pH. The absorbed
NC (nanocellulose) centrifuged with an initial dose of 2.0 g/L, water washed, and dried
for 24 h at 35 ◦C. The NCs product conducted with various eluents such as 5% H2SO4,
5%NaOHand 5% NaClO by repeating the above procedure for two times to be used with
HPLC [36,37].

Zeta Potential Measurement

Zeta potential used a Zetasizer Nano series for determining the electrophoretic mobil-
ity according to Henry equation [38].

3. Results and Discussion
3.1. Temperature Effect on the GNFC Yield

The effect of reaction temperature of 20 ◦C, 40 ◦C, 60 ◦C, and 80 ◦C on GNFC yield
shown in Figure 2. The optimum NaClO/GNFC yield value was 95% at 5% M, 20 min, and
25 ◦C. Figure 2a–d, indicated that the GNFC yield increased first followed by continuous
decrement until reaching a minimum value about 38% at 80 ◦C, 80 min, with 6 M of NaClO



Polymers 2022, 14, 1930 5 of 22

due to the effect of both the higher temperature and hydrolysis medium on removing the
amorphous components and accelerating the glycosidic bonds.

Figure 2. Effect of reaction time and NaClO concentration on the yield % at different test temperatures.
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Furthermore, this is related to the fact that both the higher temperature, and treated
hydrolysis medium hydrolysis removed amorphous components and some parts of crys-
talline that accelerating the hydrolytic cleavage of the glycosidic bonds and finally resulted
in the yield and crystallinity decrement [5,16,38,39].

3.2. Time Effecton the GNFC Yield

Figure 2a–d showed that the GNFC yield decreased from 95% at 20 min, 25 ◦C of 5 M
NaClO, to 38% at 80 min, 80 ◦C, and 6 M NaClO. Up to 20 min, the GNFC yield value in-
creased directly due to the specific surface increment and more cellulose depolymerization
followed by yield value decrement owing to the ultrasonic wave effect. Above 20 min, the
yield decreased owing to the crystalline cellulose hydrolysis, [16]. So, 20 min us considered
as optimum time.

3.3. Effect of NaClO Concentration

Figure 2a–d revealed that when NaClO concentration increased from 1.0 to 6.0 M, the
nanocellulose progressively increased from 87% to 95% at 25 ◦C and 20 min due to the
Effect of catalytic hydrolysis process that causes crystallinity increment. Cellulose levels
decreased with the increase of NaClO concentration over 5.0 M at longer time exposure at
high temperatures since NaClO solution increment will fractured both the hemicellulose
and cellulose connection ties. In an alkaline solution (NaClO), the temperature increment
causes the lignocellulosic components destruction and the bonds termination in agreement
with Winarsih [40].

3.4. Effect of Reaction Medium on GNFC Yield

Figure 3 illustrates the dependence of reaction medium on both reaction tempera-
tures and reaction time. Three reaction mediums were used: NaClO, NaOH, and H2SO4.
Figure 3a indicates that the optimum yield temperature was 25 ◦C with 95%, 90%, and 87%
for 5% concentration of NaClO, NaOH, and H2SO4 respectively. The yield values of the
three mediums increased up to 25 ◦C followed by a yield decrement with temperature
increment, since high temperatures reduced the reaction activity of cellulose with exces-
sively hydrolyzed into glucose monomers, which reduced the yield of GNFC, in agreement
with [16]. Also, with temperature increment; the power applied reduced the reaction
activity of cellulose, so the mass transfer of the intra-finer pores of GNC is also reduced
that result in the decrement of GNFC Yield with temperature increment in agreement with
Lu et al. [6].

Figure 3b shows that the yield rises up to an optimum value of 20 min reaction Time
for 5% concentration of each of the three mediums. When the reaction time increases more
than 20 min, the mass transfer resistance gradually decreases and the specific surface of
the grass wastes increases with reaction time increament owing to the breakdown of their
net structure and even the enlargement of the interand intra-fiber pores, which results
from the hydrolysis of more and more cellulose that leading to the decrement of GNFC
Yield with reaction time increment, [6]. The yield decreased with time increment than
20 min, therefore, the optimum yield value for obtaining cellulose from NaClO/GNFC
was 95% which is higher compared to the cellulose yield of NaOH/GNFC of the previous
publications which was 89% of pineapple [41], 83.40% of blenched fiber [42], 67.40% for
non-woody biomass constitutes [34], 85.40% for non-woody biomass constitutes, 54.30%
for organo-solvent miscanthus pulp (OMP) [31], and 81.00% and 54.00% from flax fibers
and cotton linters [29]. Moreover, the yield of NaClO/H2SO4 cellulose was 90.00% the
yield of the previous investigators which was 82% for non-woody biomass constitutes [43],
ranging between 55 and 60% for bleached kraft pulp of loblolly pinewood [44], 85.75%
for filter paper [6], 83.60% for native cellulosic feedstock [45] (Apendix A), 84.00% for oil
palm (Elaeisguineensis) empty fruit bunch [46], from flax fibers (81.00%) and 54% from flax
fibers (81.00%) and cotton linters [14]. In addition, Figure 3a,b show that the temperature
increment had a higher effect on the yield decrement compared to the reaction time [9].
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Figure 3. Effect of test temperatures and reaction times on the yield % of GNFC/5% NaClO,
GNFC/5% NaOH, and GNFC/5% H2SO4.

3.5. X-ray (XRD) Diffraction Patterns Analysis

The XRD diffractogram profiles for all the test specimens are shown in Figure 4. It was
clearly observed that the XRD patterns of the four specimens were similar and these
slight shifts in angles and peaks proved the occurrence of cellulose in agreement with
Chen et al. [8] and Maia et al. [47].
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Figure 4. X-ray diffractions of cellulose fiber and nanocellulose after treatment by ultrasonic waves.

3.6. Effect of Additives on the Crystallinity Index (IC) of GNFC

The crystallinity index was analyzed using the diffraction pattern and computed
according to the Segal empirical method (method A) [48] and the sum of the area under the
crystalline adjusted peaks method (method B) [35]; their results are presented in Tables 1
and 2. The effect of temperature on the crystallinity index of Real Sample (RSNFC) was
found to range from 23.205% to 40.705% and 19.724% to 34.559% for method A and B,
respectively, while the effect of reaction time on the crystallinity index of Real Sample
(RSNFC) was found to range from 21.401% to 39.701 and 17.763 to 32.952 for methods A
and B, respectively. This proves that the temperature effect is higher compared to the reac-
tion time and that the IC values based on method A are over that obtained by method B, in
agreement with the previous investigators [11,12,38]. Furthermore, Tables 1 and 2 indicate
the crystallinity increment due to the dissolving of hemicellulose and lignin that causes
the chemical purification increment [1,49,50]. Khukutapan et al. [15] and Cherian et al. [50]
concluded that the alkali hydrolysis and bleaching causes the separation of the structural
linkages between lignin and carbohydrates that leads to significant lignin and the GNFC
crystallinity index increment to around 70.29%. However, Hu et al. [16] showed that the
crystallinity was not significantly affected by post chemical modification of bamboo fiber at
a low degree of substitution carboxymethylation (CM) stage. Barbash et al. [18] concluded
that the hydrolysed and sonicated methods of cellulose increased the package ordering of
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the macromolecules due to the decreament of amorphous cellulose parts ratio which results
in the increment of the IC of the initial cellulose from 75.00%, 78.30%, and 79.80%, respec-
tively. Both Barbash et al. [19] and Sánchez et al. [51] used the organosolv straw pulp (OSP)
but Barbash et al. [19] had higher IC which was 72.50%. Chen et al. [8] and Chen et al. [52]
found that IC for native cellulose, GNFC/H2SO4, and CNC Cr(NO) were 65.70%, 81.40%,
and 86.50%, respectively. Zhang et al. [22] found that acid treatment causes the hydrogen
ions enter into the amorphous area of cellulose and destroy the amorphous area which
result in the cellulose IC increment in agreement with Bodin et al. [53]. The IC of the cellu-
lose isolated from oil palm (Elaeis guineensis) empty fruit bunch (OPEFB)was 73.20% [28],
while their values for pineapple leaves [54], indus-trial kelp (Laminaria japonica) [55], soy
hulls [56], sisal, curaua, bamboo, and eucalyptus [57] and sugar palm (Arenga Pinnata) [58]
were 54.00%, 69.40%, 73.50%, 78.00%, 87.00%, 87.00%, 89.00% and 85.90% respectively.

Table 1. Variation of Ic for RSCNFC (Real Sample Commercial Nanofiber Cellulose), GNFC/NaClO,
GNFC/NaOH, and GNFC/H2SO4 with test temperature using both method A and method B.

Temp. ◦C

Method (A) Method (B)

IC%
RSNFC

IC%
(GNFC/
NaClO)

IC%
(GNFC/
NaOH)

IC%
(GNFC/
H2SO4)

IC%
RSNFC

IC%
(GNFC/
NaClO)

IC%
(GNFC/
NaOH)

IC%
(GNFC/
H2SO4)

20 23.205 31.853 42.095 62.083 19.724 27.394 35.781 54.122

25 24.69 34.93 43.16 64.17 20.987 30.039 36.686 55.828

40 27.056 40.095 45.074 76.477 22.998 34.482 38.313 66.535

60 31.303 47.04 54.689 85.899 26.608 40.544 46.486 74.732

80 40.705 70.489 73.841 91.521 34.559 60.621 62.765 79.623

Table 2. Variation of Ic for RSCNFC (Real Sample Commercial Nanofiber Cellulose), GNFC/NaClO,
GNFC/NaOH, and GNFC/H2SO4 with reaction time using both method A and method B.

Time
min

Method (A) Method (B)

IC%
RSNFC

IC%
(GNFC/
NaClO)

IC%
(GNFC/
NaOH)

IC%
(GNFC/
H2SO4)

IC%
RSNFC

IC%
(GNFC/
NaClO)

IC%
(GNFC/
NaOH)

IC%
(GNFC/
H2SO4)

10 21.401 31.853 36.22 60.221 17.763 26.757 30.063 51.188

20 22.69 32.93 41.16 62.245 18.833 27.661 34.163 52.908

40 23.745 38.33 43.675 74.183 19.708 32.197 36.250 63.056

60 28.494 45.584 51.678 83.322 23.650 38.291 42.893 70.824

80 39.701 67.194 69.661 88.775 32.952 56.443 57.819 75.459

3.7. Effect of Test Temperature on IC

Figure 5 and Table 1 show that with increasing temperature, IC increased for all
nanocellulose types. It is shown that IC for GNFC/H2SO4 was the highest followed by
GNFC/NaOH, GNFC/NaClO, and RSNFC, in that order. Although Kusmono et al. [5]
concluded that the crystallinity decreased as a result of the hydrolytic cleavage of the
glycosidic bonds that caused due to the removed amorphous components and some crys-
talline parts at both the higher temperature and acid hydrolysis [59,60], Barbash et al. [18]
found that upon temperature increment to 130 ◦C, IC significantly increased from 30.94% to
59.30% due to the exerted homogenizer shear force exerted on the amorphous region of the
cellulose fibers according to Zhao et al. [46]. Samir et al. [61] concluded that IC increased to
around 70.29% after alkaline hydrolysis and bleaching due to the significant decrement in
the lignin content.
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Figure 5. Effect of test temperature on the crystallinity of RSNFC, GNFC/5%NaClO,
GNFC/5%NaOH, and GNFC/5%H2SO4 using both method A and method B.

3.8. Effect of Reaction Time on IC

Figure 6 and Table 2 show that with increasing time, IC increased for all nanocellulose types.
The effect of the test periods on the values of IC was lower for all specimen types compared
to the effect of test temperatures in agreement with [5,18,49]. As Kargarzadeh et al. [59] and
Kian et al. [62] concluded, a reaction time of more than 30 min resulted in crystallinity
reduction, while Kargarzadeh et al. [59] found that for kenaf bast fibers NC production,
the optimal reaction time was achieved at 40 min, 45 ◦C, and 65.00% sulfuric acid. But, the
optimum hydrolysis time was achieved at 80 min with 58.00% sulfuric acid concentration
according to Al-Dulaimi and Wanrosli [63].

3.9. Spectroscopic Analyses

Typical FT-IR spectra of RSNFC, GNFC/NaOH, GNFC/NaClO, and GNFC/H2SO4 are
shown in Figure 7. Stretch - OH absorption peak at 3500 cm−1, associated - CH absorption
peak at 2915 cm−1 and at 2850 cm−1 an overlapping of – CH had found in all samples.
These peaks are only found in cellulosic feed stocks, while due to the amorphous cellulose
chain termination RSNFC peaks have been lost in agreement with Zulnazri et al. [1].
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Figure 6. Effect of reaction time on the crystallinity of RSNFC, GNFC/5%NaClO, GNFC/5%NaOH,
and GNFC/5%H2SO4 using both method A and method B.

Figure 7. FTIR spectra of GNFC/5%NaClO, GNFC/5%NaOH and GNFC/5%H2SO4.

Due to both the absorption of water and the strong interaction between the cellulose
and air, a small absorption peaks at the range 1600–1650 cm−1 indicated that the cellulose
samples no longer bind to O-H in agreement with Johar and Ahmad [64]. Associated with
an aromatic ring polysaccharide, an absorption vibration band peak found at the range
1300–1350 cm−1 in agreement with that analyzed by Nacos et al. [65]. In addition, at region
1100 cm−1–1160 cm−1, absorption peaks were seen in agreement with Kagarzadeh et al. [59].
An intensity increment in the bands 1025 cm−1 due to the pyranose ring stretching occurred
for all GNFCs treated types in agreement with Corrêa et al. [66] and absorption peaks
890 cm−1 related to C-H vibration of the lowest cellulose

All types of treated GNFCs showed increased intensity in the bands 1025 cm−1 due
to the pyranose ring stretching in agreement with Corrêa et al. [66]. According to Li [67],
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absorption peaks of 890 cm−1 at C-H vibration band due to the lowest cellulose vibration
anomeric, specifically to β-glucosides bonds that exist between the glucose units of cellu-
lose/hemicellulose nanofibers in the GNFC spectra, [68]. According to the infrared spectral
features, the functional types of cellulose nanofibers showed that there were no distinct
changes at different conditions in agreement with [69].

3.10. Morphological Investigations of Untreated and Treated Fibers

The morphological changes of different types of different treated GNFC before and
after sonication are shown in Figure 8. Due to the removal of hemicellulose and lignin
and eliminating the cementing material around the fibers bundle, uniform fibers formed
(Figure 8a). Thomas [26] concluded that acid hydrolysis removed the rest of the binding
materials and highly ordered crystallites were formed. The fibrils formed aggregated
and with rough surface morphology due to the effect H2SO4 acid hydrolysis in removing
the cellulose amorphous components holding the cellulose crystal region that producing
smoother GNFCs, (Figure 8b). Acid hydrolysis facilitates defibrillation of the fibers on a
nanoscale level [60]. Figure 8c shows the morphology of the alkali-treated fibers on which
the reduction of fibers diameters owing to the removing of some of the cementing material
parts in agreement with [26].

Figure 8. SEM of RSNFC; (a,b) acid hydrolysis before and after treatment by ultrasonic waves, (c,d) al-
kali hydrolysis before and after treatment by ultrasonic waves, and (e,f) for sodium hypochlorite
before and after treatment by ultrasonic waves.

Figure 8d shows the morphology of the alkaline sonicated GNFC. The sonication
process causes further defibrillation due to the removal of the most lignin present in
the GNFC fibers and the smaller of the bleached fibers compared to the untreated alkali
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fibers [61]. There are very distinct cellulose fiber bundles that exhibited a rough wood
surface structure, Leite et al. [70] which proving that the acidic treatment is very effective
for the lignin removal as well as the individual cellulose fibers separation.

Figure 8e shows GNFC/NaClO morphology before treatment by ultrasonic waves
with lignin degradation which in turn facilitated the solubilization of lignin medium and
separation according to Cherian et al. [54].

Figure 8f showed the morphology of GNFC/NaClO after sonication leading to further
defibrillation, on which web-like nanostructure observed in most fibers exhibited web-like
nanostructure with some bundles still existed [15,52].

3.11. Particle Size Measurement

Figure 9a–c showed the size distribution of GNFC/NaClO, GNFC/NaOH, and GNFC/H2SO4
measured by particle size analysis. The size distribution by volume of GNFC/NaClO as
detected by laser diffraction shown in Figure 9a. There were two peaks; minor peak (1) with
mean values of volume %, size (d·nm), and width of 3.20%, 173.20 d·nm, and 32.84 d·nm,
respectively, and major peak (2) with a mean values of 96.80%, 13.23 d·nm, and 1.987 d·nm,
respectively. Figure 9b shows GNFC/NaOH with only one peak with mean values of 100%,
104.1 d·nm, and 15.63 d·nm, while Figure 9c shows two peaks: the minor peak (1) with
mean values of 87.9%, 582.8 d·nm, and 127.6 d·nm and with mean values of the major peak
(2) of 12.1%, 102.1 d·nm, and 19.84 d·nm. The results showed that the produced weighted
distribution volume contained different particle size measurements while that using image
analysis resulted in the most accurate results according to [68–71]. Based on the given
results, GNFC/NaClO produced better size distribution data compared to GNFC/NaOH
and GNFC/H2SO4. Furthermore, the particle size distribution data proved that low acid
concentration hydrolysis was not sufficient to obtain GNFC/H2SO4 in agreement with
Mahardika et al. [72].

3.12. Zeta Potential Measurement

The Zeta potentials of the sonicated GNFC/NaClO, GNFC/NaOH, and GNFC/H2SO4
were measured and plotted in Figure 10. All specimen types showed a negative Zeta
potential taking into consideration that the values lower than −15 mV represent the particle
agglomeration starting and values higher than −30 mV indicated that sufficient mutual
repulsion, resulting in a colloidal stability [73,74].

Figure 10 lists that the mean lowest negative value (−1.94 mv) was related to the
sonicated GNFC/NaClO, while the mean highest value (−50.9 mv) was related to the
sonicated GNFC/H2SO4 and sonicated GNFC/NaOH had a mean value of (−6.94 mv).
Due to the presence of negatively charged sulfate groups on the cellulose nanocrystals
surface, the sonicated GNFC/H2SO4 had a higher mean negative value according to
Bondeson et al. [75]; Roman and Winter [76]. An aggregate form occurred due to the lack
of electrostatic repulsive forces among the crystalline particles of the The sonicated GNFC
prepared by NaClO hydrolysis in agreement with Araki et al. [77] and Angellier et al. [78].
Also, in aqueous media the use of H2SO4 reduces the starch nanocrystals agglomeration
possibility and limits their flocculation.

Moreover, it was found that the conductivity values (mS/cm) for GNFC/NaClO,
GNFC/NaOH, and GNFC/H2SO4 were 3.27 × 10−4, 2.12 × 10−4, and 1.68 × 10−4, re-
spectively. As the lower conductivity leads to lower current values and lower stabil-
ity [79,80], among the three suspensions, the Zeta potential was higher (GNFC/H2SO4 >
GNFC/NaOH > GNFC/NaClO), indicating the higher acid concentration effect on the
suspensions stability and the consequent colloidal suspension formation.
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Figure 9. %Volume/size distribution of sonicated (a) GNFC/NaClO, (b) GNFC/NaOH, and
(c) GNFC/H2SO4 using the particle size analysis (PSA).

3.13. HPLC Nanocellulose Measurement

The nanocellulose samples prepared by the three methods were measured and com-
pared with the Real Sample (RSNFC), shown in Figure 11a–d. They were found almost
similar and at the same separation time.
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4. Conclusions

Using three techniques: innovative method, acid, and alkaline hydrolysis carried
out. GNFCs were produced from grass wastes via pretreatments using three treating
mediums, NaClO, NaOH, and H2SO4, with optimum yield values of 95%, 90%, and 87%,
respectively, at 25 ◦C, 20 min, and 5% concentration for each medium. The crystallinity
index analyzed using the diffraction pattern and computed according to the Segal empirical
method and the sum of the area under the crystalline adjusted peaks method. Both reaction
temperature and time played an important role in the yielding and crystallinity index of
GNFC. Reaction temperatures had a prominent effect on crystallinity index with optimum
values of 40.705%, 70.489, 73.841, and 91.521 for sonicated RSNFC and sonicated GNFC
treated with NaClO, NaOH, and H2SO4, respectively, at 80 ◦C, 20 min, and 5% concentration
for each medium. Further augmentation of the GNFC surface charge occurred due to the
ultrasonic homogenization. Both the morphological investigations of SEM and FT-IR
resulted in untreated GNFC and treated GNFC with the three mediums found matched
and in good consistence. The GNFCs were characterized for their size and surface by Zeta
potential and HPLC. The isolated cellulose from the three treatment mediums compared
with the standard sample (RSNFC) exhibited similar characteristics to those reported in
the literature.
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