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Abstract: Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved
in many physiological and pathophysiological processes in all organs of the cardiovascular system.
From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury,
HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in
homeostasis. There have been great advances in our understanding of the role of HO in the regulation
of blood pressure and target organ injury in the last decade. Results from these studies demonstrate
that targeting of the HO system could provide novel therapeutic opportunities for the treatment of
several cardiovascular and renal diseases. The goal of this review is to highlight the important role of
HO in the regulation of cardiovascular and renal function and protection from disease and to highlight
areas in which targeting of the HO system needs to be translated to help benefit patient populations.
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1. Introduction

Heme oxygenase (HO) is the rate-limiting enzyme in the breakdown of heme in the body.
Two major isoforms of HO exist: heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2). Both
isoforms of HO are expressed in all tissues of the body. HO-1 is the inducible isoform whose expression
is regulated by a wide variety of physiologic and pathophysiologic stimuli [1]. Heme oxygenase-2 is
the constitutive isoform of HO found in all tissues and cells of the body [2]. Bilirubin, an endogenous
antioxidant derived from HO catabolism of heme is capable of directly scavenging reactive oxygen
species (ROS) and inhibiting oxidative stress [3–7]. Carbon monoxide (CO), the other product derived
from HO catabolism of heme, is a gaseous transmitter which can affect ion channels, nitric oxide release,
as well as mitochondrial proteins [8,9]. An underappreciated aspect of HO breakdown of heme is
the release of free iron and its subsequent sequestration by induction of ferritin. Labile iron is toxic
due to its ability to release ROS which can then result in cellular damage especially in renal tubule
cells [10]. Ferritin is a cytoprotective protein that is also involved in the regulation of myelopoiesis
and inflammation [11]. HO-1 induction mediates many beneficial effects in the cardiovascular system
and kidney as well as in metabolism [12–14]. For this review, we will focus on the role of HO in the
cardiovascular system and the potential for targeting this system for the treatment of cardiovascular
and end-organ damage.
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2. HO and the Cardiovascular System

2.1. Role of Heme Oxygenase in the Regulation of Blood Pressure

The anti-hypertensive actions of HO-1 induction was first demonstrated in the spontaneously
hypertensive rat (SHR) treated with the HO-1 inducers, stannous chloride (SnCl2) and hemin [15–18].
Later studies using genetic overexpression of HO-1 demonstrated similar anti-hypertensive effects in
this model [19,20]. HO-1 induction has also been demonstrated to have anti-hypertensive effects in other
models of hypertension such as angiotensin-II (Ang II)-dependent hypertension, deoxycorticosterone
acetate (DOCA)-salt hypertension, and renovascular hypertension [21–24]. Likewise, deficiency in
HO-1 exacerbates the blood pressure response to Ang II-dependent hypertension and DOCA-salt
hypertension [25,26].

While global induction of HO-1 had been repeatedly demonstrated to lower blood pressure
in several different models of hypertension, the role of the kidney in this response was not known.
However, studies in which HO-1 was induced specifically in the kidney with the known inducer
cobalt-protoporphyrin (CoPP) or genetically, via kidney-specific overexpression of HO-1, have
demonstrated the anti-hypertensive effects of HO-1 in the kidney [27,28]. One mechanism by
which kidney-specific induction of HO-1 lowers blood pressure in Ang II-dependent hypertension
is by decreasing reactive oxygen species (ROS) generation (Figure 1) [27,29,30]. Further studies in
cultured renal tubule cells have also demonstrated the antioxidant actions of HO-1 overexpression
against enhanced Ang II-mediated ROS production [31,32]. Additional studies found that increases in
renal perfusion pressure upregulate HO-1 levels and that renal medullary inhibition of HO-1 results in
the development of salt-sensitive hypertension [33].
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The role of heme oxygenase-2 (HO-2) in the regulation of blood pressure has not been studied
to the extent of HO-1. Mice deficient for HO-2 do not exhibit enhanced blood pressure response to
Ang II-dependent or N(ω)-nitro-L-arginine methyl ester (L-NAME)-dependent hypertension; however,
HO-2 knockout mice do exhibit a sex difference in response to renovascular hypertension with male
knockout mice exhibiting an exaggerated blood pressure response as compared to wild-type mice and
female knockout mice lacking any difference to wild-type mice [34,35].

Heme oxygenase can also be induced by natural products such as curcumin, flavonoids,
isothiocyanates and organosulfur compounds such as diallyl sulfide (DAS) and its other derivatives [36].
Curcumin lowers blood pressure in many models of experimental hypertension including Ang
II-dependent hypertension through alterations in angiotensin receptor 1 (AT1R) levels [37]. Curcumin
also improves blood pressure through its effects on vascular function as well as its anti-inflammatory
actions [38,39]. Regular consumption of flavonoids exerts beneficial cardiovascular effects and may
reduce the onset or progression of hypertension; however, the mechanism by which this occurs is
not fully understood although the anti-inflammatory actions of flavonoids may contribute to this
beneficial effect [40,41]. While it is clear that natural HO inducing compounds can have protective
antihypertensive and cardiovascular effects, the specific role of HO-1 induction in these effects has yet
to be determined.

Overall, induction of HO-1 results in lowering of blood pressure in several different models of
experimental and genetic hypertension. One mechanism by which induction of HO-1 lowers blood
pressure is through decreasing ROS production which is common in many forms of experimental
hypertension [42,43]. The therapeutic potential of HO induction has been clearly shown in several
models of experiments hypertension. One of the most impressive studies demonstrated that induction
of HO-1 with a hemin pump resulted in a sustained reduction in blood pressure long after initial hemin
treatment [44]. This study suggests that short-term induction of HO-1 may chronically lower blood
pressure which could be a novel therapeutic approach to circumvent patient compliance issues faced
when taking daily anti-hypertensive medications. One limitation of the preclinical studies to date is
lack of experimental evidence for the anti-hypertensive actions of HO-1 induction in large animal
models of hypertension. This limitation needs to be addressed so that these encouraging results can be
directly translated to hypertensive patients.

2.2. Role of Heme Oxygenase in the Regulation of Renal Function

Renal vascular and tubular function are both regulated by the expression of HO-1 and HO-2
since both of these isoforms are found throughout the kidney [45,46]. In the renal vasculature, HO-2
protects against excessive renal vasoconstriction through the generation of CO [47–51]. However,
CO can also elicit renal vasoconstriction through increased reactive oxygen species (ROS) production
in renal arterioles [52]. CO can also affect renal vascular tone through its complex interaction with
nitric oxide (NO). Inhibition of NO production increases renal vascular CO production and inhibition
of NO enhances renal vasoconstriction following HO inhibition [53,54]. However, vascular smooth
muscle-specific overexpression of HO-1 results in an attenuation of NO-mediated vasorelaxation
and hypertension suggesting that large increases in HO-mediated CO production can alter NO
responsiveness [55]. These studies highlight the complex relationship between vascular CO and
NO production. The other HO metabolite, bilirubin, has also been shown to have effects on
renal vascular function. Mice made moderately hyperbilirubinemic via antagonism of hepatic
UDP-glucuronosyltransferase 1-1 (UGT1A1) are resistant to Ang II-induced hypertension and
decreases in renal blood flow and glomerular filtration rate (GFR) [56,57]. One mechanism by
which bilirubin protects against Ang II-induced vasoconstriction is through the preservation of NO
bioavailability [58,59]. Bilirubin preserves NO bioavailability due to its antioxidant actions which
likely prevents the reaction of NO with superoxide anion and reduces subsequent peroxynitrite
formation [60–62].
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Arterial pressure regulates renal tubular function through the renal pressure-natriuretic
response [63,64]. Renal perfusion pressure can directly alter HO activity in the renal medulla,
and blockade of renal medullary HO activity significantly attenuates renal pressure natriuresis and
results in salt-sensitive hypertension [33]. Renal tubular induction of HO-1 was found to increase
sodium and water excretion as well as increase GFR [65,66]. However, the mechanism by which
this occurs and the metabolites responsible for mediating these changes are not fully understood.
Previous studies in both cultured thick ascending loop of Henle (TALH) cells and in transgenic mice
specifically overexpressing HO-1 in the TALH have demonstrated that HO-1 can protect against Ang
II-mediated increases in ROS production, decrease the levels of the sodium-potassium 2 chloride
(NKCC2) transporter, and attenuate the development of Ang II-dependent hypertension [28,31]. HO
induction stimulates the apical 70-pS K+ channel in the TALH through the generation of CO but
not biliverdin/bilirubin [67]. Additional studies have suggested that HO derived CO is involved in
the regulation of the epithelial sodium channel under conditions of hypoxia, but the physiological
significance of this regulatory pathway is not clear [68].

3. HO and Target Organ Injury

3.1. HO and the Heart

HO has been shown to play a protective role in the heart in many different pathological conditions.
HO-1 induction or overexpression has been demonstrated to protect against myocyte hypertrophy
both in vitro and in vivo [24,69]. However, the role of HO induction in Ang II-dependent cardiac
hypertrophy has been controversial with studies demonstrating both protection and lack of protection
against Ang II-dependent cardiac hypertrophy [70,71]. While the role of HO induction in preventing
Ang II-dependent hypertrophy is controversial, both bilirubin and CO administered alone protect
against Ang II-dependent cardiac hypertrophy [70,72].

Alterations in the HO system have shown the most promise in the protection of the heart
against ischemia–reperfusion (IR) injury. Cardiac IR injury results in the upregulation of HO-1
and lack of this upregulation has been shown to contribute to ventricular fibrillation (VF) in
diabetic animals [73,74]. Gene-targeted mice lacking HO-1 are more susceptible to cardiac IR injury,
and transgenic overexpression of HO-1 in the heart protects against IR injury [75,76]. One mechanism
by which HO protects against cardiac IR injury is through reductions in post-ischemia ROS production
(Figure 1) [75]. The decrease in post-ischemic ROS production by HO induction likely occurs
through increased bilirubin production. Several studies have demonstrated bilirubin itself protects
the heart from IR injury [77–79]. A potential therapeutic strategy utilizing HO-1 induction to protect
against IR injury is the design of “smart” gene therapy vectors in which expression of HO-1 is
regulated in a hypoxia-specific fashion [80,81]. In this system, HO-1 expression is regulated by
hypoxia-specific transcription factors which allow high levels of HO-1 expression during the ischemic
period but “turn-off” HO-1 expression once the hypoxic signal has ended [80,81]. CO, administered via
carbon-monoxide releasing molecules (CORMs) or inhaled, has been shown to protect the heart against
IR injury [82–85]. CO acts through several different mechanisms including mitochondrial potassium
channels, activation of the p38 mitogen-activated protein kinase (p38MAPK) pathway, and activation
of endothelial nitric oxide synthase (eNOS)/cGMP pathway (Figure 1) [82,83].

While there is an abundance of experimental evidence from rodent models, the translation of
the protective effect of HO induction has not been significantly explored in large animal preclinical
models as well as in human patients. In swine, a model of HO-1 overexpression exists; however,
the protective actions of HO-1 in the heart of this model have not been studied [86]. Human HO-1
overexpression driven by a recombinant adenoassociated virus (rAAV) is effective in attenuating
post-ischemic inflammation and preserving cardiac function in a swine model [87]. In humans, a (GT)n
dinucleotide length polymorphism in the promoter of the HO-1 gene regulates its inducibility. Short
(class S) repeats are associated with greater up-regulation of HO-1 than are long repeats. Class S



Antioxidants 2019, 8, 181 5 of 13

repeats are protective against the incidence of ischemic coronary heart disease and cardiac allograft
vasculopathy in several populations [88–90]. It is clear that more studies are needed in large animal
preclinical models as well as in human patient populations to fully translate the wealth of data that has
emerged on the protective actions of HO-1 induction in small animal models.

3.2. HO and the Kidney

HO-1 is expressed at low levels in the kidney under basal conditions. However, it can be induced
in several clinically relevant renal disease states, including hypertension, several forms of acute
renal injury, and transplant rejection. The protective role for HO-1 in models of acute kidney injury
has been elucidated using chemical inducers and inhibitors of HO-1 with results of these studies
further corroborated in HO-1 knockout or renal cell-type specific HO-1 overexpression. Human
HO-1 deficiency mirrors the renal injury reported in the HO-1 knockout mouse including renal iron
deposition, increased renal oxidative stress and the development of nephritis, further demonstrating
the important protective role of this system in the kidney [91,92].

Renal IR injury occurs after blood flow to the kidney is reduced for an extended period. It can
lead to progressive loss of renal function following the reestablishment of blood flow due to injury to
specific cell types which require a constant source of oxygen for their long-term survival. Induction
of HO-1 with hemin or tin-chloride protects against renal IR injury [93,94]. HO-1 induction also
protects against other forms of acute kidney injury brought on by nephrotoxins such as glycerol and
cisplatin [95–98]. Additional studies have demonstrated that deletion HO-1 specifically in the proximal
tubule of the kidney worsens cisplatin-induced acute kidney injury through regulation of cleaved
caspase-3 and modulation of p38 signaling while overexpression of HO-1 in the proximal tubule
protects against cisplatin-induced acute renal injury by decreasing the levels of cleaved caspase-3 [99].
Another mechanism by which HO-1 protects the kidney is through regulation of autophagy (Figure 1).
Autophagy is a complex process which can constitute a stress adaptation that avoids cell death
(and suppresses apoptosis), whereas, in other cellular settings, it constitutes an alternative cell-death
pathway. Renal tubule cells lacking HO-1 exhibit higher levels of basal autophagy, impaired progression
of autophagy, and increased apoptosis after cisplatin treatment which is reversed upon restoration of
HO-1 expression [100].

In humans, patients with the long (GT)n dinucleotide length polymorphism in the promoter of the
HO-1 gene (decreased expression), have 1.58 fold higher odds of acute kidney injury (AKI) following
cardiac surgery as compared to individuals with the short repeat polymorphism [101]. In human AKI
patients, plasma and urinary HO-1 levels correlate with renal HO-1 expression and degree of renal
injury indicating that levels of HO-1 could be a viable biomarker for AKI [102]. However, the source,
as well as the function of plasma HO-1 in the setting of AKI, is not known. For example, is HO-1
found in the plasma enzymatically active? If so, what is its substrate? If not, what is its function?
These questions need to be addressed in order to determine the role of circulating HO-1 in AKI.

Not only has the protective actions of HO-1 induction been studied in the setting of AKI, the specific
role of its major metabolites, bilirubin, and CO have also been investigated. Bilirubin treatment has had
mixed effects in rat models of renal IR-injury with several studies demonstrating complete protection
and one study demonstrating partial protection [93,103,104]. However, several studies in both human
patient populations and in the hyperbilirubinemic Gunn rat demonstrate protection against the
development of diabetic kidney injury [60,105]. Human studies have focused on the correlation of
serum bilirubin levels with the development of acute renal injury. Bilirubin treatment has not yet been
tried as a therapy against acute kidney injury in humans. Bilirubin has traditionally been thought to
protect the kidney through its anti-oxidant and anti-inflammatory properties; however, new studies
have identified bilirubin as an activator of nuclear hormone receptors [7,106]. This signaling property
of bilirubin raises the possibility that, in addition to its potent anti-oxidant actions, bilirubin may
afford renoprotection through alterations in metabolism which may help renal tubule cells recover
after injury.
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Carbon monoxide has also been demonstrated to protect the kidney against acute injury as well as
increase renal allograft survival and viability following transplantation [107,108]. CO donor drugs have
been demonstrated to reduce renal injury following ischemia as well as nephrotoxin exposure [109–111].
CO inhalation therapy has also been effective in protecting the kidney against IR injury as well as
playing a beneficial role in renal allograft survival [108,112–114]. CO exerts its protective effects through
alterations in several signaling mechanisms including: (1) vascular endothelial growth factor (VEGF)
production; (2) the inflammatory response through regulation of high-mobility group box 1 (HMGB1)
proteins; (3) through the endoplasmatic reticulum (ER) stress response; (4) through metabolic hormones
such as fibroblast growth factor-21 (FGF21); and (5) increased expression of the circadian rhythm
protein Period 2 (Per2) [115–119]. CO inhalation has also proven to be a successful therapy in protecting
the kidney against IR injury in swine models, which are highly translational to humans [107,114,120].

4. Conclusions

The heme oxygenase system provides many opportunities for protection against cardiovascular
and renal disease (Figure 1). Several strategies to induce HO-1 apart from the traditional
porphyrin-based compounds and heme have been reported. These include targeting of the nuclear
factor (erythroid-derived 2)-like 2 (NFE2L2 and Nrf2, respectively) [121–123], and treatment with
resveratrol and electroacupuncture [124,125]. One area in which research into the protective actions of
HO induction is lacking is in large animal models of cardiovascular and renal disease. This is especially
true for studies examining the anti-hypertensive actions of HO-1 induction. One potential reason for
this has been the lack of adequate experimental drugs to allow for induction or inhibition of HO in larger
animals. The development of novel HO inducers described above, as well as novel non-porphyrin
based HO inhibitors, will help in this area [126–128]. With the rapid development of CRISPR/Cas9
technology, it is now possible to alter HO-1 levels in larger preclinical animal models which will
further advance the therapeutic potential of the HO system for the treatment of cardiovascular and
renal disease.
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