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The Montana Tropical® Composite is a recently developed beef cattle population that is
rapidly expanding in Brazil and other tropical countries. This is mainly due to its improved
meat quality and adaptation to tropical climate conditions compared to Zebu and Taurine
cattle breeds, respectively. This study aimed to investigate the genetic architecture of
ultrasound-based carcass and meat quality traits in Montana Tropical® Composite beef
cattle. Therefore, we estimated variance components and genetic parameters and
performed genome-wide association studies using the weighted single-step Genomic
Best Linear Unbiased Prediction (GBLUP) approach. A pedigree dataset containing
28,480 animals was used, in which 1,436 were genotyped using a moderate-density
Single Nucleotide Polymorphism panel (30K; 30,105 SNPs). A total of 9,358, 5,768,
7,996, and 1,972 phenotypic records for the traits Longissimus muscle area (LMA),
backfat thickness (BFT), rump fat thickness (RFT), and for marbling score (MARB),
respectively, were used for the analyses. Moderate to high heritability estimates were
obtained and ranged from 0.16 ± 0.03 (RFT) to 0.33 ± 0.05 (MARB). A high genetic
correlation was observed between BFT and RFT (0.97 ± 0.02), suggesting that a similar
set of genes affects both traits. The most relevant genomic regions associated with LMA,
BFT, RFT, andMARBwere found on BTA10 (5.4–5.8 Mb), BTA27 (25.2–25.5 Mb), BTA18
(60.6–61.0 Mb), and BTA21 (14.8–15.4 Mb). Two overlapping genomic regions were
identified for RFT and MARB (BTA13:47.9–48.1 Mb) and for BFT and RFT (BTA13:61.5–
62.3 Mb). Candidate genes identified in this study, including PLAG1, LYN, WWOX, and
PLAGL2, were previously reported to be associated with growth, stature, skeletal muscle
growth, fat thickness, and fatty acid composition. Our results indicate that ultrasound-
based carcass and meat quality traits in the Montana Tropical® Composite beef cattle are
heritable, and therefore, can be improved through selective breeding. In addition, various
novel and already known genomic regions related to these traits were identified, which
contribute to a better understanding of the underlying genetic background of LMA, BFT,
RFT, and MARB in the Montana Tropical Composite population.

Keywords: candidate genes, composite cattle, crossbreeding, genomic regions, single-step Genome-Wide
Association Studies (ssGWAS), Genomic Best Linear Unbiased Prediction (GBLUP), tropical beef cattle
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INTRODUCTION

Both carcass and meat quality traits are paramount for
optimizing the profitability of the beef cattle industry. These
traits are influenced by diet and feeding practices, pre- and post-
slaughter management, and meat processing and storage
methods (Adzitey, 2011; Guerrero et al., 2013; Njisane and
Muchenje, 2017). Despite the apparent effectiveness of these
alternatives, genetic selection is a complementary approach in
which the gains achieved are permanent and cumulative over
generations. In this context, carcass and meat quality traits have
been measured and incorporated in worldwide beef cattle
breeding programs (Reverter et al., 2000; Yokoo et al., 2010;
Berry et al., 2017; Gordo et al., 2018). Carcass and meat quality
traits can be measured in live animals using ultrasound
technology, which is a noninvasive technique (Pathak et al.,
2011; Scholz et al., 2015). Ultrasound-based traits that are
indicators of carcass and meat quality include Longissimus
muscle area (LMA), backfat thickness (BFT), rump fat
thickness (RFT), and marbling score (MARB) (Pathak et al.,
2011; Font-i-Furnols and Guerrero, 2014; Gordo et al., 2018).

Brazil is one of the largest beef cattle producers in the world,
with a population of over 230 million animals (USDA, 2019).
More than 80% of the beef cattle animals currently raised in
Brazil are from the Nellore breed (Bos taurus indicus; Zebu),
which are well adapted to tropical conditions (Ferraz and Felício,
2010). However, Zebu breeds are also well known for poorer
meat quality (Crouse et al., 1989; Bressan et al., 2016; Rodrigues
et al., 2017) when compared to Taurine (Bos taurus taurus)
breeds (e.g., Aberdeen Angus, Red Angus, Senepol, Charolais).
An alternative to improve carcass and meat quality traits, while
keeping the adaptation characteristics of Zebu cattle, is through
the development of composite populations (i.e., crossbreeding
between Taurine and Zebu animals; e.g. Piccoli et al., 2020).

The Montana Tropical® Composite population was firstly
developed in 1994 following studies conducted by the U.S. Meat
Animal Research Center at Clay Center, United States
Department of Agriculture (USDA; Gregory et al., 1993;
Gregory et al., 1994). This composite population was
developed by crossing animals from four different biological
types or breed groups (Ferraz et al., 1999): 1) Zebu breeds (Bos
taurus indicus), 2) Adapted Taurine breeds (Bos taurus taurus),
3) British breeds (Bos taurus taurus), and 4) Continental
European breeds (Bos taurus taurus).

Over the past few years, there has been a great interest in
genetically improving this composite population and better
understanding its genetic background underlying phenotypic
variation of economic importance to the breeders. In this
context, genome-wide association studies (GWAS) can be
performed to identify Quantitative Trait Loci (QTL) associated
with key traits (e.g. carcass and meat quality). Recent GWAS
have successfully revealed significant genomic regions in beef
cattle composite populations [(e.g., Weng et al., 2016; Hay and
Roberts, 2018; Grigoletto et al., 2019)]. Wang et al. (2012)
proposed a GWAS method based on the single-step Genomic
Best Linear Unbiased Predictor (ssGBLUP; Legarra et al., 2009;
Aguilar et al., 2010; Legarra et al., 2014), which has become the
Frontiers in Genetics | www.frontiersin.org 2
gold-standard method for GWAS [also termed single-step
Genome-Wide Association Studies (ssGWAS)]. A variation of
this method, the weighted single-step GBLUP (WssGBLUP;
Wang et al., 2012) usually yields more accurate SNP effects
(e.g. Zhang et al., 2016), and consequently, a greater power to
identify QTLs and functional genes. In this context, the main
goals of this study were to: 1) estimate variance components and
genetic parameters for four ultrasound-based carcass and meat
quality traits (i.e., LMA, BFT, RFT, and MARB) in Montana
Tropical® Composite beef cattle and 2) identify relevant genomic
regions, candidate genes, and metabolic pathways associated
with these traits, using the WssGBLUP method.
MATERIALS AND METHODS

Animal Care Committee approval was not obtained for this
study as all the analyses were performed using pre-
existing databases.

Animals and Phenotypic Data
The descriptive statistics of the pedigree file, including the breed
composition of the animals is shown in Table 1. Breed was
recorded by the producers/technicians or calculated based on
pedigree relationship between the animals. The animals were
classified within each biological group (NABC) as: 1) N: Zebu
breeds, mainly represented by Nellore; 2) A: Taurine breeds
adapted to tropical conditions (Senepol, Belmont Red,
Bonsmara, and Caracu); 3) B: Taurine breeds of British origin
(mainly Angus, Devon, and Hereford); and, 4) C: Continental
European breeds (mainly Charolais, Limousin, and Simmental).
To be considered as a Montana Tropical® Composite (Figure 1),
the animals had to have at least three breeds in their genetic
composition. In addition, the minimum percentage of the
TABLE 1 | Descriptive statistics of the pedigree dataset according to the breed
and biological type composition of the animals.

1Biological Type Number of animals

Montana Tropical® Composite 4444 7,136
4480 4,693
4804 3,125
4840 3,127

Pure breeds N ≥ 90% 3,730
A ≥ 90% 1,461
B ≥ 90% 1,630
C ≥ 90% 181

Crossbreed N × A 116
N × B 2,230
N × C 842
A × B 153
A × C 8
B × C 48

Total 28,480
February 2020 | Vo
1Biological type (NABC system; Ferraz et al., 1999): Zebu breeds (N), Adapted Taurine
breeds (A), British Taurine breeds (B), and Continental Taurine breeds (C). Breed
composition of the Montana Tropical Composite animals: 4444 = 25% N, A, B and C;
4480 = 25% N, 25% A, 50% B, and < 6.25% C; 4804 = 25% N, 50% A, < 6.25% B, and
25% C; 4840 = 25% N, 50% A, 25% B and < 6.25% C. N × A, N × B, N × C, A × B, A × C,
and B × C = the combination of each breed group equals to 50%.
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biological types (breed groups) required to be considered a
Montana Tropical® Composite was 12.5% for group A and
25% for groups N and A together. The maximum proportion
of each group allowed was 37.5% for group N; 87.5% for group A;
and 75% for groups B and C (Santana et al., 2013). The main
contributing breeds to the development of this composite
population were Aberdeen Angus, Red Angus, Nellore,
Senepol, Limousin, Simmental, Hereford, and Bonsmara.

Four ultrasound-based carcass and meat quality traits (LMA,
BFT, RFT, and MARB), recorded on animals born between 2008
and 2016, were included in this study. Animals were raised in 18
farms located at different Brazilian states, Paraguay and Uruguay
(Figure 1). In general, the animals were raised on pastures
composed basically of Brachiaria brizantha. All farms provided
feed supplements in the dry season (from May to August). With
regard to the reproductive breeding scheme, around 60% of cows
were artificially inseminated and 40% were kept in multiple-sire
lots with a cows-to-bull’ ratio of 30:1 or 25:1. The majority of
calves were born between September and December (Spring
season in South America and the beginning of the rainy
period) and weaned at 7 months of age. Weight recording was
obtained at birth and weaning. Further records of yearling
weight, scrotal circumference, and other productive traits were
collected between 14 and 18 months. More details are presented
in Santana et al. (2012), and in a previous GWAS study from the
same population (Grigoletto et al., 2019).

The average (±standard deviation; SD) age of the animals at
the ultrasound measurement was 580.27 (±75.08) days.
Longissimus muscle area (LMA) was measured in cm2, between
the 12th and 13th ribs. Backfat thickness (BFT) was measured in
mm, at a point three-fourths of transverse orientation over the
LMA (Brethour, 2004). Rump fat thickness (RFT) was also
measured in mm, at the junction of the biceps femoris and
Frontiers in Genetics | www.frontiersin.org 3
gluteus medius between the ischium and ilium (Greiner et al.,
2003; Gordo et al., 2012). Marbling score (MARB) was measured
as an indicator of the percentage of intramuscular fat, using a
subjective scale ranging from 1 to 12, based on the U.S.
Department of Agriculture (USDA) quality grades (www.
uspremiumbeef.com/DocumentItem.aspx?ID=21). All traits
were evaluated by ultrasonography using the ALOKA 500 V
device, with a 3.5 MHz linear probe. The images were analyzed
using the LINCE® software (Gabín et al., 2012). Phenotypic
quality control removed records deviating 3.5 SD from the
overall mean within contemporary group (CG). The CGs were
defined based on farms, years, and seasons of birth, sexes, and
management groups. The CGs with less than five records were
excluded from subsequent analyses. Descriptive statistics for the
ultrasound-based carcass and meat quality traits after the data
editing are shown in Table 2.

Genotypic Quality Control
A total of 1,436 bulls were genotyped using a moderate-density
SNP panel containing 30,105 SNPs (GeneSeek Genomic
FIGURE 1 | Illustration of a Montana Tropical® Composite bull (left) and location of the farms (right) participating in the Montana Tropical® Composite breeding
program. The map regions in black indicate Brazilian states and the gray areas represent Paraguay and Uruguay. Photo Credits: Montana Tropical® Composite
website (www.compostomontana.com.br/criadores-montana/).
TABLE 2 | Descriptive statistics, variance components, and genetic parameter
estimate for ultrasound carcass traits in the Montana Tropical® Composite cattle
population.

1Trait N Mean SD s 2
a (SE) s 2

e (SE) h2 (SE)

LMA (cm2) 9,358 58.40 12.79 13.99 (1.73) 33.35 (1.44) 0.29 (0.03)
BFT (mm) 5,768 2.84 0.71 0.25 (0.04) 0.68 (0.03) 0.26 (0.03)
RFT (mm) 7,996 3.16 1.37 0.09 (0.04) 0.45 (0.03) 0.16 (0.03)
MARB (score) 1,972 3.29 1.20 0.18 (0.04) 0.36 (0.04) 0.33 (0.05)
Fe
bruary 2020
 | Volume 11 |
1Traits: Longissimus muscle area (LMA); backfat thickness (BFT); rump fat thickness
(RFT); marbling score (MARB).

N, number of animals; SD, standard deviation; SE, standard error; s2
a additive genetic

variance; s2
e residual variance; h2, heritability.
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Profiler™ LDv4-GGP Bovine LDv4; Illumina, San Diego, CA).
Genotype quality control was performed using the PREGSF90
program (Aguilar et al., 2014; Aguilar et al., 2019). In general,
SNPs with minor allele frequency lower than 0.05, call rate lower
than 90%, extreme deviation from Hardy–Weinberg equilibrium
(defined as the maximum difference between observed and
expected heterozygosity) greater than 0.15 (Wiggans et al.,
2009), and SNPs located in nonautosomal chromosomes were
excluded. A total of 27,196 SNPs distributed on 29 autosomal
chromosomes, and 1,394 genotyped animals (42 animals were
excluded due to call rate lower than 90%) remained for further
analyses. BTA1 is the largest chromosome, with 158.72
Megabase pairs (Mb) covered by 1,602 SNPs, while the BTA27
is the shortest one, with 42.33 Mb covered by 512 SNPs.

Statistical Analyses
Variance components and breeding value prediction. Single-
trait linear animal models and the average-information restricted
maximum likelihood (AI-REML) procedure were used to
estimate heritability and variance components, using the
AIREMLF90 package from the BLUPF90 family programs
(Misztal et al., 2002; Misztal et al., 2014). Genomic breeding
values for all traits were directly predicted using the ssGBLUP
procedure (Misztal et al., 2009; Aguilar et al., 2010; Christensen
and Lund, 2010). The ssGBLUP is a modified version of the
traditional BLUP, in which the inverse of the pedigree-based
relationship matrix (A−1) is replaced by the H−1 matrix. The H−1

is defined as follow (Legarra et al., 2009; Aguilar et al., 2010):

H−1 = A−1 +

0 0

0 tG−1 − wA−1
22

2
664

3
775,

where A–1 was previously defined, t and w are the scaling factors
used to combine G and A22 (assumed as t = 1.0 and w = 0.7 in
order to reduce bias; Misztal et al., 2010; Tsuruta et al., 2011),A−1

22 is
the inverse of the pedigree-based relationship matrix for the
genotyped animals, and G–.G-1 is the inverse of the genomic
relationshipmatrix (G), which was calculated as (VanRaden, 2008):

G = ZZ0=k,

where Z is the matrix containing the centered genotypes (−1, 0,
1) accounting for the observed allelic frequencies; and k is a
scaling parameter, defined as 2 S p(1–p), in which p is the
observed allele frequency of each marker. The weighting factor
can be derived either based on SNP frequencies (VanRaden,
2008) or by ensuring that the average diagonal of G is close to
one as in A22 (Vitezica et al., 2011). In order to minimize issues
with G inversion, 0.05 of A was added to 0.95 of the G matrix.

The single-trait animal models used in this study included the
direct additive genetic and residual as random effects. CG, direct
(individual) heterozygosity (described below), and age of the
animal at the measurement were included as fixed effects in the
model. Thus, the statistical model used in this study can be
Frontiers in Genetics | www.frontiersin.org 4
described as:

yijkl = CGi + b1 Agej − Age
� �

+ b2 HDk
− HD

� �
+ al + ϵijkl ,

where yijkl is the phenotypic record for each trait (LMA, BFT,
RFT or MARB) recorded on the animal l, belonging to the CG i,
at age j, and direct (individual) heterozygosity (HD) k. b1 and b2
are the linear regression coefficients related to the Age and HD

effects, respectively, which were considered as deviations from
the mean (Age and HD) The a1 is the direct additive genetic
random effect for the animal l, and ϵijkl is the residual random
effect associated with the animal l, direct (individual)
heterozygosity k, age j, and CG i. Assuming a matrix notation,
the previous model can be written as:

y = X b+Za + ϵ,

where, y is the vector of phenotypic observations for each trait; b is
the vector of solutions for fixed effects; a is the vector of predictions
for random additive genetic animal effect; ϵ is the vector of random
residual terms; X and Z are the incidence matrices of fixed and
random effects, respectively. It was assumed that: a ~ N(0 Hs2

a)
and ϵ ~ N(0 Is2

a) where s 2
ais the additive genetic variance; s 2

ϵ is the
residual variance; and I is an identity matrix. Thus, the (co)variance
matrix (V) of the random effects can be expressed as:

V =
Hs 2

a

0

0

Is 2
ϵ

" #
,

whereH is the relationship matrix used in the ssGBLUP method.
The non-additive effects of heterozygosity were obtained by
linear regression to the coefficients of direct (individual)
heterozygosity (HD), which were calculated as (Dias et al., 2011):

HD = 1 − o
4

i=1
SiDi

which i represents the biological type (i.e., i = 1, 2, 3 or 4,
indicating the proportion of N, A, B, C, respectively); Si and Di

are the fractions of the ith biological type of sire and dam,
respectively. Coefficients for biological types (N, A, B, and C)
were equal to the proportion of each biological type in the breed
composition (as recorded by the producers/technicians or
calculated based on pedigree relationship between animals),
and it was assumed that the sum of all proportions of
biological types in one animal were equal to one. To avoid
multicollinearity, direct additive effects of the biological type N
were excluded from the statistical models, i.e., the effects for A, B,
and C were estimated as deviations of the additive effects of N
(Dias et al., 2011; Petrini et al., 2012).

Genetic correlations. Amultiple-trait linear animal model was
used to estimate the genetic and phenotypic correlation between all
traits (LMA, BFT, RFT, and MARB) using pedigree and genomic
information. Genetic and phenotypic correlations were calculated
using the AIREMLF90 package from the BLUPF90 family programs
(Misztal et al., 2002; Misztal et al., 2014). The multiple-trait model
February 2020 | Volume 11 | Article 123
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included the same fixed and random effects described above.
However, it was assumed that: a ~ N(0, G⊗H); ϵ ~ N(0, R⊗I);
where a, H, and I are the same as above; G is the additive genetic
(co)variance matrix; R is the residual (co)variance matrix. In this
reasoning, the (co)variance matrix for random effects was:

V =
G⊗H O

0 R⊗ I

" #

Genome-wide association studies (GWAS). The GWAS for
each trait was carried out using the weighted ssGBLUP method
(WssGBLUP; Wang et al., 2012). The same statistical models
described to estimate the variance components and breeding
values were used to identify genomic windows associated with the
traits, as described by Wang et al. (2014) using the BLUPF90 family
programs (Misztal et al., 2002; Misztal et al., 2014). The PREGSF90
software (Aguilar et al., 2014) was used as an interface to the
genomic module to process the genomic information. Also, the
POSTGSF90 software (Aguilar et al., 2014) was used to back-solve
the GEBVs for each trait. To calculate the SNP effects and weights,
we followed the steps proposed by Wang et al. (2014). This method
uses an iterative process, which was repeated three times in this
study, to increase the weight of SNPs with larger effects and decrease
the weight of those markers with smaller (close to zero) effects
(Wang et al., 2014). The GWAS results are reported as the
proportion of variance explained by a moving genomic window
of five adjacent SNPs. Genomic windows that explained more than
1% of the total genetic variance were considered as relevant, i.e.
associated with the trait being analyzed.

Functional Analyses
Positional candidate genes were annotated considering an upstream
and downstream interval of 100 kb (threshold defined based on the
level of linkage disequilibrium in the population) using the Ensembl
Genome Browser (www.ensembl.org/index.html) and the ARS-
UCD1.2 version of the cattle genome (Zerbino et al., 2017).
Furthermore, important SNPs (from the key genomic windows)
were further explored using the Animal QTL Database
(AnimalQTLdb; Zhi-Liang et al., 2019). Functional analyses were
carried out to characterize the gene ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways using the
Database for Annotation, Visualization and Integrated Discovery
(DAVID; Huang et al., 2009). In order to increase the statistical
power of the study, all candidate genes identified for the four traits
were considered in the same functional analysis, as they are all
correlated traits. The significance thresholds used were p-value <
0.05 and false discovery rate (FDR) < 5 based on the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995), as
implemented in the DAVID software (Huang et al., 2009).
RESULTS

Genetic Parameter Estimates
The variance components and heritability (h2) estimates for
LMA, BFT, RFT, and MARB are presented in Table 2. All
Frontiers in Genetics | www.frontiersin.org 5
traits had moderate to high heritability estimates, which
ranged from 0.16 ± 0.03 to 0.33 ± 0.05. The genetic and
phenotypic correlations are shown in Table 3. The highest
genetic correlation was obtained between BFT and RFT (0.97 ±
0.02), followed by an unfavorable correlation between BFT and
MARB (0.66 ± 0.01). The heritability estimates from the single-
trait and averaged bivariate model analyses were similar, and
therefore, only the heritability estimates from the single-trait
models are reported and discussed here.

GWAS and Functional Analyses
A total of 18, 22, 9, and 11 genomic windows explaining more
than 1% of the total genetic variance were identified for LMA,
BFT, RFT, and MARB, respectively. These regions are harboring
or overlap with 241 positional genes. The main candidate genes
are shown in Table 4 and the complete list is presented in the
“Supplementary Material” section. The genomic windows
identified are spread across all autosomal chromosomes, with
exception of BTA8, BTA16, BTA19, BTA20, and BTA25
(Supplementary file — Tables S1–S4). The Manhattan plots
for all traits are presented in Figure 2.

Two overlapping regions were identified on BTA13: 1) at
47.7–48.5 Mb for BFT and MARB, and 2) at 61.5–63.5 Mb for
BFT and RFT. The highest peaks associated with LMA, BFT,
RFT, and MARB were located on BTA10 (5.4–5.8 Mb; 6.6% of
the genetic variance), BTA27 (25.2–25.5 Mb; 9.3% of the genetic
variance), BTA18 (60.6–61.0 Mb; 6.0% of the genetic variance),
and BTA21 (14.8–15.4 Mb; 6.0% of the genetic variance),
respectively (Figure 2). For LMA, a single genomic window
was identified on BTA14 (22.8 to 23.2 Mb) explaining close to 4%
of the total additive genetic variation. Another region explaining
1.17% of the total additive genetic variance was identified on
BTA18 (5.4 to 5.6 Mb) and contains the WWOX gene which
plays a role in the composition of intramuscular fatty acid
associated with cholesterol homeostasis and triglyceride
biosynthesis (Iatan et al., 2014). A region located on BTA13
(61.6–62.5 Mb) identified to be associated with both BFT and
RFT harbors the candidate genes PLAGL2, ASXL1, and BPIFB2.
This suggests that these genes might have pleiotropic effects on
BFT and RFT. The genomic region located at BTA22 and
harboring the SCAP and ENTPD3 genes accounted for 7.58%
of the total genetic variance for BFT. It is worth noting that we
highlighted selected genes related to BFT and RFT, however, a
total of 13 mutual genes (HCK, TM9SF4, PLAGL2, POFUT1,
KIF3B, ASXL1, NOL4L, COMMD7, DNMT3B, MAPRE1,
TABLE 3 | Genetic (above) and phenotypic (below) correlation (±standard error)
for ultrasound carcass and meat quality traits in the Montana Tropical Composite
beef cattle population.

Traits1 LMA BFT RFT MARB

LMA 0.46 ± 0.05 0.29 ± 0.08 0.27 ± 0.05
BFT 0.53 ± 0.08 0.64 ± 0.03 0.50 ± 0.02
RFT 0.39 ± 0.12 0.97 ± 0.02 0.47 ± 0.03
MARB 0.23 ± 0.01 0.66 ± 0.01 0.55 ± 0.02
February 2
020 | Volume 11
1Traits: Longissimus muscle area (LMA), backfat thickness (BFT), rump fat thickness (RFT)
and marbling score (MARB).
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EFCAB8, SUN5, BPIFB2) were identified for this common
genomic region. A total of 12 biological processes (BP) and
two pathways were significantly enriched (Table 5). Four
biological processes involving visual behavior, associative
learning, muscle tissue morphogenesis, and regulation of fatty
acid biosynthetic processes were highlighted for further discussion.
DISCUSSION

Genetic Parameters
The genetic parameters obtained for ultrasound carcass traits in
the Montana Tropical Composite population (Table 2) are
similar to literature reports (Mourão et al., 2007). For instance,
Meirelles et al. (2010) estimated h2 of 0.24 ± 0.09 and 0.33 ± 0.09
for BFT and LMA, respectively, in Canchim beef cattle (a
Frontiers in Genetics | www.frontiersin.org 6
synthetic population based on crossing between Charolais and
Zebu breeds). Silva et al. (2019) also reported moderate to high
h2 estimates for BFT (0.17 ± 0.06), RFT (0.27 ± 0.07), and LMA
(0.32 ± 0.02) in Nellore beef cattle. Hay and Roberts (2018) also
reported a high h2 estimate for LMA (0.32 ± 0.08) in a composite
population of 50% Red Angus, 25% Charolais, and 25%
Tarentaise beef cattle. The moderate to high heritability
estimates indicate that genetic progress can be achieved for
these traits through selective breeding.

A high and favorable genetic correlation was estimated
between BFT and RFT (r = 0.97 ± 0.02), indicating that these
traits are controlled by a similar set of genes. Furthermore, this
high genetic correlation suggests that indirect genetic progress
can be attained by including only one of these two traits in a
breeding program. Positive but unfavorable genetic correlations
were estimated between BFT and MARB (r = 0.66 ± 0.01), RFT
TABLE 4 | The main genomic regions explaining more than 1% of total genetic variance (%var) of ultrasound-based carcass traits in the Montana Tropical® Composite
beef cattle.

1Trait 2BTA Position (start-
end, in bp)

%
var

Candidate genes

LMA 2 64,808,388–
65,069,037

3.86 NCKAP5, LYPD1, GPR39

6 102,264,376–
102,500,758

6.00 HSD17B13, HSD17B11, NUDT9, SPARCL1, DSPP, DMP1, PPP2R2C, WFS1, JAKMIP1

10 5,392,944–
5,807,684

6.67 HRH2, SFXN1, DRD1

14 22,875,603–
23,252,097

3.48 XKR4, TMEM68, TGS1, LYN, RPS20, MOS, PLAG1

18 25,832,665–
26,209,903

4.17 KIFC3, CNGB1, TEPP, ZNF319, USB1, MMP15, CFAP20, CSNK2A2, CCDC113, PRSS54, GINS3, NDRG4, SETD6,
CNOT1, SLC38A7, GOT2

BFT 2 12,138,830–
12,823,369

3.33 –

13 61,566,683–
62,224,699

3.88 PLAGL2, POFUT1, KIF3B, ASXL1, NOL4L, COMMD7, DNMT3B, MAPRE1, EFCAB8, SUN5, BPIFB2

15 75,727,954–
76,192,434

4.38 MAPK8IP1, C15H11orf94, PEX16, LARGE2, PHF21A, CREB3L1, CHST1, SLC35C1, CRY2

22 12,826,540–
13,203,551

4.75 SCN10A, SCN11A, WDR48, GORASP1, TTC21A, CSRNP1, XIRP1, CX3CR1, CCR8, SLC25A38, RPSA, MOBP, MYRIP,
EIF1B, ENTPD3, RPL14, ZNF619, ZNF621, HSPD1

27 25,252,766–
25,558,906

9.31 PPP1R3B, TNKS

RFT 2 29,948,707–
30,390,796

1.59 SCN7A, SCN9A, SCN1A, TTC21B

14 7,844,432–
8,107,746

1.56 ST3GAL1, NDRG1, CCN4

18 60,682,096–
61,018,825

6.08 ZNF331, MGC139164, NLRP12, MGC157082

18 65,340,963–
65,356,544

1.29 ZNF814

23 3,159,017–
3,581,582

1.30 ZNF451, BEND6

MARB 2 96,082,524–
96,725,242

1.55 PLEKHM3, CRYGD, CRYGC, CRYGB, CRYGA, C2H2orf80, IDH1, PIKFYVE, PTH2R

12 22,901,497–
23,236,520

1.39 LHFPL6, NHLRC3, PROSER1, STOML3, FREM2

15 24,216,319–
24,219,946

4.51 ZW10

21 14,800,548–
15,428,801

6.00 SLCO3A1

28 34,157,181–
34,514,922

3.31 –
1Traits: Longissimus muscle area (LMA), backfat thickness (BFT), rump fat thickness (RFT) and marbling score (MARB). 2Bos taurus autosome (BTA).
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FIGURE 2 | Manhattan plots of the genome-wide association analyses for Longissimus muscle area (A; LMA), backfat thickness (B; BFT), rump fat thickness (C;
RFT) and marbling score (D; MARB) traits. The 29 autosomal chromosomes are shown in different colors. The x-axis represents the chromosome number whereas
the y-axis shows the proportion of genetic variance explained by five adjacent SNPs. The gray line corresponds to the genome-wide threshold of each window that
explained more than 1% of genetic variance.
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and MARB (r = 0.55 ± 0.02), LMA and BFT (r = 0.53 ± 0.08), and
LMA and RFT (r = 0.39 ± 0.02). This is because the industry aims
to increase MARB and LMA while keeping BFT and RFT at a
constant level. However, as these correlations are far from the
unit, genetic progress for all the traits can be achieved by
including and properly weighting them in a selection index. A
favorable correlation was observed between LMA and MARB
(r = 0.23 ± 0.01). Gordo et al. (2018) also obtained a moderate
and positive correlation between LMA and MARB in Zebu cattle.
These findings indicate that selection for carcass traits might
indirectly improve meat quality.

GWAS and Functional Analyses
To our best knowledge, this is the first study reporting genomic
regions and genetic parameters for carcass and meat quality traits
in the Montana Tropical® Composite. The WssGBLUP method
enables the inclusion of phenotypes of ungenotyped animals in
the GWAS, which improves the accuracy of marker effect
estimation (Wang et al., 2012; Aguilar et al., 2019). The
genomic regions presented in Table 4 are harboring candidate
genes related to several biological mechanisms associated with
carcass and meat quality traits. For instance, the PPP1R3B
(protein phosphatase 1, regulatory subunit 3B) gene was
identified to play a role in the expression of all the traits
included in this study. PPP1R3B has been reported to be
associated with meat quality traits in cattle, including pH, meat
color, and shear force (Edwards et al., 2003; Kayan, 2011; Cinar
et al., 2012), and skeletal muscle development in humans (Munro
et al., 2002). In addition, this gene is associated with glucose and
glycogen metabolism. Therefore, it may affect the energy
availability in skeletal muscle and consequently, contribute to
greater muscle growth (Zhao et al., 2019). Also, it regulates
deposition of intramuscular fat relative to subcutaneous fat
deposition (Choat et al., 2003).

The PLAGL2, CALCR, ASXL1, and BP1FB2 genes, identified
to be associated with BFT and RFT, play a role in lipid
metabolism (Van Dyck et al., 2007). More specifically, PLAGL2
Frontiers in Genetics | www.frontiersin.org 8
is part of a subfamily of zinc finger (PLAG) gene family proteins
(Kas et al., 1998). The PLAG1 gene, also identified in this study,
has a great impact on carcass weight in cattle (Littlejohn et al.,
2012). Moreover, many studies have shown that the PLAG gene
family is a key regulator of mammalian growth and body weight
(Littlejohn et al., 2012; Fortes et al., 2013; Utsunomiya et al.,
2017; Muramatsu, 2018; Zhang et al., 2019). The CALCR gene,
located on BTA4 and identified to be associated with BFT, was
previously reported to be associated with angularity, body
condition score and body depth in Holstein cattle (Magee
et al., 2010). The gene INSIG1 (Insulin induced gene 1) has also
been associated with growth and carcass traits, including body
weight, hip width and withers height (Liu Y. et al., 2012), residual
feed intake (Karisa et al., 2013) and milk fatty acids (Rincon et al.,
2012). Furthermore, a group of genes (PLAG1, RPS20,
ATP6V1H, RGS20, LYN, TCEA1, MRPL15, SOX17, RP1,
CHCHD7, SDR16C5, SDR16C6, PENK, FAM110B, CYP7A1,
SDCBP) located on a conserved region on BTA14, previously
reported as a selective sweep region in dairy and beef cattle
breeds (Zhao et al., 2015), might play a crucial role in carcass and
meat quality traits. This region seems to be the most relevant
association with carcass traits in beef cattle (Magalhães et al.,
2016; Hay and Roberts, 2018; Zhang et al., 2019). Furthermore,
LYN, XKR4, and TGS1 genes have already been associated with
hip height (An et al., 2019), insulin-like growth factor 1 level
(Fortes et al., 2012), and carcass traits (including RFT) in Blonde
d’Aquitaine, Charolais, Limousine, Belmont Red, Santa
Gertrudis, and Nellore cattle (Porto-Neto et al., 2012; Ramayo-
Caldas et al., 2014; Magalhães et al., 2016).

The considerable number of common candidate genes (i.e.,
114 genes) identified for multiple carcass traits suggests that
there are important pleiotropic effects regulating phenotypic
expression of these traits. This is also supported by the
moderate to high genetic correlation observed here and in
other studies (e.g. Tonussi et al., 2015; Herd et al., 2018).
Recently, Silva et al. (2017) and Hay and Roberts (2018)
reported several significant regions on BTA14 associated with
TABLE 5 | Enriched Gene Ontology (GO) and KEGG terms obtained from the DAVID database (https://david.ncifcrf.gov; Huang et al., 2009).

Category GO Term p-value FDR Genes

Biological
Process

GO:0008306~associative learning 4.97E-
04

0.84 DDHD2, NDRG4, DRD1, HRH2, LRRN4

GO:0007632~visual behavior 6.93E-
04

1.17 DDHD2, NDRG4, DRD1, HRH2, LRRN4

GO:0008542~visual learning 0.01 1.53 DDHD2, NDRG4, DRD1, HRH2, LRRN4
GO:0060415~muscle tissue morphogenesis 0.008 2.57 CCM2L, MYL3, RXRA, ZFPM2
GO:0007612~learning 0.014 3.6 DDHD2, DRD1, LRRN4, HRH2, NDRG4
GO:0030817~regulation of cAMP biosynthetic
process

0.04 5.2 DRD1, GALR1, WFS1, GALR3

GO:0042304~regulation of fatty acid biosynthetic
process

0.01 5.61 SCAP, INSIG1, PDK4

GO:0044060~regulation of endocrine process 0.04 5.4 FGFR1, CRY2, GALR1
GO:0060986~endocrine hormone secretion 0.04 5.9 FGFR1, CRY2, GALR1
GO:0033002~muscle cell proliferation 0.01 7.3 FGFR1, NDRG4, RXRA, ZFPM2
GO:0007611~learning or memory 0.01 8.1 DDHD2, DRD1, LRRN4, HRH2, NDRG4
GO:0001501~skeletal system development 0.02 8.2 WDR48, FGFR1, CSRNP1, PTH1R, ASXL1, INSIG1, PKDCC, SETD2,

WWOX
KEGG pathway bta00270: Cysteine and methionine metabolism 0.04 14.63 DNMT3B, GOT2

bta04151: PI3K-Akt signaling pathway 0.05 40.64 CREB3L1, COL5A1, FGFR1, FLT4, PIK3AP1, PPP2R3C, RXRA
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BFT and other carcass traits in Zebu and composite beef cattle
populations. The genomic region identified on BTA22
(harboring the SCAP and ENTPD3 genes) was also reported by
Hay and Roberts (2018) to be associated with BFT in tropical
composite cattle. The gene DNMT3B (DNA cytosine-5-
methyltransferase 3 beta), associated with BFT in this study,
was previously associated with marbling score, subcutaneous fat,
Longissimus muscle area, body weight, carcass weight, dressing
percentage in offspring of Wagyu and F1 crossbred cows of
Limousin with Fuzhou Yellow cattle (Liu X. et al., 2012). LCORL
has also been previously associated with carcass weight and fat
thickness at the 12th rib in crossbred beef cattle (Lindholm-Perry
et al., 2011).

The WWOX gene, located on BTA18, has been previously
associated with meat color in Korean native cattle (Lee et al.,
2018). Meat color is one of the main parameters that influence
consumers’ preference (Font-i-Furnols and Guerrero, 2014).
Additionally, meat color has currently been described to be
related to cholesterol homeostasis and fatty acid biosynthesis,
which is likely associated with lipid metabolism (Iatan et al.,
2014). Furthermore, lipid metabolism in mammals is
hypothesized to be associated with immune response and
inflammatory processes. This consequently impacts lean
deposition and subcutaneous fat deposition, as well as growth
rate in cattle (Silva-Vignato et al., 2019).

The number of genotyped animals with phenotypes for the
trait(s) of interest and the density of the panel used (number of
SNPs after the quality control) are two key factors that influence
the identification of important genomic regions, especially those
located in regions with low levels of linkage disequilibrium or
small effect on the trait. These two factors might have
constrained the genomic regions that were identified in this
study. However, the SNP panel used in this study contains
informative SNPs identified in several breeds, which were also
used to develop the Montana Tropical Composite population
(Angus, Red Angus, Nellore, Brahman, Charolais, Gelbvieh,
Hereford, Limousin, Simmental, Holstein, Jersey, Brown Swiss,
Ayrshire, Guernsey, Gyr, Girolando, Brangus, Beefmaster, and
Braford). This might have minimized these effects. In view of the
limitations described here, further studies using larger datasets
and denser SNP panels should be performed to validate the
results reported in this study.

Functional Enrichment Analyses
The moderate to high genetic correlations obtained between RFT
and MARB, BFT and RFT, and the common genomic regions
and candidate genes identified indicate that muscle development
and fat deposition are likely directly correlated processes. Berg
and Butterfield (1976) described that as soon as the animal
reaches mature age, changes in the proportions of specific tissues
are observed. This includes a decrease in muscle-bone growth
rates and an increase in fat deposition rate. The two main
biological processes identified are: 1) “muscle tissue
morphogenesis” (GO:006415) and 2) “regulation of fatty acid
biosynthesis” (GO:0042304). A key gene of the muscle tissue
morphogenesis is RXRA (Retinoid X receptor, alpha), which has
been associated with weaning weight and yearling weight in
Frontiers in Genetics | www.frontiersin.org 9
Charolais and Brahman cattle (Paredes-Sánchez et al., 2015), and
with BFT and meat fatty acids in an Angus–Hereford–Limousin
crossbred population (Goszczynski et al., 2016). The fatty acid
composition is directly linked with intramuscular fat content,
and its major regulation is located in the skeletal muscle in
mammals (Muoio et al., 2002). Meat fatty acid content is a
crucial parameter of consumers acceptability and might become
a key breeding goal in Nellore cattle (e.g., Lemos et al., 2016;
Feitosa et al., 2017; Feitosa et al., 2019), one of the most
influential breeds in the development of the Montana
Composite population. In general, meat fatty acid content is
related to meat quality and flavor and complex interactions
occurring during the animals’ life and post-mortem period
(Mullen et al., 2006).

Two of the highlighted processes are related to behavior
indicator traits: 1) visual behavior and 2) associative learning.
The associative learning is defined as the capacity of an
individual learning a behavior based on the association of
two or more events (Abramson and Kieson, 2016). In
general, animals recognize events related to environmental
factors through this process. For example, the animal's
temperament from previous handling experiences produces
an active learning process to determine how it will react in a
next handling event. Furthermore, mounting behavior can
result in carcass bruising and thus reduce carcass quality
especially depending on the level of BFT (Hoffman and Lühl,
2012). This is a very important finding, as cattle temperament
is significantly associated with handling stress and
consequently, carcass damage, and reduction in meat quality
(Yang et al., 2019). The association between visual behavior
and associative learning processes can also be related to feeding
behavior which is a relevant process associated with feed
efficiency, growth rate, and carcass composition.

The KEGG pathway PI3K-AKT is associated with stimulation
of cell growth and proliferation, and simultaneously inhibits
apoptosis. In this regard, PI3Ks plays a major role in insulin
metabolism (Ma et al., 2017), which is the major hormone
controlling glucose and lipid metabolism (Dimitriadis et al.,
2011). In this context, Shingu et al. (2001) suggested that
insulin secretion may contribute to the difference in growth
patterns and meat quality properties among beef cattle breeds.
Another pathway enriched was “bta00270: Cysteine and
methionine metabolism”, which is associated with meat flavor
development in several species (Mecchi et al., 1964; Minor et al.,
1965; Pepper and Pearson, 1969; Pippen et al., 1969), and likely
associated with intramuscular fat (or MARB). Cysteine and
methionine are considered the largest components of meat
flavor (Werkhoff et al., 1990; Khan et al., 2015). Uncooked
meat has little to no aroma and only a blood-like taste, thus,
the meat flavor is thermally derived by reactions between
carbohydrates and amino acids (Mottram, 1998).
CONCLUSIONS

Our findings indicate that ultrasound-based carcass and meat
quality traits are heritable and therefore can be improved
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through selective breeding. The high genetic correlation between
BFT and RFT indicate that indirect genetic response can be
obtained by selecting for only one of them. The WssGBLUP
method used to perform GWAS enabled the identification of
various novel or already known candidate genes associated with
the carcass and meat quality traits in the Montana Tropical®

Composite population, but the traits studied have a polygenic
nature. Some of the genes identified were previously associated
with traits such as growth, carcass, body condition score, skeletal
muscle growth, carcass fatness, and meat fatty acid composition.
The main biological processes and pathways identified were
“muscle tissue morphogenesis” and “regulation of fatty acid
biosynthetic”, which biologically validate the ultrasound-based
measurements. Further studies using larger datasets (ideally in
independent populations) and denser SNP panels (>30 K) should
be performed in order to validate the results reported in
this study.
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