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NETs are chromatin-derived webs extruded from neutrophils as a result of

either infection or sterile stimulation using chemicals, cytokines, or microbes.

In addition to the classical role that NETs play in innate immunity against

infection and injuries, NETs have been implicated extensively in cancer

progression, metastatic dissemination, and therapy resistance. The purpose

of this review is to describe recent investigations into NETs and the roles they

play in tumor biology and to explore their potential as therapeutic targets in

cancer treatment.
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Introduction

An inflammatory response to tumors is a contributing factor to tumor initiation and

progression, allowing cancer cells to escape detection by the immune system. Cancer

progression depends on the interaction between tumor-infiltrating immune cells and

tumor-derived factors in the tumor microenvironment (TME). Initially, infiltrating and

resident immune cells in the TME contribute to tumor growth, metastasis, and responses

to immunotherapy. According to conventional wisdom, macrophages are central players

in the TME and are activated to respond in a wide variety way to local and circulating
Abbreviations: APL, acute promyelocytic leukemia; ATO, arsenic trioxide; ATRA, all trans retinoic acid;

CitH3, citrullinated histone H3; CTCs, circulating tumor cells (CTCs); DAMPs, danger-associated

molecular patterns; DLBLC, diffuse large B-cell lymphoma; HMGB1, high mobility group box 1; HNC,

head and neck cancer; IL-1b, interleukin-1b;LRF, local recurrence or failure; MDSC: myeloid-derived

suppressor cells; MM, multiple myeloma; MPN, myeloproliferative neoplasms; MPO, myeloperoxidase;

NE, neutrophil elastase; NETs, neutrophil extracellular traps; PAD4, Peptidyl arginine-deiminase 4; PMA,

phorbol myristate acetate; PMN, polymorphonuclear neutrophil; PR3, proteinase 3; TAMs, tumor-

associated macrophages; TAN, Tumor-associated neutrophil; TME, tumor microenvironment; TNF,

tumor necrosis factor; VTE, Venous thromboembolism; WT, wild type.
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stimuli. The multiple roles played by neutrophils in circulating

and infiltrating tumors have become increasingly clear in

recent years.

Neutrophils represent 50–70% of all leukocytes in the body.

As cells in the innate immune system, neutrophils play a

prominent role in fighting against bacterial pathogenic

infection and have been considered essential players in

remodeling the TME via neutrophil extracellular trap (NET)

generation or NETosis. NETs are extracellular DNA-integrated

chromatin decorated with granular proteins, such as neutrophil-

derived neutrophil elastase (NE) and myeloperoxidase (MPO)

(1). In addition to the roles they play in host defense, NETs have

been widely implicated in noninfectious diseases, such as

autoimmune diseases (2–4), rheumatic diseases (5, 6),

thrombosis (7–9), diabetes (10), and atherosclerosis (11–13).

Increasing evidence indicates that NETs play a critical role in the

TME, including in tumor progression, metastasis and therapy

resistance (14–28). The effects of NET-related components seem

to be intertwined and complicated.

In this review, we illustrate the mechanism and potential role

played by NETs within the TME, highlighting their potential as

cancer therapy targets.
Tumor-associated neutrophils

Among circulating leukocytes in humans, neutrophils are

the most abundant cell type. Neutrophils are often the first cells

to reach sites of tissue injury or infection. Increasing evidence

indicates that inflammation is closely linked to cancer

development, and biomarkers of inflammatory reactions have

been found to be useful as prognostics in several types of cancer.

A highly heterogeneous TME affects tumor malignancy and

treatment responses. Inflammatory cells and cytokines create an

inflammatory TME, promoting tumor cell proliferation,

survival, immune evasion, and migration (29, 30). The various

innate immune cells in the TME include tumor-associated

macrophages (TAMs), polymorphonuclear neutrophils (PMNs,

also known as TANs) and myeloid-derived suppressor cells

(MDSCs) (31). In the past two decades, the role played by

TAMs in tumor biology has become relatively well established

(32–35), but the role played by TANs in these processes is still

largely unknown (36). Neutrophils are becoming increasingly

recognized as important and contributors to cancer progression,

not merely as bystanders in the TME.

Similar to macrophages, TANs undergo polarization state

switching, which seems to be determined by the TME. The

concept of an N1 and N2 neutrophil phenotype was first

introduced by Fridlender in 2009 (37). Previous studies have

demonstrated that G-CSF or transforming growth factor-b
(TGF-b) are critical for the transformation of neutrophils

toward the N2 phenotype (37, 38). Despite neutrophil

polarization being reported in some diseases, no clinically
Frontiers in Immunology 02
relevant biomarker has been identified to distinguish N1 and

N2 neutrophils in tumors, in contrast to reports describing M1

and M2 macrophage biomarkers.
NETosis

In 2004, Brinkmann and colleagues demonstrated that

activated neutrophils secrete NETs, which are web-like

structures made of decondensed chromatin and various

granular proteins (39). Initially, NETosis was thought to be

the manifestation of a novel type of cell death that differs from

necrosis and apoptosis. NETosis is triggered by a wide range of

factors, including pathogens (40), activated platelets, and

phorbol myristate acetate (PMA) (41). Peptidyl arginine-

deiminase 4 (PAD4) changes the chromatin charge in

neutrophils, leading to chromatin recondensation. In the

presence of various stimuli, cytoplasmic granules and the

nuclear membrane dissolve, and nuclear lobes are lost.

Granule enzymes migrate to the nucleus, where they promote

chromatin condensation and histone hypercitrullination (42,

43). To date, two forms of NETosis have been established. In

one form, the lytic suicide mechanism, the rupture of

cytoplasmic membranes is needed, whereas in the other form,

vital NETosis, cytoplasmic membrane rupture is not required

(44–47).
Lytic NET formation

It was first described that NETs formed followed by cell

death or release of lytic NETs.

Lytic NETosis can be caused by several factors, including

PMA, autoantibodies, and cholesterol crystals. The activation of

NADPH oxidase produces ROS, which activate PAD4 and

decondense chromatin. Further chromatin unraveling occurs

as a result of neutrophil elastase (NE) and myeloperoxidase

(MPO) translocation. Chromosomes are decorated with

granular and cytosolic proteins when they enter the cytosol.

The neutrophil dies when its plasma membrane has been

disrupted, releasing NETs.
Nonlytic NET formation

The time required for lytic NET formation has been reported

to occur primarily at 3 to 4 hours. In contrast, neutrophils can

also release NETs in a very rapid (5-60 min) and cell death-

independent manner. When S. aureus and E. coli enter the body,

their complement receptors, as well as TLR2 and TLR4

receptors, are activated within minutes. Activating PAD4

causes chromatin decondensation, possibly without oxidizing

agents. Suicidal NETosis occurs when NE translocates into the
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nucleus, causing chromatin to unfold. Neutrophils retain their

ability to carry out further functions, such as phagocytosis,

because of expulsion of protein-decorated chromatin

through vesicles.

The functional complexity of neutrophils is closely related to

the diversity of their components (42, 43). Histones and DNA are

the major components of NETs in various studies (39, 48, 49).

Furthermore, many neutrophil granule components, such as NE,

MPO, cathepsin G, and proteinase 3 (PR3), are essential

components of NETs (42, 43, 50). Recent research has suggested

that NETs may participate in various disorders, including diabetes

(10), autoimmune diseases (3, 51, 52), atherosclerosis (11–13),

thrombosis (7, 53), and cancer (14–18, 26, 54, 55). In the past five

years, the study of NETs has provided new insights into the TME.
The role of NETS in cancer biology

Increasing recognition has been made of the importance of

NETs in the TME. Some explorations into the potential biological

role played by NETs in tumors, including tumor growth,

metastasis and therapy resistance, have been initiated. Recent

studies describing the relationships between NETs and cancer are

shown in Table 1 and Figure 1. The following paragraphs will

describe the role of NETs in cancer biology in further

detail (Table 2).
Frontiers in Immunology 03
NETs: Novel biomarkers in
cancer patients

In the first decade after NET discovery, research on NETs was

primarily focused on infectious diseases and circulatory system-

related diseases because neutrophils are the most abundant

circulating immune cells and exhibit antibacterial activity. NETs

have been reported in human solid tumors, with the first

observation reported in 2013. This early NET study focused on a

small number of Ewing sarcoma samples and suggested that

patients with intertumoral NETs had a significantly shorter life

expectancy than patients without intertumoral NETs (155). In

recent decades, NETs have been considered to be putative

biomarkers in patients with various types of cancers. Evidence

has suggested that plasma NETs are potential biomarkers for

predicting early-stage cancer and tumor metastasis in 73 patients

with head and neck cancer (HNC) (138). According to this HCN

study, NETs were less common in advanced cancer stages (T3–4,

N3), which correlates with an increase in granulocyte colony-

stimulating factor (G-CSF) levels. In another study focused on

small cohorts of cancer patients, citrullinated histone H3 (CitH3),

the gold standard for NET formation identification, was found to be

a prognostic blood signature for patients with advanced cancer, as

suggested byMelanie Demers et al. (156). Based on their study, high

levels of CitH3 powerfully heralds poor clinical results for cancer

patients. NETs have also been observed in the peripheral blood,

lung tissue, and sputum of lung cancer patients (127). The levels of

NETs generated by neutrophils stimulated with IL-8 and LPS from

colorectal cancer patients were obviously higher than those in

healthy controls and were associated with a poor clinical

outcome (157).

NETs in tumor growth

A TME is often a hypoxic complex environment replete with

cytokines and growth factors. The necrosis of tumor cells caused

by the hypoxic microenvironment often leads to the release of

danger-associated molecular patterns (DAMPs), which cause

inflammation. Hamza O et al. demonstrated that NETs induced

increased mitochondrial function in tumor cells, supplying

energy for accelerated tumor growth. NET formation in the

hypoxic TME is caused by chemokines and high mobility group

box 1 (HMGB1) levels, which have been found to be high in

conditioned medium prepared with hypoxic cancer cells. In

PAD4-knockout (KO) mice, the progression of tumor growth

and hepatic metastases were both extremely slow compared to

those in wild-type mice. The expression of a number of

mitophagy-associated proteins, including DRP-1, MFN-2,

PINK1 and Parkin, was increased in cancer cells exposed to

NETs. TLR-4 was activated via NE, and mitochondrial

biogenesis and lymphocyte proliferation were found in the

tumors of PAD4-KO mice (28).
TABLE 1 Tumor-associated neutrophils (TANs) in tumors.

Mechanism References

T/NK-cell suppression

Arginase 1 (56)

PR3 (57)

MPO/Hydrogen peroxide (58, 59)

NETs (14, 16–18)

ROS (60)

Angiogenesis/Metastasis

BV8 (61, 62)

VEGF (63)

MMP9 (64)

NAMPT/STAT3 (65)

S100A4 (66)

NETs (19, 23, 25–27)

Elastase (67)

Oncostatin M (68, 69)

Tumor Cytotoxicity

ROS (70)

Granzyme B (71)

MET signaling (72)

Ferropotosis (73)

Elastase (74)
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In another study, PAD4-deficient mice did not show

reduced tumor growth, but the administration of exogenous

G-CSF induced intertumoral NET formation in the wild-type

(WT) host. These results suggested that the tumor or TME

primes neutrophils for NET formation and leads to the

accumulation of intertumoral NETs and a growth advantage

for tumors (158).

NET levels were high in patients with advanced diffuse

large B-cell lymphoma (DLBCL) and were closely related to

low survival rates in a previous study. Tumor progression

was promoted by the activation of Toll-like receptor 9

(TLR9), which is in a downstream pathway activated by

lymphoma-derived IL-8. In preclinical models, blocking

the IL-8-CXCR2 axis or TLR9 activation delayed tumor

progression (22).

Several cancers are associated with chronic inflammation

and infection, as these conditions promote cancer progression.

NETs have been proven to be key threads in the transformation

from an inflammatory state to cancerogenesis. A study revealed

that NETs were induced by sustained inflammation that

awakened dormant cancer cells (128). Smoking or inhalation

of lipopolysaccharide (LPS) caused chronic lung inflammation

that resulted in NET formation, inhibiting lung tumor growth

both in vitro and in vivo. Mechanistically, through the MAPK/
Frontiers in Immunology 04
ERK/MLCK/YAP signaling pathway, NET-mediated proteolytic

remodeling of laminin caused an epitope to activate dormant

cancer cells, promoting their proliferation (128).
NETs in tumor metastasis

Neutrophils can facilitate angiogenesis in primary tumors by

releasing MMP9, S100A8/9, and BV8 to activate VEGF (61, 62,

64, 159, 160). Neutrophil elastase (NE) and MMP9 can promote

tumor cell proliferation by releasing growth factors and

degrading laminin (67, 128). Furthermore, inflammatory

stimuli (IL-1b and TNF-a) can stimulate neutrophil MET

expression and HGF binding, leading to NO production and

tumor cell death (72). From the perspective of the primary

tumor site, neutrophils can promote metastasis by promoting

cancer cell escape into blood vessels (161). In the circulation,

neutrophils facilitate the progression of circulating tumor cells

through their cell cycle (162). It has been shown that neutrophils

can direct disseminated cancer cells to specific sites and promote

vascular leakiness for easy extravasation (161, 163, 164).

Additionally, neutrophils can release protein-coated nucleic

acids, called neutrophil extracellular traps (NETs), that catch

circulating cancer cells and stimulate cancer growth.
FIGURE 1

The potential role of NETs in tumor progression and metastasis. As scaffolds, NETs capture cancer cells and provide a microenvironment in
which protumor genic proteins can be delivered to cancer cells. As part of NETs, HMGB1 is released, activating TLR9-dependent pathways in
cancer cells. The NE released by NETs triggers the TLR-4 receptor on cancer cells, resulting in the upregulation of PGC-1, increased
mitochondrial biogenesis, and accelerated growth. The transmembrane protein CCDC25 on cancer cells senses extracellular DNA and activates
the ILK-parvin pathway to enhance cell motility. In turn, certain factors secreted by many primary tumors have been shown to promote NET
formation, such as cytokines (HIF-1, IL-8, IL-6), exosomes and proteases (CTSCs).
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Due to their special structures, NETs have received

considerable attention because of their potential role in tumor

metastasis (19, 20, 25–27). For example, in orthotopic ovarian

cancer models, researchers found that neutrophil influx into the

omentum was a precursor to metastatic progression (20). The

inflammatory factors derived from ovarian tumors stimulated

neutrophils to secrete NETs. Moreover, NETs were observed in

the omentum of ovarian tumor-bearing mice before metastasis

and in patients with early-stage carcinoma. These NETs bound

ovarian cancer cells and may have promoted tumor metastasis,

according to the study. Genetic and pharmacological blockade of

PAD4 expression notably decreased omental metastasis.

NETs have also been observed in metastatic lung lesions, but

they exhibit the highest seroprevalence rate in triple-negative tumors

(23). These researchers found that breast cancer cells initiated

NETosis to promote metastasis. In mice orthotopically

transplanted with murine breast cancer cells, CXCL1 mediated

neutrophil recruitment to the TME. Compared to 4T07

(nonmetastatic) tumors, primary 4T1 (metastatic) tumors exhibited

a higher number of neutrophils, and blocking CXCL1 expression in

4T1 cells diminished neutrophil infiltration into tumors.

Additionally, metastatic cancer cells induced NETosis through the

release of G-CSF at sites of NET dissemination, and inhibition of G-

CSF release prevented the formation of NETs by 4T1 cells.

In recent years, various reports have discussed the

importance of NETs in tumor metastasis, but the definite
Frontiers in Immunology 05
mechanism for this phenomenon remains unclear. The

expression of a5b1, avb3, and avb5 integrins allowed cancer

cells to adhere to NETs derived from neutrophil-like cells in

vitro. Cancer cells were inhibited from adhering to NETs by the

cyclic RGD peptide to a degree comparable to the effect of

DNase (21).

In studying the interaction between NETs and metastases, a

recent report provided new insight into a NET-DNA receptor on

cancer cells (26). According to this novel finding, liver

metastases in breast and colon cancer patients were associated

with high NET levels in patient serum, and the risk for liver

metastases in patients with breast cancer in the early stages was

higher than the risk for patients with colon cancer. In cancer

cells, the NET-DNA receptor CCDC25 senses extracellular DNA

and promotes cell mobility through the ILK–b-parvin pathway.

In the clinic, Yang et al. found that CCDC25 expression on

primary cancer cells predicted poor outcomes. Based on their

original studies, they explained how NETs interact with cancer

cells and identified CCDC25 as a DNA sensor involved in the

interaction between NETs and cancer cells.

A recent report revealed a novel mechanism by which tumor

cells controlled NETosis in metastatic niches. They found that

cathepsin C, a tumor-secreted protease, promoted breast-to-lung

metastasis by priming the formation of NETs (25). Neutrophil

membrane-bound proteinase 3 (PR3) is activated by CTSC to

accelerate the progression of interleukin-1b (IL-1b) and nuclear

factor kB activation. This activation resulted in increased IL-6 and

CCL3 production, leading to NETosis neutralization.
NETs in tumor-associated thrombosis

The occurrence of thrombosis is common in most cancers

and is closely linked to cancer patient mortality (165–167).

Venous thromboembolism (VTE) has been reported to develop

in 4% to 20% of children, and arterial thrombosis has been

reported in 2% to 5% of children (168–170). Many factors

contribute to cancer-associated thrombosis, but the underlying

mechanisms remain unclear. Many different biomarkers have

been analyzed with the aim of identifying cancer patients at high

risk for VTE. Recently, an interest in identifying procoagulant and

prothrombotic factors has been generated (53, 171). Furthermore,

the first report on NETs in cancer was focused on the potential

role played by NETs in cancer-associated thrombosis (129). These

early studies showed that malignant neutrophils were likely to

form NETs in a chronic myelogenous leukemia mouse model.

Cancers cause an expansion in peritoneal NETs through a

systemic effect on the host, as shown by the increased

likelihood of NET formation in mammary and lung carcinoma

models. One study showed that the expression of JAK2V617F was

associated with NET formation and thrombosis in patients with

Philadelphia chromosome-negative myeloproliferative neoplasms

(MPNs) (112).
TABLE 2 NETs in cancer.

Cancer types References

Pancreatic cancer (18, 75–85)

Liver cancer (19, 24, 27, 86–91)

Colon cancer (17, 92–99)

Gastric cancer (100–106)

Small intestinal cancer (107)

Gallbladder cancer (108)

Thyroid cancer (109)

Breast cancer (23, 25, 26, 110–124)

Glioma (125, 126)

Lung cancer (127–137)

Head and neck cancer (138, 139)

Esophageal cancer (106)

Acute Promyelocytic Leukemia (140, 141)

Diffuse Large B-cell Lymphoma (22).

Myeloproliferative neoplasms (112, 142)

Multiple myeloma (143)

Melanoma (144)

Bladder cancer (55, 145)

Oral squamous cell carcinoma (146–150)

Endometrial cancer (151)

Ovarian cancer (20, 152, 153)

Cervical cancer (154)
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Other cell types of ETs

In addition to neutrophils, other immune cells, such as

eosinophils (172), dendritic cells (173), monocytes/

macrophages (75, 174), mast cells (175), basophils (176), and

lymphocytes (177, 178), may also generate extracellular traps

(ETs), indicating possible multiple origins of extracellular DNA

in cancer. However, because the different cell types of ETs share

the biomarker citH3, there are no accurate methods that can

differentiate NETs and other cell types of ETs in tumor

microenvironments. Moreover, due to a lack of studies on

other cell types of ETs, the mechanism of ET formation in

different cell types is still largely understood. It will be necessary

to conduct future research to understand the definite mechanism

of ET formation and explore the potential clinical translational

value of ETs in cancer treatment.
NETs in cancer therapy resistance

As a result of recent basic and clinical research implicating

NETs in resistance to cancer therapy, the status of NETs as a

research topic is rapidly changing (14–18, 54, 55, 179). As

chemotherapy, radiation therapy, and immunotherapy are

essential for cancer treatment, new strategies must be

developed to mitigate resistance. NETs are becoming

increasingly relevant in cancer therapy resistance, and we

review the recent studies that support this relevance (Figure 2).
Neutrophils in cancer therapy resistance

There is increasing evidence that TANs play an important

role in the TME, which is thought to play a central role in

resistance to cancer therapy (9, 33–38). As a result of their

production of cytokines and chemokines, neutrophils are known

to potentiate the survival mechanisms of cancer cells and

therefore inhibit the response to therapies (6, 7, 36, 39–45). In

recent years, it has been proposed that neutropenia is more than

just an indication of sufficient therapeutic dosing but also of

resistance mechanisms dependent on TAN (21, 39, 46, 49). It is

well known that neutrophils play an important role in cancer

treatment resistance, leading to an interest in NETosis as a

potential mechanism (127, 138, 156, 157).
NETs in chemotherapy resistance

A limited number of studies have examined the clinical

association between the level of NET formation and response to

chemotherapy, with preliminary in vitro and in vivo data

indicating that NETosis is a mechanism of chemoresistance.

For instance, multiple myeloma (MM) cells were chemoresistant
Frontiers in Immunology 06
after treatment with doxorubicin (179). In the presence of

anthracycline drugs such as doxorubicin, NETs are

in t e rna l i z ed by neop la s t i c ce l l s , d e tox i f y ing the

microenvironment. In animal models, degradation of NETs by

DNase restored chemosensitivity, supporting the idea that NETs

contribute to chemoresistance. Although, to our knowledge, few

studies have been reported describing NETs in chemoresistance,

extracellular traps (ETs) in acute promyelocytic leukemia (APL)

cells have been observed after treatment with all-trans retinoic

acid (ATRA) and arsenic trioxide (ATO) (140, 180–183). These

findings are noteworthy since they suggest that NETs or ETs

may be potential therapeutic targets for improving

chemotherapy responses.
NETs in radiotherapy resistance

Although radiation therapy is a common treatment for

cancer, a significant proportion of patients develop resistance,

making it difficult to control tumors locally. In addition to

immunological changes in the TME postradiotherapy,

neutrophils have been studied for their novel roles in

radiotherapy resistance (184, 185). In addition, recent research

has indicated that neutrophils play a functional role in

radiotherapy resistance through the formation of NETs (54,

55). Studies have also shown that neutrophils play a pivotal role

in radiotherapy resistance by forming NETs. After tumor

irradiation (IR), NETs form in tumor microenvironments,

contributing to radiotherapy resistance. NE inhibitors (NEi)

and DNase 1 were effective in inhibiting NETosis and NET

degradation, respectively, and they thus increased the

effectiveness of radiation therapy, suggesting that these

inhibitors may be used to enhance radiation therapy. In

addition, researchers have found that NETs were more likely

to form in tumors of patients with a poor response to radiation

treatment, which correlated with poor outcomes. A combination

of NET-based clinical exploration may be a novel and promising

treatment for radiotherapy resistance.

It is well described that the enzyme ectonucleotide

pyrophosphatase/phosphodiesterase 1 (ENPP1) helps regulate

soft tissue mineralization as well as skeletal mineralization (186).

ENPP1 is well recognized for its roles in purinergic signaling, a

form of signaling that is inextricably linked with cancer

incidence (187, 188). Breast cancer patients with local

recurrence or failure (LRF) after surgery and IR have a dismal

prognosis. Notably, Enpp1 caused LRF in a newly developed and

refined animal model established in a recent study (54). High

expression of Enpp1 in circulating tumor cells (CTCs) results in

relapse, requiring PMN-MDSC and NET infiltration within

tumors. Enpp1 inhibition or genetic and pharmacological NET

blockade might prolong relapse-free survival (54). Enpp1-

derived adenosinergic metabolites increased Haptoglobin (Hp)

expression, causing myeloid invasion and NETosis. In relapsed
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human breast cancer tumors, ENPP1 and NET levels were

notably elevated. A combination of NET inhibitors may

attenuate radiotherapeutic resistance in clinical trials.
NETs in immunotherapy resistance

Cancer immunotherapy has attracted considerable attention

in recent years. The composition of the TME profoundly affects

the success of immunotherapy. The molecular mechanisms

underlying immune checkpoint blockade resistance are poorly

understood and have been the subjects of intense scrutiny in

recent years. In several recent studies, NETs have been examined

as novel mediators in some tumors that resist checkpoint

inhibition (14–18). Using a PDAC model, Zhang et al.

demonstrated that IL17 triggered the formation of NETs

within tumors, which can lead to the exhaustion of cytotoxic

CD8+ T cells in tumors. In addition, IL17 blockade enhanced

tumor cell sensitivity to immune checkpoint blockade.

Moreover , abrogat ing NETs through genet i c and

pharmacolog ica l t rea tment can lead to the same

immunotherapy resistance phenotype, indicating that NETs

participate in immunotherapy resistance.

Agonists of CXCR1 and CXCR2 have been demonstrated to

cause the development of NETs in 4T1-bearing mice, protecting
Frontiers in Immunology 07
cells from immune cytotoxicity and negatively affecting the

efficacy of checkpoint inhibitors (16). NETs coat tumor cells,

preventing them from contacting CD8+ T cells and natural killer

cells. NETs are necessary for this protection against cytotoxicity

because DNase 1 treatment restored effector-target contact and

subsequently cancer cell death. Intravital microscopy

experiments were performed with lung carcinoma model mice,

and the findings confirmed this mechanism of NET protection

in vivo.

A novel mechanism in which T-cell exhaustion is regulated

by NET formation in liver ischemia/reperfusion (I/R) in a cancer

metastasis model was proposed in a recent report (14). In this

study, NETs in the tumor microenvironment inhibited the

response of T cells by inducing T-cell metabolic and

functional exhaustion, thereby enhancing tumor growth. The

treatment of mice with DNase inhibited NET formation in vivo,

resulting in attenuated tumor growth, a reduced NETosis rate

and higher levels of functioning T cells. Immunosuppressive

effects of PD-L1 on T-cell exhaustion in the presence of NETs

have been reported. Experiments with clinical samples from

patients with colorectal liver metastases validated these PD-

L1 effects.

NETs have been explored in various types of cancers in

recent years. Whether NETs participate in immunotherapy

resistance in these different types of cancers has not been fully
FIGURE 2

NETs in cancer therapy resistance. After chemotherapy and radiotherapy, DAMPs (HMGB1) or other signals from cancer cells induce NET
generation, contributing to therapy resistance. Neutrophils in tumor microenvironments expelled NETs, which protected tumor cells from
cytotoxicity through CD8+ T cells and NK In addition, NETs decorated with PD-L1 neutralized the function of CD8+ T cells, resulting in
checkpoint blockade in immunotherapy.
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investigated. In addition, although NETs have been shown to

promote checkpoint resistance in previous studies, the

underlying mechanism of this process remains unclear. Does a

DNA sensor similar to CCDC25 bind NETs on the surface of T

cells? If this sensor is present on T cells, could it be a new marker

for predicting the effectiveness of immunotherapy?

Considering the present findings, further investigation into

NET-targeting therapeutics in combination with immunotherapy

is warranted for patients who would otherwise have poor responses

to immunotherapy (1, 2).
Conclusions

Crosstalk between NET formation and the TME indicates

the ways NETs contribute to cancer progression and metastasis.

NETs can promote cancer growth, metastasis and treatment

resistance to chemotherapy, checkpoint inhibitors and

radiotherapy. However, despite the increasing interest in NETs

in potential cancer therapies, more studies are required to

explore the possibility of pharmacologically interfering with

NET formation.
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