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Abstract: Persistent hepatitis B virus (HBV) infection remains a serious medical problem worldwide,
with an estimated global burden of 257 million carriers. Prophylactic and therapeutic interventions,
in the form of a vaccine, immunomodulators, and nucleotide and nucleoside analogs, are available.
Vaccination, however, offers no therapeutic benefit to chronic sufferers and has had a limited impact
on infection rates. Although immunomodulators and nucleotide and nucleoside analogs have been
licensed for treatment of chronic HBV, cure rates remain low. Transcription activator-like effector
nucleases (TALENs) designed to bind and cleave viral DNA offer a novel therapeutic approach.
Importantly, TALENs can target covalently closed circular DNA (cccDNA) directly with the potential
of permanently disabling this important viral replicative intermediate. Potential off-target cleavage by
engineered nucleases leading to toxicity presents a limitation of this technology. To address this, in the
context of HBV gene therapy, existing TALENs targeting the viral core and surface open reading frames
were modified with second- and third-generation FokI nuclease domains. As obligate heterodimers
these TALENs prevent target cleavage as a result of FokI homodimerization. Second-generation
obligate heterodimeric TALENs were as effective at silencing viral gene expression as first-generation
counterparts and demonstrated an improved specificity in a mouse model of HBV replication.
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1. Introduction

Site-specific cleavage of DNA with engineered nucleases forms the basis of gene
editing techniques that are being developed to inactivate replication of hepatitis B virus
(HBV) [1]. Chronic infection with HBV is an important global health problem, and cur-
rently available therapies have modest curative efficacy [2]. Fatal complicating cirrhosis
and hepatocellular carcinoma are common amongst carriers of the virus, and account
for approximately 887,000 HBV-related annual global deaths. Persistence of the essen-
tial HBV replication intermediate comprising covalently closed circular DNA (cccDNA)
and minimal effects of licensed antivirals on this intermediate are the main reasons for
current difficulties with eliminating HBV infection. Designer nucleases used to target cc-
cDNA include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) with
CRISPR-associated (Cas) proteins [1]. Targeted mutation is typically initiated by cleavage
of a specific DNA sequence, which is then repaired by non-homologous end joining (NHEJ).
With repeated cutting, error-prone DNA repair eventually leads to irreversible formation
of replication-disabling insertions and deletions (indels) at the cleavage site.
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CRISPR/Cas is now the most commonly applied gene editing tool, and the ease
with which targeting nucleases may be generated is an important reason for popularity of
the technology. These RNA-guided endonucleases have successfully been used to target
DNA of HBV, and evidence indicates that cccDNA may be disabled in cells replicating
the virus (reviewed in [3]). However, a potential complication for therapy is the pervasive
pre-existing immunity to the endonucleases derived from commensal Streptococcus pyogenes
or Staphylococcus aureus [4,5]. Consequently, in vivo efficacy of candidate therapeutic gene
editors may be compromised following systemic administration of sequences encoding anti-
HBV CRISPR/Cas. Because TALENs and ZFNs are proteins derived from plant-infecting
Xanthomonas species or naturally occurring zinc finger proteins, pre-existing immunity
is likely to be uncommon. To avoid immune attenuation, use of these gene editors may
therefore be preferable to disable HBV. Comparisons between ZFNs and TALENs show
that TALENs have advantages over ZFNs: unlike with ZFNs, DNA binding by individual
TALEN monomers is not influenced by neighboring sequences, and TALENs have better
specificity for their cognates than ZFNs [6,7].

Although gene editing technology has impressive potential, ensuring specificity of
action is vital for therapeutic application. Off-target mutation caused by imprecise cleavage
needs to be minimized to prevent potentially serious unintended consequences. Various
approaches have been employed to improve precision of designer nucleases. In the case
of CRISPR/Cas shortening of the guide sequence [8], combining Cas nickases with two
guides [9,10], inclusion of a hairpin structure in guide sequences [11], and the recently
described prime editing approach [12] have all been used to achieve this goal. In the case
of ZFNs and TALENs, the FokI catalytic domain has been engineered in various ways to
improve specificity. Slowing kinetics of target cleavage by FokI, thereby selectively reducing
action at low affinity off-target binding sites of ZFNs, has been successfully employed [13].
Shortening the duration of action of gene editors may also diminish off-target effects,
and this may be achieved by using mRNA as the coding nucleic acid [14]. Modifying
the FokI nuclease domains to ensure formation of obligate heterodimers has also been
utilized [15–17]. The rationale for this approach is that juxtaposition of duplex-cleaving
homodimers, comprising two left or two right subunits at an off-target site, is prevented.
To avert generation of homodimers, researchers modified amino acid sequences at the
interface between nuclease domains of these ZFNs, such that duplex-cleaving FokI subunits
were only active when heterodimers were assembled [15–17]. In a similar vein, directed
evolution has been employed to improve catalytic activity of the FokI nuclease domain
and yielded so-called Sharkey nuclease domains [18]. We employed these approaches
to improve specificity and activity of TALENs acting against HBV DNA by generating
gene editors that require formation of obligate TALEN heterodimers to be active on their
viral cognates. Evaluation in cultured cells and in vivo showed that the modified TALENs
had similar activity to the first-generation counterparts, but with improved specificity
to targets.

2. Materials and Methods
2.1. Plasmids

pCH-9/3091 [19] is a replication-competent plasmid containing a greater-than-genome
length HBV sequence. Transcription of the pCH-9/3091 plasmid is driven from the CMV
promoter and yields a greater-than-genome length transcript that resembles the viral
pgRNA, which subsequently initiates viral replication. pCI-neo eGFP [20] and pCI-neo
FLuc [21] have been described before. Second-generation obligate heterodimeric TALENs
and third-generation obligate heterodimeric TALENs with Sharkey mutations were derived
from existing first-generation anti-HBV TALENs targeted against the core and surface ORFs
of the viral genome [22]. Each first-generation TALEN consists of left and right monomers
comprising a DNA-binding TALE array fused to a first-generation FokI nuclease domain
with a hemagglutinin (HA) epitope and a nuclear localization signal (NLS) located at the N-
terminus [22]. The left and right monomers of the core-targeting TALEN bind to nucleotides
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2319–2337 and 2351–2369 of the HBV genome. The left and right monomers of the surface-
targeting TALEN bind to nucleotides 411–429 and 443–452 of the HBV genome [22]. The
first-generation anti-HBV TALENs exist within the pVAX plasmid backbone [23] and are
expressed from the CMV promoter. Second- and third-generation TALENs were generated
by substituting the first-generation FokI nuclease-encoding sequence in the pVAX plasmids
with the second-generation obligate heterodimeric FokI nuclease domain sequences or
third-generation obligate heterodimeric FokI nuclease domain sequence with Sharkey
mutations, respectively.

2.2. Cell Culture

Huh7 cells were cultured in low-glucose DMEM (Thermo Scientific, Waltham, MA,
USA), and HEK293 and HepG2.2.15 cells were maintained in high-glucose DMEM (Thermo
Scientific, CA, USA). Growth medium was supplemented with penicillin (100,000 U/mL),
streptomycin (100 µg/mL), and 10% Gibo™ FBS (Thermo Scientific, Waltham, MA, USA).
Cells were maintained at 37 ◦C and 5% CO2 in a humidified incubator.

2.3. Immunofluorescence Detection of Anti-HBV TALEN Expression

Twenty-four hours before transfection, Huh7 cells were seeded in a 96-well plate at a
density of 50% per well. Lipofectamine® 3000 (Thermo Scientific, Waltham, MA, USA) was
used to transfect 100 ng of each TALEN monomer-expressing plasmid. pCI-neo eGFP was
transfected separately to verify success of transfection. Forty-eight hours after transfection,
TALEN expression was assessed by immunofluorescence detection of the HA epitope
using an anti-HA primary antibody (Sigma-Aldrich, St. Louis, MO, USA) and Alexa Fluor
448-labeled secondary antibody (Thermo Scientific, Waltham, MA, USA). Fluorescence was
detected using the Axiovert 100M fluorescence microscope (Zeiss, Oberkochen, Germany).

2.4. Assessment of HBV Silencing in Cultured Cells by ELISA

Huh7 cells were seeded in a 6-well plate at a cell density of 50% and transfected one
day later. Using Lipofectamine® 3000, cells were transfected with 1 µg of each left TALEN
monomer-expressing plasmid together with 1 µg of its cognate right TALEN monomer-
expressing plasmid, 300 ng of pCH-9/3091, and 200 ng of pCI-neo eGFP. As a mock, 2 µg
of pUC118 (Addgene, Watertown, MA, USA) was co-transfected with pCH-9/3091 and
pCI-neo eGFP. Forty-eight hours post-transfection, successful transfection was determined
by visualizing GFP expression and HBsAg secretion. GFP expression was detected using
fluorescence microscopy and HBsAg was assayed using ELISA with the Monolisa™ HBsAg
ULTRA kit (Bio-Rad, Hercules, CA, USA).

2.5. On-Target Cleavage by Anti-HBV TALENs Using the SURVEYOR Assay

HepG2.2.15 cells were seeded in 6-well plates and transfected the following day with
200 ng pCI-neo eGFP and 1 µg of each of the left and right TALEN monomer-encoding
plasmids using Lipofectamine® 3000. As a control, 2 µg of pUC118 was transfected in
place of the TALEN-expressing plasmids. Spent medium was replaced three days post-
transfection. After five days, half the cells were harvested and the other half re-seeded.
Transfection and re-seeding were repeated for an additional 2 cycles. After the final
transfection, supernatants were collected for HBsAg ELISA, and cells were harvested
and used to assess targeted cleavage. Total DNA was extracted from HepG2.2.15 cells as
previously described [22]. Sequences comprising 520 bp and spanning ≈260 bp upstream
and ≈260 bp downstream of the predicted target sites for the C and S TALENs were
amplified under standard PCR conditions. The following primer sets were used: Core
forward 5′-GAA CTA ATG ACT CTA GCT ACC T-3′, Core reverse 5′-CCT ACA AAC TGT
TCA CAT TT-3′; Surface forward 5′-CCT AGG ACC CCT TTC TCG TGT-3′, and Surface
reverse 5′-ACT GAG CCA GGA GAA ACG GG-3′. Three hundred nanograms of PCR
products were subjected to heteroduplex formation by denaturation at 95 ◦C followed by
cooling to 35 ◦C at a ramp rate of −0.1 ◦C/s, then holding at 35 ◦C for 2 min. At this point,
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PCR products were incubated on ice for 5 min, followed by the addition of 1 µL of CelI
enzyme and 2 µL of 10×NEB buffer 2 (New England Biolabs, Ipswich, MA, USA). Samples
were held at 4 ◦C for 10 min, followed by heating and incubation at 37 ◦C for 25 min.
Cleaved products were resolved using agarose gel electrophoresis, and ImageJ software
was used to measure targeted disruption as previously described [24]. As a positive control
for the Surveyor assay, heteroduplexes were formed by the PCR amplification of first-
generation and mutant HBx sequences [25]. First-generation and mutant amplicons were
mixed at equimolar amounts and denatured and annealed to form heteroduplexes.

2.6. Assessment of Cell Viability by MTT Assay

HEK293 cells were seeded in a 96-well plate at a density of 30% six hours prior to
transfection. Polyethylenimine (PEI) (0.1 mg/mL) was used to co-transfect 15 ng of pCH-
9/3091, 15 ng of pCI-neo eGFP, and 85 ng of the left and right TALEN monomer-expressing
plasmids. Cells transfected with 170 ng of pUC118 served as the mock transfection control.
Cells treated with 50% dimethyl sulfoxide (DMSO) were used as a positive control, and
untreated cells served as the negative control. Cell viability was assessed 48 h after
transfection. Twenty microliters of 5 mg/mL MTT, made up in PBS, was added to each
well and incubated at 37 ◦C for 1 h. Culture medium was subsequently removed, 200 µL of
DMSO added and the cells incubated for a further 5 min. The metabolism of MTT to form
blue formazan was determined by measuring the optical densities at 570 nm and 655 nm
using an iMARK™ Microplate reader (Bio-Rad, Hercules, CA, USA).

2.7. Animal Studies

Anti-HBV TALEN efficacy was assessed using the murine hydrodynamic injection
(HDI) model of HBV replication. All experiments on animals were conducted in accordance
with protocols approved by the University of the Witwatersrand Animal Research Ethics
Committee. HDI was performed on 5-week-old female NMRI mice, weighing between
20 and 30 g. The injectate comprised a plasmid DNA-containing saline solution equal to
10% of the body weight of each mouse (final volume of 2–3 mL). The DNA/saline solutions
contained 5 µg HBV target DNA (pCH-9/3091), 5 µg pCI-neo FLuc, and either 20 µg of
pUC118 or 10 µg of each corresponding left and right TALEN-expressing plasmids. All
plasmids were prepared using the Endo-Free Plasmid Maxi kit (Qiagen, Hilden, Germany).
To confirm hepatic delivery of the plasmids, 3 days post-injection mice were injected
intraperitoneally with 150 mg/kg of D-luciferin (PerkinElmer, Inc., Waltham, MA, USA)
and bioluminescence imaging carried out using an IVIS Kinetic In Vivo Optical Imaging
System (PerkinElmer, Inc., Waltham, MA, USA). Blood was collected from mice by retro-
orbital puncture on days 3 and 5 post-injection, and the serum was then diluted in an
equal volume of saline. One hundred microliters were used to measure serum HBsAg
concentrations using the Monolisa™ HBsAg ULTRA kit. Serum ALT levels were quantified
using a kinetic assay with an automated photometric analyzer (Roche Applied Science,
Penzberg, Germany). Mice were euthanized on day 5 by CO2 exposure, and livers were
then immediately harvested. To assess targeted cleavage in murine samples, we dissected
and mechanically homogenized 25 mg of liver. Total DNA was extracted from liver
homogenates using the QIAamp® DNA Blood Mini Kit (Qiagen, Hilden, Germany). On-
target cleavage was assessed using the Surveyor assay as described earlier.

2.8. Quantification of Circulating VPEs and Gene Expression

To quantify viral particle equivalents (VPEs), we extracted total DNA from 50 µL of
diluted serum using the QIAamp® DNA Mini Kit. Circulating VPEs from experimental and
control mice were measured by qPCR using the CFX96 Touch™ Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA). The Acrometrix HBV Panel (Thermo Scientific,
Waltham, WA, USA) was used as a standard for quantitation. DNA samples were subjected
to real-time PCR using 2× FastStart Essential DNA Green Master (Roche Applied Science,
Penzberg, Germany) with the following primers: HBVs F 5′-TGC ACC TGT ATT CCC
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ATC-3′ and HBVs R 5′-CTG AAA GCC AAA CAG TGG-3′. To assess intrahepatic HBV
gene expression, we quantified viral RNA levels by RT-qPCR. Total cellular RNA was
extracted from liver homogenates using the TRIzol® Reagent (Thermo Scientific, Waltham,
WA, USA) and reverse transcribed using the QuantiTect reverse transcription kit (Qiagen,
Hilden, Germany). The cDNA samples were subjected to real-time PCR using 2× FastStart
Essential DNA Green Master. Viral surface and pregenomic RNA were amplified using
the HBVs F and R primers, and a second primer set (BCP F 5-′ACC ACC AAA TGC CCC
TAT-3′ and BCP R 5′-TTC TGC GAG GCG GCG A-3′) was used to amplify pregenomic
RNA selectively. Murine GAPDH was amplified with the mGAPDH F 5′-TTC ACC ACC
ATG GAG AAG GC-3′ and mGAPDH R 5′-GGC ATG GAC TGT GGT CAT GA-3′ primers
to relativize viral RNA levels.

2.9. Assessment of on- and off-Target Mutagenesis by Next Generation Sequencing

Potential off-target sites within the host genome were predicted for the S and C
TALENs using PROGNOS software [26], and the top four off-target sites were selected for
further analysis. Four mice were chosen from each group and total DNA was extracted
from homogenized liver samples using the QIAamp® DNA Blood Mini Kit. Sequences
flanking the on-target site and potential off-target sites were amplified using the KAPA
HiFi HotStart ReadyMix (Kapa Biosystems, Wilmington, MA, USA) with primer sets
listed in Table S1. The primers were designed to amplify a 250–300 bp region flanking
the on-target site and each of the four off-target sites. The PCR amplicons were column-
purified using the MinElute Gel Extraction kit and pooled on the basis of group and target
amplicon. Primer sets contained Multiplex IDentifiers (MIDs) to allow discrimination of
the different mice from each other. Each amplicon had a 10 bp MID flanking the different
regions of interest. Samples were sequenced using the HiSeq 2500 System (Illumina,
San Diego, CA, USA). The generated paired-end reads were merged using Flash (https:
//ccb.jhu.edu/software/FLASH/; October 2020 to June 2021) and demultiplexed according
to the MIDs that were used for each sample (https://github.com/najoshi/sabre, accessed
on 30 June 2021). Merged reads were further analyzed using the command line version of
CRISPResso2 [27] with a window size of 30, substitutions were ignored.

2.10. Data Analysis

Data were presented as mean ± SEM. Two-tailed Student’s t-tests were performed us-
ing GraphPad Prism 4.0 (GraphPad Software Inc., San Diego, CA, USA) for the comparison
between two groups. A value of p < 0.05 (*) was considered statistically significant.

3. Results
3.1. Targeted Inhibition of HBV S Expression in Cultured Mammalian Cells

Second-generation TALENs were successfully generated by substituting the first-
generation FokI nuclease domains with obligate heterodimeric FokI nuclease domains. Left
TALEN monomers contained the Q486E and I499A mutations, whereas right monomers
contained the E490K and I538V mutations [16], ensuring that these FokI nuclease domains
are only functional as left/right heterodimers (Figure 1a and Figure S1). Third-generation
TALENs contained the KKR and ELD obligate heterodimeric residues [17], as well as
the Sharkey mutations (S418P and K441E) (Figure 1a). The second- and third-generation
FokI nuclease domains within the anti-HBV TALENs were assessed in Huh7 cells after
transfection. Immunofluorescence detection of the HA epitope confirmed that the TALENs
were expressed in cell culture (Figure S2a). Secreted HBsAg was significantly reduced in
culture supernatants of cells transfected with first-, second-, and third-generation surface-
targeting TALENs (Figure 1b,c). The second-generation obligate heterodimeric TALENs
exhibited silencing equivalent to that of the first-generation TALEN. Although inhibition
of HBV gene expression by the Sharkey S TALEN was significant, efficacy was lower than
that observed for the first-generation S TALEN. As expected, first-generation and Sharkey
TALENs targeted against the core ORF did not affect suppression of HBsAg secretion. In
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contrast, the second-generation obligate heterodimeric C TALEN reduced HBsAg levels
by 50%. Since the C TALENs are targeted to the core ORF, the observed suppression
cannot be as a result of disruption of the surface ORF and likely reflects a transcriptional
inhibitory mechanism. Inhibition of HBsAg secretion was independent of cellular toxicity
as measured by cell viability assays (Figure S2b).
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To assess targeted disruption by the second- and third-generation FokI nuclease-
domain containing TALENs, we used the Surveyor assay to quantify indels at the core and
surface target sites. The Surveyor assay employs the CelI enzyme from celery to cleave
heteroduplex DNA and thereby quantitatively measures indel formation. As Huh7 cells
transfected with pCH-9/3091 do not yield sufficient HBV DNA for accurate quantitation,
the HepG2.2.15 cell line was used for these experiments. HepG2.2.15 cells, which have
a stably integrated greater-than-genome-length HBV sequence and constitutively model
viral replication, were transfected with first-, second-, and third-generation TALENs se-
quentially in triplicate. C and S TALEN target sites were amplified by PCR from extracted
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DNA and treated with CelI to cleave heteroduplex DNA, which was used to calculate
percentage indels (Figure 2). All TALENs exhibited site-specific targeted mutagenesis, as
evidenced by cleavage of heteroduplexes, and head-to-head comparisons indicated there
was no statistically significant difference in cleavage efficacy when using second- or third-
generation anti-HBV TALENs (2nd-gen C vs. 1st-gen C: p = 0.6779; 3rd-gen C vs. 1st-gen
C: p = 0.4929; 2nd-gen S vs. 1st-gen S: p = 0.2254; 3rd-gen S vs. 1st-gen S: p = 0.5286).
The results from the Surveyor assay confirm that second- and third-generation TALENs
function as designed and cause targeted disruption at intended sites within HBV DNA.
As a result of the highly active and constitutive nature of viral replication in this model,
suppression of HBsAg secretion is difficult to achieve (Figure S3).
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3.2. TALEN-Mediated HBV Silencing in Mice

The mouse HDI model of HBV replication was used to assess silencing efficacy of
second- and third-generation TALENs in vivo. Mice were injected with the replication-
competent HBV plasmid, pCH-9/3091, TALEN-encoding plasmid, and pCI-neo FLuc,
which expresses Firefly luciferase from the CMV promoter. The latter allowed for the
success of HDI to be measured by bioluminescence imaging of injected mice (Figure S4).
Bioluminescence imaging further confirmed that delivery was equivalent across the dif-
ferent groups of mice. HBsAg levels and circulating VPEs were measured by ELISA
and qPCR, respectively. Analysis was carried out on serum collected from mice on days
3 and 5 post-injection. First- and second-generation TALENs targeted to the surface ORF
resulted in greater than 90% silencing of HBsAg levels at both time points (Figure 3a). In
line with data from cell culture, the third-generation Sharkey S TALEN was less efficacious
and achieved 40–60% silencing over the 5-day period. Unexpectedly, all three core-targeting
TALENs effected silencing of HBsAg, despite their target site not overlapping with the
surface ORF. As observed in cell culture, this may be attributed to transcriptional repression
by the C TALENs, which extends from the core target site to the S and preS1 promoter
sequences. All TALENs, whether targeting the core or the surface ORF, affected suppression
of circulating VPEs (Figure 3b). This is to be expected, as core and surface antigen expres-
sion is required for virion production, and as such, suppression of either will decrease
circulating VPEs. Decreases in circulating VPEs ranging from 80 to 90% were observed
with the second- and third-generation anti-HBV TALENs on both day 3 and day 5, with a
trend of increased suppression over time. The increased inhibition is likely to represent
continued action of the TALENs and accumulation of disruptive mutations. Among the
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second- and third-generation TALENs, the obligate heterodimeric S TALEN showed the
least efficacy, and inhibition was no longer significant on day 5. Nevertheless, collectively
the data showed that in vivo, the obligate heterodimeric and Sharkey TALENs function as
efficiently, and in some instances more efficiently, than their first-generation counterparts.
Importantly, the observed suppression occurred in the absence of any hepatotoxic effects,
as serum ALT levels were not elevated in any of the mice (Figure S5).
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Figure 3. Inhibition of markers of HBV replication in vivo. NMRI mice were hydrodynamically co-injected with pCH-9/3091
and pUC118 or TALEN-encoding plasmids. (A) Blood samples were collected on day 3 and day 5 post-injection, and HBsAg
levels in the serum were assessed using ELISA. (B) Total DNA was extracted from the serum of mice, and qPCR was used to
determine the circulating viral particle equivalents (VPEs). (C,D) RNA was extracted from murine livers on day 5 post-HDI,
and HBV mRNA concentrations were assessed by qPCR. Primers designed against the S and C ORFs were used to measure
(C) pgRNA and surface mRNA levels or (D) pgRNA levels only and relativized to mGAPDH mRNA. Means were calculated
and normalized to the mock. n = 7 (mock, 1st-gen S and 3rd-gen S), n = 6 (2nd-gen S and 3rd-gen C), or n = 5 (1st-gen C and
2nd-gen C). Statistical significance was calculated in comparison to the mock (* = p < 0.05; ** = p < 0.001; *** = p < 0.001).

To directly assess the effect that targeted mutagenesis has on viral gene expression,
we quantified intrahepatic HBV mRNA levels by RT-qPCR. TALENs function by inducing
disruptive mutations in target sequences and, unless directed against promoter or enhancer
regions, are not expected to affect transcription. It was therefore unexpected that most of
the first-, second-, and third-generation TALENs caused significant suppression of viral
gene expression in this murine model of HBV replication (Figure 3c,d). When silencing
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was not significantly different from the mock-treated mice, there was nevertheless a trend
towards decreased expression.

3.3. On- and off-Target Mutagenesis by TALENs In Vivo

To determine whether second- and third-generation anti-HBV TALENs induce tar-
geted mutagenesis in viral DNA, the core and surface regions were amplified from total
mouse liver DNA and subjected to the Surveyor assay. Cleavage of heteroduplexes indi-
cated targeted mutagenesis at intended sites (Figure 4). With the exception of the obligate
heterodimeric C TALEN, targeted disruption with second- and third-generation TALENs
was equal to that of the first-generation TALENs (3rd-gen C vs. 1st-gen C: p = 0.0843;
2nd-gen S vs. 1st-gen S: p = 0.7455; 3rd-gen S vs. 1st-gen S: p = 0.0957). Interestingly,
disruption observed with the obligate heterodimeric C TALEN in comparison to that of
the first-generation C TALEN was lower (15.2 ± 1.51% vs. 27.0 ± 2.06%; p = 0.0091),
but viral suppression was equivalent (Figure 2b; circulating VPEs). Furthermore, overall
function of TALENs appeared to be more efficient in an in vivo setting when compared
to anti-HBV action in cultured cells. Together the data demonstrate that second- and
third-generation anti-HBV TALENs are at least as effective at inducing targeted disruption
as their first-generation counterparts in an in vivo model of viral replication.
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targeted mutagenesis mediated by the TALENs in vivo, we extracted total DNA from murine livers and C (A) and S ORF
(B) target sites were amplified by PCR. PCR amplicons were subjected to CelI cleavage assay. Arrows depict on-target
cleavage. MW: molecular weight marker, +ve: HBx heteroduplexes, −ve: mock.

Because the second-generation obligate heterodimeric anti-HBV TALENs generally
performed better than their third-generation Sharkey counterparts, these nucleases were
chosen for further characterization. Potential off-target sites of the C and S TALENs were
identified using the PROGNOS bioinformatics tool [26]. The four top hits for each TALEN
were chosen, and primers described in Table S1 were used to amplify DNA from liv-
ers of mice treated with first- and second-generation C and S TALENs. The amplicons
were subsequently subjected to next-generation sequencing and the reads aligned to the
mouse genome to identify mutagenic events. Extensive mutations were only observed in
the putative off-target site within the intron of the murine Pah (phenylalanine hydroxylase)
gene. Although not statistically different, targeted disruption induced by the second-
generation obligate heterodimeric C TALEN tended to be lower than that of the first-
generation C TALEN (Table 1). Of note, the putative target site within the intron of the Pah
gene is predicted to be bound by two right homodimers, and the obligate heterodimeric
C TALEN is expected to target this site less efficiently. While the site within chromo-
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some 18 (chr18:34327564-34327631) appeared to be extensively modified by both first-
(81.50%) and second- (84.75%) generation TALENs, this was an artefact introduced by
the co-amplification of a pseudogene with the primer set against the second C TALEN
off-target site.

Table 1. Targeted amplicon next-generation sequencing results of on-target and potential off-target sites of the anti-HBV C
and S TALENs.

TALEN On-Target Site Configuration
Percentage Disruption

1st-gen TALEN 2nd-gen TALEN

Core HBV core ORF Left/Right heterodimer 21.45 ± 4.17% 4.75 ± 0.75%
Surface HBV surface ORF Left/Right heterodimer 45.41 ± 3.00% 32.25 ± 0.48%

TALEN Off-Target Site Configuration
Percentage Disruption

1st-gen TALEN 2st-gen TALEN

Core

Chromosome 8
Intergenic (Slc10a2) 1

Right/Right
homodimer 0.64 ± 0.10% 0.53 ± 0.12%

Chromosome 18
Intergenic (Srp19) 1

Right/Right
homodimer

81.50 ± 1.94%
<10% 2

84.75 ± 0.25%
<10% 2

Chromosome 11
Intronic (Aspscr1)

Right/Right
homodimer 0.71 ± 0.10% 0.91 ± 0.05%

Chromosome 10
Intronic (Pah)

Right/Right
homodimer 12.75 ± 0.48% 8.25 ± 2.43%

Surface

Chromosome 9
Intronic (Arih2) Left/Left homodimer 0.46 ± 0.11% 0.35 ± 0.08%

Chromosome 9
Intronic (Ppp2r3a) Right/Left heterodimer 0.58 ± 0.02% 0.56 ± 0.06%

Chromosome 9
Intronic (Stac) Left/Right heterodimer 0.77 ± 0.10% 0.56 ± 0.08%

Chromosome 10
Intergenic (Ctnna3) 1 Left/Right heterodimer 0.52 ± 0.07% 0.65 ± 0.02%

1 Closest gene to putative target site. 2 Estimation of targeted cleavage sans pseudogene.

In addition to analyzing off-target mutagenesis, on-target disruption at the core and
surface sites by first- and second-generation TALENs was also assessed. Unexpectedly, the
second-generation C TALEN only caused 4.75 ± 0.75% targeted mutagenesis, whereas
its first-generation counterpart induced 21.25 ± 4.17% mutagenesis in HBV DNA. This
was similar to the results observed when targeted disruption was assessed using the
Surveyor assay (Figure 4a). The S TALENs were more effective, inducing 45.41 ± 3.00%
(first-generation S TALEN) and 32.25 ± 0.48% (obligate heterodimeric S TALEN) targeted
disruption of HBV DNA in vivo. These values are much lower than the >90% reduction in
plasma HBsAg levels observed in S TALEN-treated mice and may reflect an additive effect
from transcriptional repression. The apparent discrepancy may also be explained by bias
introduced during targeted amplification and sequencing whereby unmodified amplicons
are selectively identified.

4. Discussion

ZFNs and TALENs are designed as left and right monomers that come together at the
intended DNA target sequences, allowing their FokI nuclease domains to dimerize and
create a double-stranded break. However, left/left or right/right homodimers may also
assemble allowing functional FokI dimerization and cleavage at these unintended sites. To
limit this possibility, second- and third-generation FokI nuclease domains were identified
that are only functional when left/right heterodimerization occurs [15–17]. Q486E, together
with I499A and E490K, together with I538V, for example, yielded ZFN monomers that
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function poorly as homodimers but very efficiently as heterodimers [16]. A subsequent
study identified additional modifications to the FokI nuclease domain, such as ELD (Q486E,
I499L, N496D) and KKR (E490K, I538K, H537R) mutations, which yielded improved
obligate heterodimeric ZFNs [17]. Modifications that enhance the catalytic activity of the
FokI nuclease domain and improve efficacy of ZFNs have also been identified [18]. These
so-called Sharkey mutations (S418P and K441E) may also reduce off-target mutagenesis of
nucleases as lower dosages would be required to produce a therapeutic effect.

Here, we evaluated the use of second-generation TALENs (Q486E, I499A, E490K,
and I538V obligate heterodimers) as well as third-generation TALENs (ELD and KKR
obligate heterodimers) with Sharkey mutations for use against HBV. In general, the efficacy
of the second-generation obligate heterodimers were on par with that of the original
first-generation anti-HBV TALENs. However, although similar levels of suppression
of viral replication by the second-generation obligate heterodimeric TALEN targeted to
the core ORF were observed, lower target disruption was observed in vivo. In contrast
the third-generation TALENs containing Sharkey mutations exhibited reduced silencing
activity against HBV. Similar results have been reported before [28,29]. This suggests that
incorporating Sharkey mutations into the TALEN architecture, and more specifically into
third-generation FokI nuclease domains, is deleterious to silencing activity [28,29]. The
Sharkey mutations were generated by directed evolution of ZFNs and possibly provides
the reason for reduced silencing activity within TALENs.

Unexpectedly, the anti-HBV TALENs reduced viral mRNA levels. The likely expla-
nation for this observation is that, in addition to their nuclease function, the TALENs
were capable of suppressing viral DNA at the transcriptional level. Although the TALENs
described here do not contain transcription inhibitory domains, it has been demonstrated
that ZFPs comprising only a DNA-binding domain were capable of suppressing duck
hepatitis B virus (DHBV) transcription [30]. The ZFPs were targeted to the enhancer region
of DHBV, which controls core and small surface protein expression, which were suppressed
as a result. Unexpectedly, production of DHBV large surface protein, which is not under
the control of the enhancer region, was also inhibited. Steric hindrance of RNA polymerase
by the ZFPs that prevented transcription of the large surface protein gene was postulated
as the mechanism for the observed indirect suppression. Another study reported inhi-
bition of HBsAg secretion by a TALEN targeted against the polymerase ORF of HBV and
speculated that the mechanism might be mediated by transcriptional interference [22].
Transcriptional repression by the anti-HBV TALENs may explain the results reported here.
The lack of any elevation in serum ALT levels suggests the suppression is not as a result of
non-specific effects.

Characterization of off-target mutagenesis in vivo using NGS suggested that second-
generation obligate heterodimeric TALENs exhibit improved specificity. Extensive mu-
tation of an intronic region of the phenylalanine hydroxylase gene by the first-generation
C TALEN was observed, whereas the obligate heterodimeric C TALEN produced fewer
mutations at this site. This observation is supported by the fact that this off-target site
is predicted to be targeted by a right/right homodimer. Although lower, targeted muta-
genesis induced by the obligate heterodimeric C TALEN was nevertheless substantive,
suggesting that specificity of these nucleases may still require improvement.

Studies evaluating therapeutic interventions against HBV are plagued by the poor
models of chronic hepatitis B. Cell culture models of viral replication, such as transient
transfection of liver-derived cells or stable HBV cell lines used here, do not recapitulate all
aspects of chronic infection. Cultured cells, in particular, do not model viral integration or
the existence of HBV quasi-species as seen in chronic carriers. The HDI model of HBV repli-
cation used in this study, too, does not fully model the natural infection process. Of note,
the mouse hepatocyte does not support cccDNA formation and as a consequence the ability
of the TALENs to target this viral intermediate cannot be determined in vivo. Furthermore,
HDI necessitates the co-administration of the replication-competent HBV plasmid with the
TALEN-encoding plasmids, which does not model post-exposure intervention.
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The ability to directly target and inactivate cccDNA makes the use of engineered
nucleases, such as TALENs, a worthy avenue to be explored as a therapeutic modality
for chronic HBV infection. TALEN and Cas9 function has been shown to be limited by
heterochromatin [31]; more recent data suggest that TALENs fare better than the Cas9
nuclease at navigating compact DNA [32]. This is important in HBV therapy as the cccDNA
has been shown to exist in a heterochromatic state [33,34]. While TALENs are obstructed
by heterochromatin, activity is not completely inhibited and the nuclease is capable of
navigating within heterochromatin, more so than the Cas9 nuclease, which has to separate
double stranded DNA before interrogating the target site [32]. Effective targeting of the
viral DNA relies on binding of the TALENs to the target sequences, which may be disrupted
by escape mutations. Analysis of HBV sequencing data identified limited variability in the
target sites of the TALENs described here [22]. Furthermore, targeting multiple sites within
the HBV genome simultaneously will be necessary to limit viral escape. Characterization
of off-target effects and development of an efficient delivery vehicle for TALEN-expressing
sequences remain crucial to the eventual clinical translation of this technology. Advances in
sequencing technology have yielded a wealth of information and will play an important role
in identifying off-target disruption by engineered nucleases. TALENs, in particular, face the
challenge of delivering two very large transgenes to the same cell to be effective. While viral
vectors have been explored extensively for this purpose, the potential for recombination
of repeat sequences limits their utility. Use of in vitro-transcribed mRNA with synthetic
vectors may offer advantages of safety and facile large-scale manufacturing capability.
TALEN technology is well-placed to fill a significant gap in anti-HBV therapeutics.

The management of HBV is plagued by poor vaccine coverage and ineffective treat-
ment options, and as a consequence, disease burden globally, especially in resource-
poor settings, remains high. Acute infections are estimated to be responsible for close
to 100,000 deaths annually, but mortality from chronic hepatitis B-associated complications
far exceed this number [35]. There is therefore an urgent need for curative therapies to
combat chronic HBV infection. Persistence of the infection stems from the viral cccDNA,
which is established as a stable episomal minichromosome during infection. Effecting a
functional cure of chronic hepatitis B, involving complete suppression of cccDNA activity,
is increasingly recognized as a goal capable of being achieved over that of a sterilizing cure,
which necessitates the complete removal of all viral reservoirs. Engineered nucleases have
the potential to directly target cccDNA and induce disruptive mutations to permanently
inactivate this viral intermediate. For the eventual application of engineered nucleases in a
clinical setting, undesired gene disruption at unintended target sites needs to be eliminated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13071344/s1, Figure S1: Second- and third-generation FokI nuclease domain mechanism
of action. Figure S2: Expression and safety profile of TALENs in cultured cells. Figure S3: HBsAg
secretion in TALEN-treated HepG2.2.15 cells. Figure S4: Bioluminescence imaging of NMRI mice.
Figure S5: Hepatotoxicity in TALEN-treated NMRI mice. Table S1: List of primer sequences used for
amplifications of NGS library.

Author Contributions: Conceptualization, K.B., T.C., P.A., and A.E.; methodology, T.S., P.S., K.B. and
K.O.C.; software, K.O.C.; validation, T.S. and P.S.; formal analysis, T.S., P.S., and A.E.; investigation,
T.S. and P.S.; resources, T.C. and P.A.; writing—original draft preparation, A.E.; writing—review and
editing, T.S., P.S., K.O.C., T.C., P.A., and A.E.; visualization, T.S., P.S., and A.E.; supervision, T.C., P.A.,
and A.E.; project administration, P.A. and A.E.; funding acquisition, P.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Poliomyelitis Research Foundation; South African Medical
Research Council, Extramural research unit; South African National Research Foundation, Unique
Grant Numbers: 118022 and 120383.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the University of the Witwatersrand Animal Ethics
Screening Committee (clearance certificate number: 2016/11/45/B; date: 29 October 2019).

https://www.mdpi.com/article/10.3390/v13071344/s1
https://www.mdpi.com/article/10.3390/v13071344/s1


Viruses 2021, 13, 1344 13 of 14

Data Availability Statement: The data presented in this study are openly available in the Sequence
Read Archive (http://www.ncbi.nlm.nih.gov/bioproject/725669; reference number PRJNA725669,
accessed on 28 April 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ely, A.; Moyo, B.; Arbuthnot, P. Progress with Developing Use of Gene Editing To Cure Chronic Infection with Hepatitis B Virus.

Mol. Ther. 2016, 24, 671–677. [CrossRef] [PubMed]
2. Revill, P.; Chisari, F.V.; Block, J.M.; Dandri, M.; Gehring, A.J.; Guo, H.; Hu, J.; Kramvis, A.; Lampertico, P.; A Janssen, H.L.; et al. A

global scientific strategy to cure hepatitis B. Lancet Gastroenterol. Hepatol. 2019, 4, 545–558. [CrossRef]
3. Bloom, K.; Maepa, M.B.; Ely, A.; Arbuthnot, P. Gene Therapy for Chronic HBV—Can We Eliminate cccDNA? Genes 2018, 9, 207.

[CrossRef] [PubMed]
4. Charlesworth, C.T.; Deshpande, P.S.; Dever, D.P.; Camarena, J.; Lemgart, V.T.; Cromer, M.K.; Vakulskas, C.A.; Collingwood, M.A.;

Zhang, L.; Bode, N.M.; et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 2019, 25,
249–254. [CrossRef]

5. Wagner, D.L.; Amini, L.; Wendering, D.J.; Burkhardt, L.-M.; Akyüz, L.; Reinke, P.; Volk, H.-D.; Schmueck-Henneresse, M. High
prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 2019, 25, 242–248.
[CrossRef]

6. Mussolino, C.; Alzubi, J.; Fine, E.; Morbitzer, R.; Cradick, T.; Lahaye, T.; Bao, G.; Cathomen, T. TALENs facilitate targeted genome
editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014, 42, 6762–6773. [CrossRef] [PubMed]

7. Mussolino, C.; Cathomen, T. On target? Tracing zinc-finger-nuclease specificity. Nat. Chem. Biol. 2011, 8, 725–726. [CrossRef]
[PubMed]

8. Fu, Y.; Sander, J.D.; Reyon, D.; Cascio, V.M.; Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
Nat. Biotechnol. 2014, 32, 279–284. [CrossRef]

9. Karimova, M.; Beschorner, N.; Dammermann, W.; Chemnitz, J.; Indenbirken, D.; Bockmann, J.-H.; Grundhoff, A.; Lüth, S.;
Buchholz, F.; Wiesch, J.S.Z.; et al. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci.
Rep. 2015, 5, 13734. [CrossRef]

10. Sakuma, T.; Masaki, K.; Abe-Chayama, H.; Mochida, K.; Yamamoto, T.; Chayama, K. Highly multiplexed CRISPR-Cas9-nuclease
and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells 2016, 21, 1253–1262. [CrossRef]

11. Kocak, D.D.; Josephs, E.A.; Bhandarkar, V.; Adkar, S.S.; Kwon, J.B.; Gersbach, C.A. Increasing the specificity of CRISPR sys-tems
with engineered RNA secondary structures. Nat. Biotechnol. 2019, 37, 657–666. [CrossRef]

12. Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram,
A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [CrossRef]

13. Miller, J.C.; Patil, D.P.; Xia, D.F.; Paine, C.B.; Fauser, F.; Richards, H.W.; Shivak, D.A.; Bendaña, Y.R.; Hinkley, S.J.;
Scarlott, N.A.; et al. Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nat. Biotechnol. 2019, 37,
945–952. [CrossRef] [PubMed]

14. Ely, A.; Singh, P.; Smith, T.S.; Arbuthnot, P. In vitro transcribed mRNA for expression of designer nucleases: Advantages as a
novel therapeutic for the management of chronic HBV infection. Adv. Drug Deliv. Rev. 2021, 168, 134–146. [CrossRef] [PubMed]

15. Miller, J.C.; Holmes, M.C.; Wang, J.; Guschin, D.Y.; Lee, Y.-L.; Rupniewski, I.; Beausejour, C.M.; Waite, A.; Wang, N.S.; Kim,
K.A.; et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 2007, 25, 778–785.
[CrossRef] [PubMed]

16. Szczepek, M.; Brondani, V.; Büchel, J.; Serrano, L.; Segal, D.; Cathomen, T. Structure-based redesign of the dimerization interface
reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 2007, 25, 786–793. [CrossRef] [PubMed]

17. Doyon, Y.; Vo, T.D.; Mendel, M.C.; Greenberg, S.G.; Wang, J.; Xia, D.F.; Miller, J.C.; Urnov, F.D.; Gregory, P.; Holmes, M.C.
Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Chem. Biol. 2010, 8, 74–79.
[CrossRef]

18. Guo, J.; Gaj, T.; Barbas, C.F., 3rd. Directed Evolution of an Enhanced and Highly Efficient FokI Cleavage Domain for Zinc Finger
Nucleases. J. Mol. Biol. 2010, 400, 96–107. [CrossRef]

19. Nassal, M.; Junker-Niepmann, M.; Schaller, H. Translational inactivation of RNA function: Discrimination against a subset of
genomic transcripts during HBV nucleocapsid assembly. Cell 1990, 63, 1357–1363. [CrossRef]

20. Passman, M.; Weinberg, M.; Kew, M.; Arbuthnot, P. In Situ Demonstration of Inhibitory Effects of Hammerhead Ribozymes That
Are Targeted to the Hepatitis Bx Sequence in Cultured Cells. Biochem. Biophys. Res. Commun. 2000, 268, 728–733. [CrossRef]

21. Ely, A.; Arbuthnot, P. Silencing Hepatitis B Virus Replication with Antiviral Pri-miR Shuttles Generated from Liver-Specific Pol II
Promoter; Nova Publishers: New York, NY, USA, 2010.

22. Bloom, K.; Ely, A.; Mussolino, C.; Cathomen, T.; Arbuthnot, P. Inactivation of Hepatitis B Virus Replication in Cultured Cells and
In Vivo with Engineered Transcription Activator-Like Effector Nucleases. Mol. Ther. 2013, 21, 1889–1897. [CrossRef]

23. Mussolino, C.; Morbitzer, R.; Lütge, F.; Dannemann, N.; Lahaye, T.; Cathomen, T. A novel TALE nuclease scaffold enables high
genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011, 39, 9283–9293. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/bioproject/725669
http://doi.org/10.1038/mt.2016.43
http://www.ncbi.nlm.nih.gov/pubmed/26916283
http://doi.org/10.1016/S2468-1253(19)30119-0
http://doi.org/10.3390/genes9040207
http://www.ncbi.nlm.nih.gov/pubmed/29649127
http://doi.org/10.1038/s41591-018-0326-x
http://doi.org/10.1038/s41591-018-0204-6
http://doi.org/10.1093/nar/gku305
http://www.ncbi.nlm.nih.gov/pubmed/24792154
http://doi.org/10.1038/nmeth.1680
http://www.ncbi.nlm.nih.gov/pubmed/21878917
http://doi.org/10.1038/nbt.2808
http://doi.org/10.1038/srep13734
http://doi.org/10.1111/gtc.12437
http://doi.org/10.1038/s41587-019-0095-1
http://doi.org/10.1038/s41586-019-1711-4
http://doi.org/10.1038/s41587-019-0186-z
http://www.ncbi.nlm.nih.gov/pubmed/31359006
http://doi.org/10.1016/j.addr.2020.05.010
http://www.ncbi.nlm.nih.gov/pubmed/32485207
http://doi.org/10.1038/nbt1319
http://www.ncbi.nlm.nih.gov/pubmed/17603475
http://doi.org/10.1038/nbt1317
http://www.ncbi.nlm.nih.gov/pubmed/17603476
http://doi.org/10.1038/nmeth.1539
http://doi.org/10.1016/j.jmb.2010.04.060
http://doi.org/10.1016/0092-8674(90)90431-D
http://doi.org/10.1006/bbrc.2000.2209
http://doi.org/10.1038/mt.2013.170
http://doi.org/10.1093/nar/gkr597
http://www.ncbi.nlm.nih.gov/pubmed/21813459


Viruses 2021, 13, 1344 14 of 14

24. Guschin, D.Y.; Waite, A.; Katibah, G.E.; Miller, J.C.; Holmes, M.C.; Rebar, E.J. A Rapid and General Assay for Monitoring
Endogenous Gene Modification. In Methods in Molecular Biology; Springer: Cham, Switzerland, 2010; Volume 649, pp. 247–256.

25. Ely, A.; Naidoo, T.; Arbuthnot, P. Efficient silencing of gene expression with modular trimeric Pol II expression cassettes
comprising microRNA shuttles. Nucleic Acids Res. 2009, 37, e91. [CrossRef]

26. Fine, E.J.; Cradick, T.J.; Zhao, C.L.; Lin, Y.; Bao, G. An online bioinformatics tool predicts zinc finger and TALE nuclease off-target
cleavage. Nucleic Acids Res. 2013, 42, e42. [CrossRef] [PubMed]

27. Clement, K.; Rees, H.; Canver, M.C.; Gehrke, J.M.; Farouni, R.; Hsu, J.Y.; Cole, M.; Liu, D.R.; Joung, J.K.; Bauer, D.E.; et al.
CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 2019, 37, 224–226. [CrossRef]

28. Nakajima, K.; Yaoita, Y. Comparison of TALEN scaffolds in Xenopus tropicalis. Biol. Open 2013, 2, 1364–1370. [CrossRef]
29. Pillay, L.M.; Selland, L.G.; Fleisch, V.C.; Leighton, P.L.; Cheng, C.S.; Famulski, J.K.; Ritzel, R.G.; March, L.D.; Allison, W.T.;

Waskiewicz, A.J.; et al. Evaluating the Mutagenic Activity of Targeted Endonucleases Containing a Sharkey FokI Cleavage
Domain Variant in Zebrafish. Zebrafish 2013, 10, 353–364. [CrossRef]

30. Zimmerman, K.A.; Fischer, K.P.; Joyce, M.A.; Tyrrell, D.L.J. Zinc Finger Proteins Designed to Specifically Target Duck Hepatitis B
Virus Covalently Closed Circular DNA Inhibit Viral Transcription in Tissue Culture. J. Virol. 2008, 82, 8013–8021. [CrossRef]

31. Chen, X.; Rinsma, M.; Janssen, J.M.; Liu, J.; Maggio, I.; Gonçalves, M.A. Probing the impact of chromatin conformation on genome
editing tools. Nucleic Acids Res. 2016, 44, 6482–6492. [CrossRef] [PubMed]

32. Jain, S.; Shukla, S.; Yang, C.; Zhang, M.; Fatma, Z.; Lingamaneni, M.; Abesteh, S.; Lane, S.T.; Xiong, X.; Wang, Y.; et al. TALEN
outperforms Cas9 in editing heterochromatin target sites. Nat. Commun. 2021, 12, 1–10. [CrossRef]

33. Levrero, M.; Pollicino, T.; Petersen, J.; Belloni, L.; Raimondo, G.; Dandri, M. Control of cccDNA function in hepatitis B virus
infection. J. Hepatol. 2009, 51, 581–592. [CrossRef] [PubMed]

34. Hong, X.; Kim, E.S.; Guo, H. Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epi-genetic
therapy against chronic hepatitis B. Hepatology 2017, 66, 2066–2077. [CrossRef] [PubMed]

35. WHO. Global Hepatitis Report; World Health Organization: Geneva, Switzerland, 2017.

http://doi.org/10.1093/nar/gkp446
http://doi.org/10.1093/nar/gkt1326
http://www.ncbi.nlm.nih.gov/pubmed/24381193
http://doi.org/10.1038/s41587-019-0032-3
http://doi.org/10.1242/bio.20136676
http://doi.org/10.1089/zeb.2012.0832
http://doi.org/10.1128/JVI.00366-08
http://doi.org/10.1093/nar/gkw524
http://www.ncbi.nlm.nih.gov/pubmed/27280977
http://doi.org/10.1038/s41467-020-20672-5
http://doi.org/10.1016/j.jhep.2009.05.022
http://www.ncbi.nlm.nih.gov/pubmed/19616338
http://doi.org/10.1002/hep.29479
http://www.ncbi.nlm.nih.gov/pubmed/28833361

	Introduction 
	Materials and Methods 
	Plasmids 
	Cell Culture 
	Immunofluorescence Detection of Anti-HBV TALEN Expression 
	Assessment of HBV Silencing in Cultured Cells by ELISA 
	On-Target Cleavage by Anti-HBV TALENs Using the SURVEYOR Assay 
	Assessment of Cell Viability by MTT Assay 
	Animal Studies 
	Quantification of Circulating VPEs and Gene Expression 
	Assessment of on- and off-Target Mutagenesis by Next Generation Sequencing 
	Data Analysis 

	Results 
	Targeted Inhibition of HBV S Expression in Cultured Mammalian Cells 
	TALEN-Mediated HBV Silencing in Mice 
	On- and off-Target Mutagenesis by TALENs In Vivo 

	Discussion 
	References

