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Simple Summary: Memory disturbances are amongst the most common and disruptive symptoms
of chemotherapy-related cognitive impairment. Chemotherapy treatments commonly cause neu-
rotoxicity within the hippocampus, creating a vulnerability to memory impairment. Most clinical
assessments of long-term memory in breast cancer survivors assess basic verbal and visual memory
processing, and do not capture the complexities of everyday event memories, including episodic and
autobiographical memory. This review focuses on structural and functional neuroimaging studies
identifying disruptions in the hippocampus and recollection network, and related episodic memory
impairments in chemotherapy-treated breast cancer survivors. We argue for the need to better char-
acterize memory dysfunction following chemotherapy treatments. Given the importance of episodic
and autobiographical memory to a person’s personal history and quality of life, an under-appreciation
of how this memory domain is impacted by standard cancer treatments potentially diminishes the
negative experiences of breast cancer survivors, and neglects cognitive problems that could benefit
from intervention strategies.

Abstract: Long-term memory disturbances are amongst the most common and disruptive cognitive
symptoms experienced by breast cancer survivors following chemotherapy. To date, most clinical
assessments of long-term memory dysfunction in breast cancer survivors have utilized basic verbal
and visual memory tasks that do not capture the complexities of everyday event memories. Complex
event memories, including episodic memory and autobiographical memory, critically rely on hip-
pocampal processing for encoding and retrieval. Systemic chemotherapy treatments used in breast
cancer commonly cause neurotoxicity within the hippocampus, thereby creating a vulnerability to
memory impairment. We review structural and functional neuroimaging studies that have identified
disruptions in the recollection network and related episodic memory impairments in chemotherapy-
treated breast cancer survivors, and argue for the need to better characterize hippocampally mediated
memory dysfunction following chemotherapy treatments. Given the importance of autobiographical
memory for a person’s sense of identity, ability to plan for the future, and general functioning, under-
appreciation of how this type of memory is impacted by cancer treatment can lead to overlooking or
minimizing the negative experiences of breast cancer survivors, and neglecting a cognitive domain
that may benefit from intervention strategies.

Keywords: cognitive impairment; memory loss; breast cancer; chemotherapy; neuroimaging; medial
temporal lobe; hippocampus

1. Introduction

Advances in diagnostic and therapeutic interventions for breast cancer have led to high
patient survival rates [1]. The return to normal daily activities following cancer treatment
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is often hampered by treatment-related side effects that impact cognitive function [1,2]. In
the months and years following treatment, up to 75% of women successfully treated with
chemotherapeutic agents for breast cancer experience chemotherapy-related cognitive im-
pairment (CRCI), or ‘chemobrain’, described by patients as a feeling of fuzzy headedness
or mental slowness [3–5]. The most commonly observed symptoms, as assessed through
neurocognitive testing, are long-term memory loss, attentional difficulties, and impaired
executive functioning that affects planning, problem solving, and working memory [1,4,6–9].
These cognitive changes severely disrupt survivors’ ability to carry out normal daily ac-
tivities [4,7,10–12], and have a significant impact on overall quality of life. CRCI has been
observed up to 20 years following treatment [3,13–15], with structural and functional dif-
ferences evident in the brain for at least 10 years post-treatment [16–19]. These findings
highlight the long-lasting and pervasive impact on the neural physiology and well-being
of survivors [3].

CRCI has been seen in many other types of non-CNS cancers [20] but is most preva-
lent and most studied in breast cancer. Long-term memory disturbances are amongst the
most common and disruptive symptoms experienced by breast cancer survivors following
chemotherapy, yet the physiological mechanisms underlying disrupted memory process-
ing following chemotherapy are not well characterized [21]. This narrative review and
commentary focuses specifically on chemotherapy-related memory impairments in breast
cancer survivors, including the largely neglected domain of autobiographical memory. We
discuss potential neural mechanisms contributing to memory processing deficits, with a fo-
cus on structural (MRI) and functional (fMRI) neuroimaging studies identifying alterations
in the hippocampus and related medial-temporal lobe structures in breast cancer survivors.

We searched the PubMed and Google Scholar data bases between 2000 and 2022
using the search terms ‘chemotherapy’, ‘breast cancer’, ‘chemofog’, ‘chemotherapy-induced
cognitive impairment’, ‘episodic memory’ ‘long-term memory’, ‘autobiographical memory’,
‘resting state’, ‘default mode network’, ‘hippocampus’, ‘temporal lobe’, ‘MRI,’ ‘fMRI’.
Papers were excluded if they did not include measures of long-term memory (delayed
verbal memory, delayed visual memory, episodic memory, autobiographical memory) or
structural or functional assessments of the temporal lobes or recollection/default mode
network in chemotherapy-treated breast cancer survivors.

2. Physiological Mechanisms Contributing to Chemotherapy-Related Memory Disruption

The hippocampus, a medial-temporal lobe structure that is critical for memory pro-
cessing, has been found to be particularly sensitive to structural and functional disruption
following chemotherapy treatment [22]. The physiological mechanisms mediating these
disruptions and related cognitive impairments are multifactorial, including breakdown
of the blood–brain barrier, pro-inflammatory cytokine release (IL-6, IL-1B, TNF-α) [23],
increases in reactive oxidative stress and mitochondrial dysfunction [24,25], enhanced acti-
vated microglia [26,27], neuronal morphology abnormalities including reduced dendritic
branching and spine density in the hippocampus [27–29], and white matter microstructural
changes, and reduced gray matter volume throughout the brain [30,31]. While these factors
likely combine to exacerbate the broader cognitive dysfunction characterizing CRCI, a likely
candidate mediating long-term memory loss following chemotherapy is a reduction in
adult hippocampal neurogenesis.

Hippocampal subregions (CA1, CA3, and dentate gyrus) have specialized functions,
with the dentate gyrus being of particular interest in understanding chemotherapy-related
cognitive impairment and neurotoxicity due to its role in neurogenesis. The dentate gyrus is
unique, in that it is one of two known regions to continually generate new neurons in the
mammalian brain [32]. This process of hippocampal neurogenesis contributes to a renewing
pool of neurons that functionally incorporate into new memory networks [33], and critically
contribute to the process of memory consolidation [34], memory clearance [35,36], and
cognitive flexibility [37]. Experimentally induced suppression of adult neurogenesis typi-
cally results in deficits on hippocampally mediated memory tasks in animal models [38–41].
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Several molecular mechanisms referred to above have been linked to reduced rates of
hippocampal neurogenesis. For example, cell damage induced by chemotherapy-induced
increases in reactive oxidative stress reduces the survival of primary neural precursor cells
and inhibits the production of new cells in the hippocampus [24,25,42,43]. Similarly, stress-
induced expression of pro-inflammatory cytokines IL-6 and TNF-α suppresses doublecortin
levels within the hippocampus, a cellular marker expressed by immature neurons [44].

The range of systemic chemotherapeutic agents commonly used in breast cancer therapy
have been shown to suppress hippocampal neurogenesis and to impair hippocampally medi-
ated memory in rodents, including the anti-metabolites methotrexate [45–48], 5-FU [49–52],
cisplatin [53–55], alkylating agents cyclophosphamide [8,26,56,57], temozolomide [58–61],
mitotic inhibitors doxorubicin [8,26,62] and paxlitaxel [50,63–65], both when used alone or
in combination [29,39,66–72] (see Sekeres et al. [72] for extensive review of the classes of
chemotherapy drugs and their effects on hippocampal neurogenesis and memory perfor-
mance in pre-clinical models). These findings provide strong evidence that the neurotoxic
effects of common breast cancer treatments are sufficient to induce cell-specific hippocampal
neurotoxicity that, in part, mediates long-term memory deficits observed in patients.

In vivo structural neuroimaging studies in humans lack the spatial resolution to as-
sess differences in dentate gyrus volume at the cellular level, and cannot distinguish
natally generated neurons from adult-generated neurons. However, hippocampal segmen-
tation analyses have identified differences in hippocampal sub-region volume between
chemotherapy-treated breast cancer survivors and healthy controls, suggesting that sys-
temic chemotherapy treatments are capable of inducing changes in the human hippocampal
architecture [73]. Post-mortem observations in human brain tissue have confirmed that
common cancer treatments (systemic chemotherapy, cranial radiation,) are capable of
suppressing hippocampal neurogenesis [74].

Given the role of the hippocampus in memory processing, understanding changes
in hippocampal integrity following various chemotherapy treatments is essential to un-
derstanding the associated memory impairments in breast cancer survivors. Quantifying
adult hippocampal neurogenesis remains a challenge in humans [75,76]. There is post-
mortem evidence that adult hippocampal neurogenesis persists throughout the lifespan
in humans, though some age-related declines in neurogenic rates are evident, particularly
within the anterior hippocampus [77–79]. Treatments that impair the normal proliferation
and survival rates of adult generated hippocampal neurons reduce the pool of new neurons
available to support new memory encoding, and likely, in part, account for post-treatment
memory disruptions experienced by cancer survivors [80,81].

3. Current Methods for Assessing Chemotherapy-Related Memory Disruption

Much of what is known about CRCI and its underlying cellular and molecular mecha-
nisms has been identified in pre-clinical studies of rodents [22,31,72,82]. Pre-clinical models
are critical for identifying physiological changes in response to various chemotherapy
drugs with a high degree of cellular specificity [70,72], and have the advantage of con-
trolling for confounding factors in human studies into the effects of chemotherapy drugs
on neurocognitive function. These confounding factors include variations in drug types,
dosage and treatment schedules, duration since treatment, methods of cognitive evaluation,
as well as comorbidities and other forms of treatment. A major limitation to pre-clinical
studies of cognition and behaviour as a model for CRCI, however, is that they fail to capture
the nuanced cognitive disturbances experienced by cancer survivors. For example, while
breast cancer survivors experiencing CRCI exhibit memory difficulties in various forms,
standard tasks used to assess long-term memory in pre-clinical models are unidimensional
(e.g., delayed place and object recognition tasks), and do not capture the complexities of
human long-term memory processing.

This limitation in test complexity is not unique to pre-clinical measures. The most
common neurocognitive tests of long-term memory performance in breast cancer survivors
measure verbal and visual memory using standardized list learning, word or object recog-
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nition, or free recall tasks following a delay. These are well established tasks that are
sensitive to mild cognitive impairment associated with hippocampal impairment [83–85].
Given that encoding and retrieval of verbal and visual memory strongly engage left and
right hemispheric regions (respectively), including hippocampus [86,87] using tests that
are sensitive to detecting deficient hippocampal processing in breast cancer survivors
provides a useful diagnostic indicator of basic memory dysfunction. Several longitudinal
assessments of patients’ verbal and visual memory using the California Verbal Learning
Test and the Brief Visuospatial Memory Test-Revised, for example, have identified lower
scores relative to pre-treatment baseline and to healthy controls, persisting up to one year
post-chemotherapy [88–90]. See Tables 1–3 for test details, and review of verbal and visual
memory assessments in breast cancer survivors.

Other neurocognitive assessments of episodic memory employ paired associates
learning tasks at encoding, requiring participants to later recognize paired items, words,
or spatial contexts, presented during encoding and again during a recognition test [17,91].
Episodic memory involves recollection of details related to the ‘what, where, and when’ of
unique events [92–94]. Using this method of assessment, reduced recognition memory for
face-context pairings was observed in chemotherapy treated (Ch+) breast cancer survivors
ten years following treatment, indicative of long-lasting memory interference [17]. See
‘Neuropsychological Tests (NPT)’ column in Tables 1–3 for assessment details. While these
verbal and visual memory tasks are well established and validated memory assessments
that can provide insight into potential deficits within the episodic memory domain, they are
not reflective of the type of complex declarative memory processing required to support the
encoding (formation) and recollection of real-life, everyday events and the related semantic
information that is an intricate part of human memory for personal experiences [95].

3.1. Complex Declarative Memory Processing and CRCI

Declarative memory, or memory that can be voluntarily called into consciousness, is
comprised of both episodic and semantic elements [93]. Semantic memory involves retrieval
of facts or general knowledge that is not tied to a specific event, whereas episodic memory
involves recollection of details for unique events [92–94]. Both encoding and retrieval of
an episodic memory rely heavily on hippocampal engagement. Patients with damage to
medial temporal lobe (MTL) structures including the hippocampus are disproportionately
impaired in recalling the episodic components of previously experienced event memories,
and will instead provide semantic elements related to the memory [93,96–100]. For example,
if prompted to recall a story about a day at their job, an MTL patient could report facts
about the company, their position within the company, and their boss’ name (preserved
semantic memory retrieval), but would be unable to recall a specific event that occurred
while working with their boss (impaired episodic memory retrieval).

Even in healthy individuals, the precise episodic elements of a memory are susceptible
to forgetting over time whereas the semantic elements of a memory tend to be more
stable [93,101,102]. For example, a healthy individual can likely recall their experience of
yesterday’s staff meeting in vivid detail, including their position in the room, the attendance
and appearance of their colleagues, the objects in the meeting room, the order in which their
colleagues spoke, and specific phrases (episodic details for the event). If asked to recall a
staff meeting from three years ago, that person is likely to remember few episodic details
about the meeting, while recalling general, schematic features of the event (i.e., “It was
in the conference room. Our boss sat at the front of the table. Each director gave their
report”), and semantic information related to the event (i.e., “We have staff meetings every
Wednesday at 3:30 PM. The conference room is on the 3rd floor)”. Despite this normal
loss of memory for episodic details, if given a salient cue at the time of retrieval, healthy
individuals can probably access those precise episodic details even after a very long time
(i.e., “That was the meeting when Mikki brought pastries from Wisconsin. There were four
large, round pastries on the conference table. They tasted very sweet.”).
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Table 1. Summary of reports identifying chemotherapy-induced structural differences in the temporal lobes using MRI and associated memory disruption in breast
cancer survivors.

References Sample Age Tumor Stage Menopausal
Status Treatment Timepoints Neuropsychological

Tests NPT Results Imaging Results

Inagaki et al. [103]
Ch + MDE
(n = 17),
Ch+ (n = 51)

18–55 0–III Post.M. (n = 10 Ch
+ MDE, n = 27 Ch+) Chemo, ET, surgery 6 mo postsurgery

(t1)

WMS-R: immediate and
delayed verbal and visual
memory tasks

=verbal and visual
memory for both
groups

=left and right HPC
volume for Ch +
MDE and Ch+

Yoshikawa et al. [104] Ch+ (n = 44),
Ch− (n = 31) ~48 0–I Post.M. (n = 27

Ch+, n = 8 Ch−)

Chemo (CMF, AC, CAF,
CPP, MF, 5FU, HCFU, or
doifluridine), ET, RT,
surgery

~3.5 yr postchemo
(t1)

WMS-R: immediate and
delayed verbal and visual
memory tasks

=verbal and visual
memory for both
groups

=HPC volume
between Ch+ and
Ch− and between
different
chemotherapy
regimens

Ferguson et al. [105]
Ch+ (n = 1),
HC (n = 1) mono
zygotic twins

60 II - Chemo (TAC), ET 22 mo postchemo
(t1)

verbal memory: CVLT,
Craft stories

=verbal memory
for both twins

↑WM lesion volumes
and hyperintensities
for Ch+ than HC

Inagaki et al. [106]
Ch+, Ch−, HC
(n = 51–55/ group)
at t1

18–55 0–I
Post.M. (n = 40
Ch+, n = 20 Ch−,
n = 16 HC)

Chemo (AC, CMF, EC,
PTX, 5FU, 5′-DFUR,
HCFU, or UFT), ET, RT

1 yr postsurgery
(t1) and 2 yr after t1
(t2)

WMS-R: immediate and
delayed verbal and visual
memory

-

↓ GM and ↓WM in
paraHPC, prefrontal,
precuneus at t1 for
Ch+ than Ch−; = GM
and WM at t2

McDonald et al. [107]
Ch+ (n = 17),
Ch− (n = 12),
HC (n = 18)

~50 0–III - Chemo (CPP + DOX,
ACT, or AC), ET, surgery

Baseline (t1), 1 mo
(t2) and 1 yr
postchemo (t3)

- -

= GM at t1; ↓ GM
bilateral paraHPC,
STG at t2 than t1 and
MTL at t3 than t1 for
Ch+ than HC

Koppelmans et al.
[13]

Ch+ (n = 177),
HC (n = 368) 50–80 - - Chemo (CMF) ~21 yr postchemo

(t1) - -
↓ GM, ↓ TBV, =WM,
=left HPC volume for
Ch+ and HC

Conroy et al. [108] Ch+ (n = 24),
HC (n = 34) 49–71 I–III -

Chemo (AC, ACT, CAF,
AT, CMF, CMF + CAF,
taxane, ACT+
CAPE, or taxane + CAPE)

~6.4 yr postchemo
(t1)

verbal memory: RAVLT,
story recall, BLT

↓verbal memory
for Ch+ than HC

↓ GMD in left
temporal lobe for Ch+
than HC.

Kesler et al. [109] Ch+ (n = 42),
HC (n = 35) ~55 I–III Post.M. (n = 33

Ch+, n = 18 HC)

Chemo (DOX + CPP, DOX
+ PTX, CPP + 5FU + PTX,
or CPP + 5FU+
MTX), ET, RT

~5 yr postchemo verbal memory: HVLT
↓ HVLT delayed
recall for Ch+ than
HC

↓ bilateral HPC
volume for Ch+ than
HC

Lepage et al. [110] Ch+ (n = 19),
HC (n = 19) ~50 I–III

Menstruating,
peri.m, post.m
(n = 2–9/ group)

Chemo (FECD, CD, or
CPP + DOX), surgery

baseline (t1), 20
days (t2) and 1.5 yr
postchemo (t3)

verbal memory: HVLT,
CNS-VS-Verbal Memory
Index; visual memory:
BVMT-R, CNS-VS-Visual
Memory Index

↓ NPT scores over
time (non-
significant) for both
groups

↓ GM volume in
temporal regions
from t1 to t2 for Ch+
compared to HC,
= GM at t3 between
both groups

Apple et al. [73] Ch+ (n = 16),
HC (n = 18) 18–45 I-IV Pre.M. Chemo (ACT), ET 6–18 mo

postchemo (t1)
episodic memory: Picture
Sequence Memory Test

↓episodic memory
for Ch+ than HC

↑inward deformation
in bilateral HPC,
↓HPC volume for
Ch+ than HC
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Abbreviations: ↑, increase/higher scores; ~, approximately; ↓, reduction/lower scores; = no difference between groups; 6=, not the same/different scores; -, negative correlation;
5FU, fluorouracil; 5′-DFUR, doxifluridine; AC, CPP + DOX; ACT, DOX + CPP + taxane; AT, DOX + taxane; BLT, Brown Learning Test; BVMT-R, Brief Visuospatial Memory Test-Revised;
CAF DOX + CPP + 5FU; CAPE, capecitabine; CD, CPP + DTX; Ch−, breast cancer patients that did not take chemotherapy; Ch+, breast cancer patients that took chemotherapy;
chemo, chemotherapy treatment; CMF, CPP + MTX + 5FU; CNS-VS, computerized neurocognitive assessment vital signs; CPP, cyclophosphamide; CVLT, California Verbal Learning
Test; DOX, doxorubicin; DTX, docetaxel; EC, epirubicin and cyclophosphamide; ET, endocrine therapy; FEC-D, 5FU + CPP + epirubicin + DTX; GM, gray matter; GMD, gray matter
density; HC, healthy controls; HPC, hippocampus; HCFU, carmofur; HVLT, Hopkins Verbal Learning Test; MDE, major depressive episode; MF, MTX + 5FU; MTX, methotrexate;
mo, months; n, sample size; NPT, Neuropsychological Tests; ParaHPC, parahippocampal; Peri.M., perimenopausal; postchemo, postchemotherapy treatment; Post.M., postmenopausal;
Pre.M., premenopausal; PTX, paclitaxel; RAVLT, Rey Auditory Verbal Learning Test; RT, radiation therapy; STG, superior temporal gyrus; t1, testing session 1; t2, testing session 2;
t3, testing session 3; TAC, CPP + DOX + docetaxel; TBV, total brain volume; UFT, tegafur/uracil; WMS-R, Wechsler Memory Scale-Revised; WM, white matter; yr, year(s).

Table 2. Summary of reports identifying chemotherapy-induced functional differences in the temporal lobes and memory disruption in breast cancer survivors
using task-based fMRI.

References Sample Age Tumor Stage Menopausal Status Treatment Timepoints Neuropsychological Tests NPT Results Imaging Results

Kesler et al. [111]

Ch+
(n = 14),
HC
(n = 14)

40–65

metastatic
(n = 8), locally
advanced
(n = 6)

- Chemo (CMF, or ACT),
ET, RT

>6 mo
postchemo (t1)

Verbal declarative memory
encoding and recall task
in fMRI

=verbal declarative
memory for
both groups

↑ right STG activation
extending into paraHPC and
left HPC during the verbal
declarative encoding and
recall task for Ch+ than HC

de Ruiter et al. [17]

Ch+
(n = 19),
Ch−
(n = 15)

~57 I-III - Chemo (FEC, or CTC),
ET, RT, and surgery

~2 (t1) and 9 yr
postchemo (t2)

verbal memory: CVLT;
visual memory: WMS-R
visual reproduction test;
episodic memory: PA
in fMRI

t1 to t2: ↓ PA for Ch+
than Ch−; ↓ visual and
verbal memory for Ch+
than HC

↓ right PHG and MTG
activation during PA task for
Ch+ than Ch−

Lopez-Zuinini et al. [112]

Ch+
(n = 21),
HC
(n = 21)

31–64 I-III

Peri.M.
(n = 2–4/group),
Post.M.
(n = 9–10/group)

Chemo (CPP + DOX,
CPP + DTX, 5FU + CPP+
DTX + hepirubicin+
epirubicin or 5FU, TEC),
surgery

baseline (t1),
and 1 mo
postchemo (t2)

verbal memory: verbal
word list learning in fMRI

=verbal word learning
for both groups

↓ activation in right STG,
bilateral insula, and left
inferior orbitofrontal gyrus
during the verbal list
learning task for Ch+
than HC

Apple et al.
[113]

Ch+
(n = 16),
HC
(n = 18)

18–45 - Pre.M. Chemo, ET ~18 mo postchemo
(t1)

episodic memory: Picture
Sequence Memory Test and
RWCR in fMRI

↓ episodic memory for
Ch+ BCP than HC

↑ HPC FC in the left cuneus,
lingual, precuneus, and right
middle frontal gyrus during
RWCR for Ch+ than HC

Abbreviations: ↑, increase/higher scores; ~, approximately; ↓, reduction/lower scores; = no difference between groups; 6=, not equal/different scores; +, positive; 5FU, fluorouracil;
AC, CPP + DOX; ACT, DOX + CPP + taxane; AT, DOX + taxane; BCP, breast cancer patients; CAF, 5FU + CPP + DOX; CAPE, capecitabine; Ch−, breast cancer patients that didn’t
take chemotherapy; Ch+, breast cancer patients that took chemotherapy; Chemo, chemotherapy treatment; CMF, CPP + MTX + 5FU; CPP, cyclophosphamide; CTC, CPP + thiotepa +
carboplatin; CVLT, California Verbal Learning Test; DOX, doxorubicin; DTX, docetaxel; EBPM, event-based prospective memory; ET, endocrine therapy; FC, functional connectivity;
FEC, 5FU + epirubicin + CPP; FFA, fusiform area; fMRI, functional magnetic resonance imaging; HC, healthy controls; HPCn, hippocampal network; mo, months; MTG, medial temporal
gyrus; n, sample size; PA, paired associates; paraHPC, parahippocampal; Peri.M., perimenopausal; PFC, prefrontal cortex; PHG, parahippocampal gyrus; postchemo, postchemotherapy
treatment; Post.M., postmenopausal; Pre.M., premenopausal; pTG, posterior temporal gyrus; PTX, paclitaxel; RT, radiation therapy; RWCR, novel recognition without cued recall;
STG, superior temporal gyrus; t1, Testing session 1; t2, testing session 2; TBPM, time-based prospective memory; TEC, DTX + CPP + epirubicin; TG, temporal gyrus, WMS-R, Wechsler
Memory Scale-Revised; yr, year(s).
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Table 3. Summary of reports identifying chemotherapy-induced functional differences in the temporal lobes during resting state fMRI in breast cancer survivors.

References Sample Age Tumor Stage Menopausal Status Treatment Timepoints NPT Tests NPT Results Imaging Results

Bruno et al. [114]

Ch+
(n = 34),
HC
(n = 27)

40–74 I-IV Post and Pre M.

Chemo (ADM + CPP + PTX,
CPP + MTX + 5FU and ADM
+ CPP or, CPP + MTX + 5FU),
ET, RT

~5 yr post-treatment
(t1)

verbal memory:
HVLT

=HVLT immediate,
↓HVLT delayed for
Ch+ than HC

↓ global and regional network
measures in bilateral STG for Ch+
than HC; ↑network hubs in bilateral
STG and left HPC for HC than Ch+

Tao et al. [115]

Ch+
(n = 33),
HC
(n = 31)

26–52 I-III - Chemo (DOX, CPP, PTX),
surgery - - - ↓ FC in the DMN for Ch+ compared

to HC

Cheng et al. [116]

Ch+
(n = 34),
HC
(n = 31)

~50 - - Chemo (DOX, 5FU, CPP,
or PTX) - prospective memory:

EBPM, TBPM

↓ EBPM, TBPM for
Ch+ than HC;
=scores between HC
and Ch−

↑ FC between HPC seed and
bilateral vmPFC, dlPFC, inferior
and superior parietal lobules, pCC,
and precuneus for Ch+ than HC

Chen et al. [117]

Ch+
(n = 16),
HC
(n = 14)

>60 I-III - Chemo (TC or other),
surgery

baseline (t1), 1 mo
postchemo (t2)

episodic memory:
Picture Sequence
Memory Test

=NPT scores for Ch+
and HC across t1
and t2

↑ ALFF from t1 to t2 in a single
cluster including bilateral
subcallosal gyri and right anterior
cingulate gyrus for Ch+ compared
to HC; =rs-fMRI from t1 to t2 for
Ch+ and HC

Feng et al. [118]

Ch+
(n = 29),
HC
(n = 25)

30–50 I-III

Pre.M.
(n = 17–20/group),
menopausal
(n = 8–9/group)

Chemo (ACT, TEC), surgery baseline (t1), 1 week
postchemo (t2)

verbal memory:
AVLT

↓ AVLT from t1 to t2
for Ch+ than HC

↑ FC between left anterior HPC and
left MTG and STG, and between the
right posterior HPC and left STG for
Ch+ compared to HC

Feng et al. [119]

Ch+
(n = 7),
HC
(n = 19)

35–55 I-III

Pre.M.
(n = 11/group),
menopausal
(n = 6–8/group)

Chemo (ACT, TEC), ET
baseline (t1), 1 week
(t2) and 6 mo
postchemo (t3)

verbal memory:
WDT

↓WDT from t1 to t3
for Ch+ than HC

↓ FC in ADMN, PDMN, LFPN,
RFPN, SRN, CN from t1 to t3 for
Ch+ than HC

Abbreviations: ↑, increase/higher scores; ~, approximately; ↓, reduction/lower scores; = no difference between groups; 6=, not the same/different scores; >, above; 5FU, Fluorouracil;
ACT, DOX + CPP + taxane; ADM, adroamycin; ADMN, anterior default mode network; ALFF, amplitude of low-frequency fluctuation; AVLT, Auditory Verbal Learning Test; BCP, breast
cancer patients; Ch−, breast cancer patients that didn’t take chemotherapy; Ch+, breast cancer patients that took chemotherapy; chemo, chemotherapy treatment; CN, Central
network; CPP, cyclophosphamide; dlPFC, dorsolateral prefrontal cortex; DMN, default mode network; DOX, doxorubicin; DTX, docetaxel; ET, endocrine therapy; FC, functional
connectivity; HC, healthy controls; HVLT, Hopkins Verbal Learning Test; HPC, hippocampus; ITG, inferior temporal gyrus; LFPN, left frontoparietal network; mo, months; MTG, middle
temporal gyrus; MTX, methotrexate; n, sample size; NPT, Neuropsychological Test; ParaHPC, parahippocampal; pCC, posterior cingulate cortex; PDMN, posterior default mode
network; postchemo, postchemotherapy treatment; Post.M., postmenopausal; Pre.M., premenopausal; pSTG, temporal pole of superior temporal gyrus; PTX, paclitaxel; ReHo, regional
homogeneity; RFPN, right frontoparietal network; rs-fMRI, resting state functional magnetic resonance imaging; RT, radiation therapy; SRN, Self-referential network; STG, superior
temporal gyrus; t1, Testing session 1; t2, testing session 2; t3, testing session 3; TAC, DTX + ADM + CPP; TC, DTX + CP; TEC, DTX + CPP + Epirubicin; VN, visual network; WDT, Auditory
verbal learning memory; yr, year(s).
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Observations of differential loss of memory details can be accounted for by the Trace
Transformation Theory, which posits that episodic memories are consolidated in rich
contextual and perceptual detail within the hippocampus. So long as the memory remains
accessible, the hippocampus continues to be required for the retrieval of contextually
and perceptually detailed elements of the memory. Over time, episodic memories are
transformed into less detailed schematic memories that capture the essential features or
gist of the original event. Storage and retrieval of this form of the memory are supported
by neocortical regions, with the prefrontal cortex playing a particularly important role. The
detailed hippocampus-dependent version, and the transformed schematic version of the
memory, can co-exist in the healthy brain, and the available cues at the time of retrieval
will direct which version is retrieved [92,95,120]. Regardless of the age of the memory
(recent, i.e., yesterday’s staff meeting; remote, i.e., staff meeting from three years ago), the
hippocampus continues to be engaged when retrieving episodically detailed elements of
event memories [120–122].

Given this profile of memory consolidation, it is probable that even subtle hippocam-
pal disruption, such as that resulting from chemotherapy-induced neurogenic suppres-
sion or hippocampal atrophy would result in selective impairment in the retrieval of
episodic memories. Such results have been identified in preclinical rodent models in which
adult hippocampal neurogenesis has been ablated using chemotherapy [60,61] or cranial
radiation [39,60,123,124], resulting in impaired context memory which is a measure of
episodic-like memory in rodent memory models.

3.2. Autobiographical Memory and CRCI

Autobiographical memory is a unique form of declarative memory that unfolds
over time, involves temporal and spatial sequencing of an event, and is comprised of a
complex interaction of episodic and semantic elements of a personally experienced event.
To recall an autobiographical memory, details that must be accessed from memory stores,
reconstructed and elaborated upon during the retrieval process [125,126]. Patients with
MTL damage exhibit relative preservation of older autobiographical memories experienced
long before hippocampal damage, and a temporal gradient, with memories experienced
more recently prior to hippocampal insult being more susceptible to disruption. The remote
retrograde memories that are preserved in the presence of hippocampal damage, however,
tend to lack episodic specificity, and rather retain a more gist-like and semantic version of
the event [100,127,128].

Despite the pervasive reports of memory impairment in those experiencing CRCI and
the known susceptibility of the hippocampus to the neurotoxic effects of chemotherapy,
only a limited number of studies have investigated autobiographical memory processing
in breast cancer survivors. One early investigation using the Autobiographical Memory
Task found that Ch+ breast cancer survivors demonstrated reduced ability to produce
‘specific’ autobiographical memories in response to positive, negative, or neutrally valenced
cue words when compared with heathy controls [129]. Rather than retrieving episodic
details, Ch+ breast cancer survivors produced overgeneralized memories, thought to result
from an impairment in the generative retrieval process that does not reach the elabora-
tion phase required for event-specific memory retrieval [126,130]. The Autobiographical
Memory Task [131] used here, however, provides limited insight into potential temporal
differences in memory retrieval of personal event memories, as it does not take into ac-
count the age of the retrieved memories (recently experienced post-treatment events vs.
remotely experienced pre-treatment events), nor does it account for the qualitative content
of the retrieved memory beyond classifying it as ‘specific’, ‘general’, or a ‘non-memory’.
This is an important consideration, as impairment resulting from chemotherapy-induced
hippocampal neurotoxicity may differentially impair the more specific, episodic com-
ponents of the recalled event while leaving the more general schematic and semantic
components unaffected [105].
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Another study assessed both pre- and post-treatment autobiographical memories in
breast cancer survivors using the more rigorous TEMPau task, a semi-structured interview
that assesses memories for unique events occurring at specific times and places within
three lifetime periods: the five years before treatment, the cancer treatment period, and
the 12 month post-treatment period [132]. The results identified an overall reduction in
autobiographical memory retrieval ability in Ch+ breast cancer survivors, with a specific
deficit in retrieval of temporal details. Given the observed deficit in temporal memory
processing, it is unfortunate that the study failed to assess potential differences in temporally
graded retrograde memory to determine if the more remote (five year old) memories were
less impaired than the more recently experienced autobiographical memories. As the
process of memory transformation and retrieval network reorganization occurs over time,
even in healthy individuals [92,95,120,121,133,134], it is plausible that deficits in episodic
memory retrieval for complex event memories in Ch+ individuals will be less evident for
more remote memories given the natural forgetting of episodic memory details over time,
and the reduced reliance on the hippocampus for this type of memory.

Several tests have been developed to probe the qualitative content of autobiographical
memories, including the Autobiographical Memory Interview [135] and the Autobiograph-
ical Interview [136]. The Autobiographical Interview is a structured memory interview
that distinguishes between retrieved episodic details that are unique to the retrieved ex-
perience (internal details, i.e., “I was wearing a blue bathing suit and swimming in the
cold lake with my brother when he came to visit me last weekend”) and semantic aspects
of memory (external details, i.e., “It was my favorite bathing suit, I’m a great swimmer,
and we used to go to the lake every summer”). The Autobiographical Interview allows
for the classification of sub-categories of internal details to identify domains of episodic
memory that are susceptible to impairment with a high degree of specificity (perceptual,
emotion/thought, time, place, event details).

The Autobiographical Interview has been used to identify episodic memory distur-
bances in many patient populations involving medial-temporal lobe disruption [128,137–139],
and in normal aging [140,141], but has not been used to assess complex event memory
processing abilities in chemotherapy-treated breast cancer survivors. The Autobiographical
Interview is a powerful tool for detecting subtle episodic memory deficits in the presence of
even minor hippocampal dysfunction. A study using the Autobiographical Interview [136]
in pediatric brain tumor patients found that chemotherapy and craniospinal radiation were
associated with significant impairment in patients’ ability to recall specific from personal
episodic events experienced following treatment, whereas their ability to retrieve general
semantic details from the same events was unimpaired compared to healthy controls. Inter-
estingly, the quality of details recalled for remote, pre-treatment memories was unimpaired,
suggesting that, as with MTL patients, chemotherapy and cranial radiation treatments
selectively impair the ability to form new, highly detailed autobiographical memories,
while leaving previously established memories unaffected. This pattern of impairment
was accompanied by reduced overall volume in the hippocampus, as well as the fornix,
the main efferent white matter tract projecting from the hippocampus to the mammillary
bodies in the diencephalon [142]. A moderate reduction in volume was also observed
in the precuneus, but other nodes of the recollection network (Figure 1), including the
medial prefrontal cortex (mPFC), were unaffected. This may account for the preservation
of remote retrograde memories, which reorganize and recruit prefrontal cortical regions as
the memories age and become less episodically detailed over time [92,95,142,143].

To date, the few assessments of autobiographical memory performance in breast cancer
survivors have identified autobiographical memory as a cognitive domain that is vulnera-
ble to the effects of chemotherapy, yet the measures used to assess the qualitative content
of patients’ memory have lacked the rigor to objectively assess the subdomains of episodic
memory retrieval [106,132]. Critically, they have not accounted for the differential effects of
chemotherapy-mediated disruptions along a temporal gradient, including of retrograde, an-
terograde, and future imagining of autobiographical events. Further, identifying structural
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and functional differences or changes in the hippocampus and throughout the recollection
network that may be mediating autobiographical memory dysfunction will be essential
in identifying therapeutic targets. These are important considerations moving forward,
given the susceptibility hippocampal-dependent memory processing to chemotherapy
treatments, and its implications for maintaining quality of life in cancer survivors.
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Figure 1. Regions commonly activated during memory recollection, comprising the recollection
networks.

4. Neuroimaging Assessments
4.1. Chemotherapy-Induced Structural Changes to Hippocampus and the Temporal Lobes

Within the MTL, and hippocampi specifically, notable structural and functional dif-
ferences have been observed in breast cancer patients following chemotherapy treatment
(Table 1), corroborating findings from pre-clinical studies in rodents [27,49,69]. Early inves-
tigations first considered the influence of post-traumatic stress [144], and post-treatment
depressive episodes [103] on hippocampal volume in breast cancer survivors. In a series of
MRI studies of Japanese breast cancer survivors conducted three years post-treatment (see
Table 1 for patient demographic and chemotherapy treatment details), no differences in
left or right hippocampal volume, nor overall brain volume, were observed in Ch+ breast
cancer survivors who had experienced a first depressive episode following breast cancer
treatment [103]. In the same sample, survivors who reported experiencing distressing
and intrusive cancer-related recollections for at least one month during the post-treatment
interval had marginally smaller left hippocampal volume, relative to survivors with no
history of distressing recollections [144]. The quality or content of these recollections was
not probed, limiting any conclusions that could be drawn related to the episodic memory
performance of these breast cancer survivors. Despite slightly smaller hippocampal volume,
standardized tests of delayed verbal or visual memory performance using the Wechsler
Memory Scale-Revised suggest that the occurrence of these distressing recollections did
not impair general memory processing.

Secondary analyses of these data, including the addition of a sample of non-chemotherapy-
treated (Ch−) breast cancer survivors, failed to find any difference in hippocampal volume,
whole brain volume, or any differences in delayed verbal of visual memory performance
between Ch+ and Ch− survivors [104]. Given that scans and cognitive assessment were per-
formed three years following treatment, the study suggested that a longitudinal approach
including earlier timepoints may be required to detect potential chemotherapy-induced
impairment in hippocampal volume and morphology.

Accordingly, structural imaging of both Ch+ and Ch− breast cancer survivors approx-
imately one year following surgery and chemotherapy treatment identified smaller gray
matter and white matter volumes within the parahippocampus, adjacent to the hippocam-
pus, and recollection network regions including the prefrontal cortex and precuneus in
Ch+ survivors [106]. Smaller gray matter volume within these regions was not evident
three years post-treatment [106], consistent with their earlier null findings in a sample
of survivors after three years [104]. See Table 1 for a summary of MRI studies finding
chemotherapy-related disruptions in the hippocampus and temporal lobes.
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Since these early studies highlighting the need for a more longitudinal approach
to monitoring chemotherapy-induced neural alterations, many subsequent MRI studies
of brain volume and morphology have identified structural differences in white mat-
ter tracts and gray matter volumes across various brain regions in Ch+ breast cancer
survivors [13,17,105,109,145,146].

The first MRI study to track longitudinal changes in gray matter volume across the
whole brain using voxel-based morphometry (VBM) prior to, and following, chemother-
apy treatment found significantly lower gray matter volumes within the bilateral hip-
pocampus, parahippocampus, superior temporal gyrus, and regions in the frontal lobes,
cerebellum, and thalamus just one month following treatment (Figure 2). Widespread
density reductions were largely transient, with recovery of gray matter volume observed in
the superior temporal regions one year following treatment in these same patients, though
reduced density within the MTL and frontal lobes largely persisted after one year [107].
Gray matter density reductions were not observed in Ch− breast cancer survivors, sug-
gesting that the persistent gray matter density deficits were not the result of cancer-related
disturbances, but rather due to chemotherapy-induced neurotoxicity. A follow-up study
incorporating fMRI performed 3–10 years post-treatment, confirmed lower gray matter
densities within the left temporal lobe, and hypoactivation within the left middle temporal
gyrus, while performing a working memory n-back task. No functional assessments with
long-term memory tasks were performed, but the authors report impaired delayed memory
scores on the Rey Auditory Verbal Learning Test in Ch+ breast cancer survivors. This
memory deficit may be mediated, in part, by the observed left temporal lobe structural and
functional disruption in Ch+ survivors [108].
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tween pre-treatment baseline and 1-month post-chemotherapy, notably within bilateral hippocampal
and parahippocampal regions (white dashed circles). Abbreviations: R, right hemisphere; L, left
hemisphere. Adapted from McDonald et al. [107].

A subsequent longitudinal study using VBM to assess gray matter volume changes
one month, and one year post-treatment identified structural changes in the temporal
lobes relative to pre-treatment baseline measures. A significant decline of volume in right
hippocampus and right superior and middle temporal gyri was evident as early as one
month following chemotherapy, and persisted one year post-treatment. Surprisingly, verbal
and visual memory showed only modest impairment over time, despite the notable declines
in temporal lobe gray matter [110].

A sample of Ch+ breast cancer survivors imaged between 1 and 12 years post-
treatment revealed persistent effects of treatment on hippocampal volumes, with smaller
left hippocampal volumes and inferior performance on the Hopkins Verbal Learning Test
memory task relative to controls. In a sub-set of sampled patients, smaller left hippocampal
volumes were associated with increased circulating pro-inflammatory cytokine expres-
sion of IL-6 and TNF-α [109]. While speculative, the cause of volume reductions within
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the detectable by MRI are likely associated with underlying cellular and molecular dis-
turbances targeting the hippocampus, including suppressed neurogenesis, and dendritic
atrophy [26,28].

4.2. Functional Specialization along the Hippocampal Long-Axis and Implications for Memory
Performance following Chemotherapy

Chemotherapy-treated women within 18 months of completing treatment had signifi-
cantly altered hippocampal morphology, with bilateral inward deformation predominantly
within the anterior portion of the hippocampal long-axis, and smaller overall hippocampal
volume. This deformity was associated with poorer episodic memory performance on the
Picture Sequence Memory Task and with self-reported cognitive difficulties [73].

Hippocampal deformity within the anterior region may differentially impact mem-
ory processing, as the hippocampus is functionally specialized along its long axis and
has unique structural connectivity in its anterior and posterior regions. The anterior
hippocampus (analogous the ventral hippocampus in rodents) has connections with the
ventromedial prefrontal cortex (vmPFC), and is associated with the processing of schematic
memories [92,147]. The posterior hippocampus (analogous to dorsal hippocampus in
rodents) [148] is thought to be involved in processing more fine-grained details that charac-
terize vivid and perceptually detailed episodic memories [92,147].

In their study of autobiographical memory in breast cancer survivors 18 months
post-treatment, Bergouignan and colleagues (2011) observed a specific deficit in recalling
temporal details within autobiographical memory [132]. They also found reduced posterior
hippocampal volume, which likely underlies the deficit in episodic memory retrieval, given
the putative role of posterior hippocampus in processing fine-grained spatio-temporal
aspects of episodic memory [147,149,150]. The posterior hippocampus has also been
shown to be activated during autobiographical memory elaboration which requires the
production of perceptually detailed elements of the memory [126], while connectivity
between anterior hippocampus and vmPFC regions is more strongly engaged during the
initial general construction phase of autobiographical memory retrieval [125,126,151,152].
These regional specializations in autobiographical memory processing may also account
for the overgeneralized autobiographical memories reported by Bergouignan et al. [132],
in the case of posterior hippocampal atrophy or shrinkage. Taken together, these findings
suggest that chemotherapy-induced regional disruptions within the hippocampus may be
indicative of the types of memory dysfunction a patient is likely to develop.

4.3. Chemotherapy-Induced Functional Disruptions in the Temporal Lobes and Broader
Recollection Network

An early study of fMRI neural dynamics and memory performance identified signifi-
cantly greater activity across broad regions of the recollection network (Figure 1) in Ch+
breast cancer survivors performing a delayed verbal memory recognition task. Hyperac-
tivity was observed in left hippocampus, bilateral parahippocampus gyri, right superior
temporal gyrus, bilateral precuneus, right cingulate gyrus, and throughout several regions
of the frontal lobes (Figure 3) [111]. The recognition accuracy of Ch+ breast cancer sur-
vivors was comparable to healthy controls. These results suggest that successful memory
processing following chemotherapy is supported by compensatory over-recruitment of key
nodes of the temporal lobes and the recollections network, reflective of inefficient neural
processing. See Table 2 for a summary of fMRI studies showing chemotherapy-related
disruptions in the hippocampus and temporal lobes during performance of memory tasks.
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memory recognition in Ch+ breast cancer survivors compared to healthy control. Adapted from
Kesler et al. [111].

While network hyperactivity may reflect a compensatory response supporting memory
performance following chemotherapy treatment, network hypoactivity has been associ-
ated with poor memory performance. A study of fMRI neural dynamics in Ch+ and
Ch− breast cancer survivors conducted ten years after the completion of a high-dosage
chemotherapy treatment found long-lasting hypoactivation of the parahippocampal gyrus
in Ch+ survivors during encoding of a paired associates episodic memory task in which
participants were shown a series of combinations of faces and contexts (i.e., a living room).
During a subsequent recognition task in which participants had to judge the accuracy of
the face-context pairings after a delay of several minutes, Ch+ breast cancer survivors had
lower recognition accuracy scores than Ch− survivors [17]. This study provided support
for the persistent altered neural dynamics within the MTL associated with chemotherapy
treatment by accounting for cancer-related complications also experienced by the Ch−
survivors. These data strongly suggest that altered neural dynamics with the MTL mediate
the occurrence of episodic memory impairment, and can account for the high incidence of
persistent memory loss in Ch+ breast cancer survivors.

Subsequent longitudinal investigation using this same paired associates task in Ch+,
Ch−, and healthy controls [91] identified no differences between groups during a pre-
treatment baseline assessment, or during a 6-month post-treatment assessment on the
face-context memory recognition task. While all groups showed robust activation of the
hippocampus during the recognition task, no notable differences were seen between Ch+
and Ch− or healthy controls at the 6-month post-treatment period. When compared with
their earlier findings [18] which find long-term disruption of parahippocampal processing
ten years post-treatment, these findings suggest that identifying disruptions within the
retrieval network in response to chemotherapy may develop over time. Their findings
highlight the importance of tracking the development of neural dynamic disruptions
longitudinally at repeated time points in patients to better understand the temporal profile
of the development and persistence of CRCI.

Another study involving longitudinal tracking of functional networks in breast cancer
survivors identified chemotherapy-induced changes in a widespread network of regions
while performing a verbal memory task one month following chemotherapy [112]. Relative
to patients’ pre-treatment baseline, network hypoactivity was observed in the right superior
temporal gyrus, bilateral insula, and left inferior orbitofrontal gyrus, during recognition
testing. Differences in functional network activity during the recognition memory task were
also observed between Ch+ survivors and healthy controls, most notably in the superior
and middle temporal gyrus, the left insula and superior temporal pole, and several frontal
regions (Table 2). No deficits in verbal recognition memory performance were evident in
Ch+ breast cancer survivors when compared to their baseline accuracy levels, or when com-
pared to healthy control performance, despite network hypoactivity during the task. Thus,
during a recognition task with relatively low cognitive demands, network hypoactivity
did not result in detectable deficits in performance. Interestingly, in participants reporting
high levels of fatigue, the hippocampus was more highly activated in Ch+ patients than
controls, suggesting that successful recognition memory when highly fatigued requires
extra engagement of hippocampal processing to support cognitive performance.
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A preliminary study investigated eye-tracking during fMRI scanning in Ch+ patients
and healthy controls while they performed the Picture Sequence Memory Test, an estab-
lished spatial recognition memory task that is sensitive to hippocampal dysfunction [153].
While Ch+ patients were not impaired on the recognition task during scanning, they
showed reduced eye-movement based discrimination, a measure of implicit memory (non-
declarative memory) for the task. Reduced eye-movement discrimination was associated
with hippocampal hypoactivation and smaller hippocampal volume, compared to control
levels [154]. The connection between the observed implicit memory deficit and hippocam-
pal abnormalities in Ch+ patients is not clear, as implicit memory is not considered to
be dependent on the hippocampus [155–157]. In later task-based functional connectivity
analyses of these data, Apple and colleagues (2018) identified strong intra-hippocampal
connectivity for both Ch+ patients and controls, but Ch+ patients showed evidence of
enhanced hippocampal connectivity with the left cuneus and precuneus, lingual gyrus,
and right middle frontal gyrus compared to healthy control levels. Higher hippocampal
connectivity with the precuneus was associated with higher reports of subjective cognitive
concern scores in Ch+ patients, suggesting that hyper-connectivity within these nodes of
the recollection network may be compensatory in supporting normal memory performance
and needed to overcome anxiety-induced behavioural deficits associated with subjective
concern over one’s cognitive abilities [113].

4.4. Recollection Network and Default Mode Network (DMN) Irregularities: Implications for
Chemotherapy-Related Memory Impairments and Deficits in Episodic Future Thinking

Many of the neural regions identified as comprising the recollection network overlap
with nodes of the default mode network (DMN). The DMN is a collection of brain regions
that are active when engaged in passive, internally focused cognition (mind wandering)
or during a resting state [158–162]. During rest or mind wandering, the brain engages in
recollection and in future thinking (planning, imagining) [137,163]. Neuroimaging studies
have shown that both future thinking and recollection engage the same core network of
brain regions including the mPFC, lateral and medial temporal regions (hippocampus and
parahippocampal cortex), and lateral and medial parietal regions (precuneus and retrosple-
nial cortex) (Figure 1), suggesting a similar underlying neural mechanisms mediating past
and future memory processing [137,163–167]. This common DMN/recollection network
engaged during mind wandering is an adaptive process that has been proposed to integrate
and recombine associations from experiences stored in episodic memory to predict possible
future situations in a process of ‘constructive episodic simulation’ [137,168,169].

Prospective memory is a form of future thinking that involves planning and remember-
ing to execute a task in the future [170]. It is mediated largely by regions within the frontal
lobes (notably Brodmann Area 10) [171,172] and MTL [170,173], and is sensitive to disrup-
tion following chemotherapy [116,174,175]. Episodic future thinking is a complex form
of prospective thinking which involves imagining or mentally projecting oneself into the
future in order to pre-experience events. This process relies on similar cognitive processing
and neural network activation involved in episodic recollection [176–178]. Given the over-
lap in functional activity for past and future episodic thinking, and observations of deficits
in future imagining in individuals with MTL damage [128,135,178–181], it is plausible that
deficits in episodically-detailed future thinking may occur following chemotherapy.

It is unsurprising that individuals with damage or dysfunction within the MTL, includ-
ing key nodes of the recollection and DMN networks, engage in episodically impoverished
mind-wandering. Mind wandering occurs in individuals with MTL disruption, but unlike
healthy adults who report thoughts and recollections about the past, and future imag-
ining during mind wandering, individuals with MTL damage report more semantically
based thoughts about the present. This reflects an inability to engage hippocampally-
mediated recollective processing required for episodic memory retrieval or episodic future
thinking [182].
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Bruno and colleagues [114] were the first to identify brain-wide resting state net-
work irregularities in Ch+ breast cancer survivors. Their analysis of resting state activity
identified lower global clustering scores in patients, which is indicative of inefficient neu-
rotransmission between hub regions. Hubs are highly interconnected neural nodes that
enable efficient network neurotransmission. They also identified several network hubs in
the superior temporal gyrus, hippocampus and amygdala in controls that were not evident
in breast cancer survivors during the resting state. Inefficient regional hub connectivity
and global network processing may underlie reports of hyper-activity during cognitive
task performance in cancer survivors, as the network must work harder to communicate
across regions due to reduced direct connectivity [111,113]. The network connectivity inef-
ficiencies identified at rest were associated with lower delayed verbal memory scores, and
subjective reports of memory difficulties in this sample of Ch+ breast cancer survivors [114].
See Table 3 for a summary of resting state fMRI studies finding chemotherapy-related
disruptions in the hippocampus and temporal lobes.

Modelling analyses by Kesler and colleagues (2017) found that pre-treatment resting
state network dynamics can be used to predict the development of cognitive impairment in
the first year following chemotherapy treatment, suggesting that irregularities in network
dynamics are already detectable at the time of disease onset, and are further exacerbated
by chemotherapy treatment [183]. Using multi-voxel pattern analyses (MVPA) of 19 seed
regions within the DMN during a resting task, Kesler et al. (2013) were able to distin-
guish Ch+ breast cancer survivors from Ch−, from healthy controls with a high degree of
accuracy [184]. MVPA is a neuroimaging technique that uses an individual’s pattern of
neural activity during a task or during rest to predict their cognitive state or condition [185].
MVPA was unable to distinguish Ch− breast cancer patients from healthy controls above
chance levels using these same regions of interest, suggesting that differences in DMN
dynamics between groups was associated with chemotherapy treatment, and not due to
the disease state itself.

Seed-based connectivity analyses during a resting state task by Cheng and colleagues [116]
identified enhanced hippocampal functional connectivity between regions of the DMN
including bilateral vmPFC and dlPFC, inferior and superior parietal lobules, pCC, and
precuneus in Ch+ breast cancer survivors relative to healthy controls. They also identified
prospective memory impairments associated with hippocampal hyper-connectivity in Ch+
breast cancer survivors relative to controls, and compared to pre-treatment prospective
memory performance levels for both event and time-based tasks. Their findings suggest
that this altered hippocampal connectivity with the rest of the DMN underlies prospective
memory difficulties observed in this same sample of breast cancer survivors [116]. Similarly,
post-treatment increases in resting state hippocampal connectivity was identified along the
hippocampal long-axis relative to the pre-treatment connectivity pattern [118]. Long-axis
connectivity changes during rest were associated with poorer auditory memory scores in
Ch+ relative to controls.

Post-treatment perturbations in DMN connectivity patterns have been proposed as a
potential biomarker of chemotherapy-induced neurotoxicity, and assessment of patient’s
resting state network dynamics may be a useful non-invasive diagnostic tool for identifying
those requiring cognitive intervention post-treatment [186]. While this review focused
on resting state network disruption involving the temporal lobes and its relation to the
recollection network and memory processing, it should be noted that disrupted resting
state network connectivity in Ch+ breast cancer survivors has also been widely reported
using functional connectivity analyses of non-temporal nodes of the DMN, most notably
within the frontal and parietal lobes, and accompanied by working memory and executive
function impairments [115,116,119,187–189].

5. Other Contributing Psychosocial Factors Affecting Memory Performance

Fatigue, anxiety, stress, and other psychosocial factors likely influence cognitive
performance, and confound interpretations of performance on standard neurocognitive
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tests [112,113,190]. Observations in breast cancer patients prior to chemotherapy reveal
that disease onset alone is sufficient to induce several physiological changes which may
account, in part, for observed cognitive impairments. These changes include disputations
in functional network dynamics in frontal and parietal regions [183], and related impair-
ments in executive function, working memory [183,191,192], response inhibition [191], and
planning [91] in early-stage breast cancer patients.

Self-perceived impairments in memory are a common complaint following chemother-
apy treatment [6,146,193]. Subjective accounts are an important indicator of an individual’s
perceived cognitive abilities. However, for complex event memories, there is evidence that
an individual’s confidence in the quality of their memory is not an especially reliable mea-
sure of its accuracy [194–196]. In this case, perceived memory difficulties may rather reflect
other psychosocial behavioural conditions such as stress, depression, or anxiety [197,198].

Following a cancer diagnosis, approximately 14% of patients develop cancer-related
post-traumatic stress disorder [199,200]. There is evidence that retrieval of autobiographical
events surrounding the time of diagnosis is altered in recently diagnosed patients [201,202].
This alteration, or distortion, of self-related event memories also intrudes into episodic
future thinking, with a bias towards negative affective details when thinking about the
future. High levels of anxiety associated with a diagnosis have been found to impair
the emotional content of autobiographical memory retrieval, even prior to the initiation
of chemotherapeutic intervention, identifying autobiographical memory as a cognitive
domain that is highly susceptible to distortion in breast cancer patients [203].

6. Recommendations and Conclusions

This review and commentary on the current state of the memory-related literature in
the field of CRCI has identified a gap in our knowledge of the impact of chemotherapy on
complex episodic memory processing and alterations to the recollection network. In light
of the susceptibility of the hippocampus to chemotherapy-induced neurotoxicity, and the
critical role of the hippocampus in episodic memory processing, it is surprising that there
has been so little investigation of complex event and autobiographical memory processing
in cases of CRCI. A multidisciplinary approach that combines complementary assessments
of lab-based neurocognitive episodic memory performance, with more complex real-life
event memory assessments (e.g., autobiographical memory) is needed to fully characterize
the specific memory domains affected by cancer onset and chemotherapy treatments.

While chemotherapy-related suppression of neurogenesis is a leading candidate un-
derlying the memory disruptions and hippocampal functional impairment, other phys-
iological factors likely also contribute to these deficits, including white-matter degrada-
tion in the hippocampus and throughout other regions of the recollection network [145],
pro-inflammatory cytokine [23,184] and microglial activation [26,27], among others. Multi-
modal and longitudinal neuroimaging assessments are required to better capture structural
and functional changes that develop and persist over time. These findings are essential to
identifying the underlying mechanisms that contribute to cognitive impairments within the
domains of complex event memory processing, and future thinking. The limited investiga-
tions to date highlight the need for systematic investigation of this cognitive domain, and
further review of the medial-temporal lobe and recollection network alterations associated
with CRCI-induced memory disturbances in cancer survivors.

Investigation of these cognitive domains in CRCI are still in their infancy. Given the
importance of autobiographical memory to a person’s personal history, sense of identity,
and ability to plan for the future, an under-appreciation of how this memory domain
may be impaired by standard cancer treatments, has the effect of diminishing the negative
experiences of breast cancer survivors, and neglecting cognitive problems that could benefit
from intervention strategies.



Cancers 2022, 14, 4752 17 of 27

Author Contributions: Conceptualization, M.J.S. and G.W.; investigation, M.J.S. and M.B.-G.; visual-
ization, M.B.-G.; writing-original draft preparation, M.J.S. and M.B.-G.; writing-review and editing,
M.J.S., M.B.-G. and G.W.; supervision, M.J.S.; funding acquisition, M.J.S. All authors have read and
agreed to the published version of the manuscript.

Funding: Preparation of this manuscript was supported by the Canada Research Chairs program
(M.J.S.).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CA1 cornu Ammonis 1
CA3 cornu Ammonis 3
Ch− breast cancer patients that didn’t receive chemotherapy
Ch+ breast cancer patients that were treated with chemotherapy
CRCI chemotherapy-related cognitive impairment
dlPFC dorsolateral prefrontal cortex
DMN default mode network
fMRI functional magnetic resonance imaging
IL-1β interleukin-1β
IL-6 Interleukin 6
mPFC medial prefrontal cortex
MRI magnetic resonance imaging
MTL medial temporal lobe
MVPA multi-voxel pattern analyses
pCC posterior cingulate cortex
TNF-α Tumor necrosis factor α
VBM voxel-based morphometry
vmPFC ventromedial prefrontal cortex

Glossary

Anterograde memory: formation of new memories after a specific point in time.
Autobiographical memory: memory for personal experiences and facts about oneself.
Autobiographical Interview: a standardized, structured interview that asks participants to

describe memories from personal events that occurred at a specific time and place (e.g., 5 years ago,
1 year ago, and 1 week ago). The reported narratives are scored to identify internal details that are
unique to the event (episodic details—perceptual, emotion/thought, time, place, event details) and
external details that are not unique to the event (semantic details).

Brief Visuospatial Memory Test-Revised: a standard neurocognitive task where participants
are presented with several figures and asked to immediately draw the figures from memory, which
is then repeated for three consecutive trials. After a 25-min delay, they are asked to draw the im-
age from memory and complete a recognition task. This task measures visuospatial learning and
memory abilities.

California Verbal Learning Test: a standard neurocognitive task where participants are pre-
sented with two lists of words and are asked to recall as many as they can remember using semantic
categorization immediately after they are presented. Next, participants complete a recognition task
after a 15-min delay. This task assesses encoding, storage, retrieval, and recognition of verbal memory.

Constructive episodic simulation: a cognitive process that integrates and recombines associa-
tions from experiences stored in episodic memory in order to predict possible future situations based
on past experiences.

Declarative memory: a category of explicit long-term memory comprised of semantic and
episodic memory, including memory for facts, general knowledge, and personally experienced events.

Default mode network: a network of brain regions engaged during passive, internally fo-
cused cognition (mind-wandering) or rest. Regions include the mPFC, parahippocampus, retrosple-
nial/posterior parietal cortex, precuneus, lateral parietal cortex/angular gyrus.

Episodic future thinking: imagining or mentally projecting oneself into the future to mentally
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pre-experience events.
Episodic memory: a component of declarative memory involving conscious recollection of an

event occurring at a specific time and place. Episodic memory is characterized by a sense of mentally
re-experiencing the contextual and perceptual details of a personal event or episode (i.e., visiting the
State Fair of Texas last week with my friend Brian).

Functional connectivity: correlated activation of brain regions during a functional neuroimag-
ing task.

Hopkins Verbal Learning Test: a standard neurocognitive task where participants are presented
with a list of words and perform an immediate recall test. A word recognition task is given following a
delay (~−30 min). This task measures encoding, storage, retrieval, and recognition of verbal memory.

Implicit memory: memory that can be recalled without conscious recollection or awareness.
(i.e., knowing how to type on a keyboard without looking at the letters).

Multi-voxel pattern analyses: neuroimaging technique that analyzes an individual’s pattern of
neural activity during a task to predict their cognitive state or condition.

Neurogenesis: the continuous proliferation of neuronal precursor cells that differentiate into
neurons in the mammalian brain (post-natal/adult neurogenesis). Neurogenesis occurs in the
sub-granular zone of the dentate gyrus, where neurons integrate into the granule cell layer of the
hippocampus. Neurogenesis also occurs in in the subventricular zone, where neurons migrate via
the rostral migratory stream to the olfactory bulb.

Paired associate learning: a neurocognitive task in which participants are presented with pairs
of words, items, or spatial contexts (i.e., a dog paired with a living room), then later must recognize if
the items had previously been presented together, or if the pair is a novel combination (i.e., a dog
paired with a beach).

Picture Sequence Memory Test: a standard neurocognitive task from the NIH Toolbox Cognition
Battery where participants are presented with a series of pictures and must recall the correct order in
which the images were presented. The task is used to measure episodic memory.

Recollection: involves a ‘sense of reliving’, or a re-instantiation of contextual and perceptual
details related to the cued event. Recollection is thought to be mediated largely by the hippocampus
and parahippocampal cortex.

Recollection network: a network of brain regions which are commonly activated during memory
recollection. These regions include the hippocampus, parahippocampus, retrosplenial/posterior
parietal cortex, lateral parietal cortex, and the medial prefrontal cortex.

Retrograde memory: memories acquired prior to a particular point in time.
Rey Auditory Verbal Learning Test: a standard neurocognitive task where participants are

presented with a list of words and perform an immediate recall test. A word recognition task is given
following a delay (~−30 min). This task measures encoding, storage, retrieval, and recognition of
verbal memory.

Schema (schematic memory): an associative network of information which is adaptable and
developed though the abstraction of common information over the course of multiple episodes
(i.e., knowing that a typical birthday party includes balloons, presents, cake, candles). Schemas are
thought to be largely represented in the mPFC.

Semantic memory: a component of declarative memory including memory for knowledge about
the world and general facts (i.e., Washington D.C. is the capital of the United States of America).
Semantic knowledge is largely supported by the anterior temporal lobe.

TEMPau: Test of Episodic Memory of Past Autobiographies; a semi-structured interview
that tests one’s memories for unique events occurring at a specific time and place within different
lifetime periods.

Trace Transformation Theory (TTT): a theory which proposes that episodic memories are con-
solidated in rich contextual detail within the hippocampus. The hippocampus is always required
for the storage and retrieval of this contextually detailed memory. Over time, episodic memories are
transformed into less detailed schematic memories that capture the essential features or gist of the
original, and are represented in neocortical regions. The detailed hippocampus-dependent version,
and the transformed schematic version of the memory, can co-exist in the brain. The situational
demands at the time of retrieval will mediate which version of the memory is expressed.
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Voxel-based morphometry: A whole-brain neuroimaging analysis method which determines
the regional volume of tissue by measuring the total number of voxels in a region of interest. This
method is useful for comparing whole brain tissue volume differences between conditions or groups.

Wechsler Memory Scale-Revised: a standardized neurocognitive test battery that includes
logic memory, visual and verbal paired associates, and visual reproduction tasks. These tasks as-
sess numerous cognitive domains including visual, verbal, general, and delayed memory, and
attention/concentration.
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