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Numerous examples of microbial phase-separated biomolecular condensates have
now been identified following advances in fluorescence imaging and single molecule
microscopy technologies. The structure, function, and potential applications of these
microbial condensates are currently receiving a great deal of attention. By neatly
compartmentalizing proteins and their interactors in membrane-less organizations while
maintaining free communication between these macromolecules and the external
environment, microbial cells are able to achieve enhanced metabolic efficiency. Typically,
these condensates also possess the ability to rapidly adapt to internal and external
changes. The biological functions of several phase-separated condensates in small
bacterial cells show evolutionary convergence with the biological functions of their
eukaryotic paralogs. Artificial microbial membrane-less organelles are being constructed
with application prospects in biocatalysis, biosynthesis, and biomedicine. In this review,
we provide an overview of currently known biomolecular condensates driven by liquid-
liquid phase separation (LLPS) in microbial cells, and we elaborate on their biogenesis
mechanisms and biological functions. Additionally, we highlight the major challenges
and future research prospects in studying microbial LLPS.

Keywords: liquid-liquid phase separation, biomolecular condensates, membraneless organelles, multivalent
interactions, crowded environments, cellular noise

INTRODUCTION

Recent developments in the field of liquid-liquid phase separation (LLPS) have led to
a transformation in our understanding of the biogenesis of subcellular membrane-less
compartments. As more and more phase-separated condensates are being discovered, there
is considerable interest in exploring key factors (proteins) involved in the organizations and
physiological functions of the compartments. However, we are still at an early stage of
understanding the precise regulation and the biochemical processes inside the condensates, lacking
a global view of the interactions within/among the compartments (and the environment).

For many years, the field of compartmentalization was limited to the study of membrane-
bound organelles. The presence of these functionally and structurally distinct compartments is
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the essential feature of eukaryotic cells. In the 1980s, small
granules that behaved as fluid droplets were identified in the
cytosol, and these droplets were observed to fuse together
into larger assemblies known as non-membranous organelles
(Strome and Wood, 1982). High-resolution imaging studies (and
other methods of determining molecular composition) have
revealed that membrane-less compartments generally exhibit
similar dynamics and similar assembly pathways, although
their position, composition, and function may differ (Mitrea
et al., 2018). P granules, a type of membrane-less compartment
found in Caenorhabditis elegans, were the first biomolecular
condensate observed to form via LLPS (Brangwynne et al.,
2009). These early observations concerning P bodies greatly
promoted the development of this field, furthering our
understanding of the physical processes driving the formation of
organelles. Subsequently, evidence was provided demonstrating
the involvement of LLPS in the formation of additional
membrane-less organelles, including nuclear Cajal bodies (in
plant and animal cells, Frey et al., 1999; Sleeman et al., 2011;
Riback et al., 2020) or the homologous nucleolar body (in
budding yeast, Verheggen et al., 2001), nuclear speckles (Cotto
et al., 1997; Chiodi et al., 2000; Brangwynne et al., 2011;
Spector and Lamond, 2011; Tripathi et al., 2012), stress granules
(Buchan and Parker, 2009; Kato et al., 2012; Youn et al.,
2019; Yang P. et al., 2020), and the carboxysome (a well-
studied subcellular compartment in cyanobacteria responsible
for sequestering and concentrating Rubisco enzymes for CO2
fixation) (Wang et al., 2019). Moreover, evidence was presented
that LLPS may be involved in forming bacterial inclusion bodies
(IBs) (Baneyx and Mujacic, 2004; Singh and Panda, 2005; Sabate
et al., 2010; Chebotareva et al., 2013; Azaldegui et al., 2021;
Su et al., 2021). Although membrane-less organelles have no
enclosing membrane, the condensates have been demonstrated
to maintain (for hours to days) stable, coherent structures
capable of compartmentalizing and concentrating specific
sets of molecules and exchanging material with surrounding
components (Shin and Brangwynne, 2017).

An understanding of the principles underlying the formation
and function of biomolecular condensates is vital for any
in-depth investigation of the physiology and pathophysiology
of biological processes and systems. Using up-to-date imaging,
structural, and computational methods, scientists have been
able to study the features of LLPS in vitro and in vivo
(Alberti et al., 2018; Bracha et al., 2018; Mitrea et al., 2018).
However, an in-depth study of LLPS in the comparatively small
prokaryotic cell remains technically challenging, limiting our
understanding of the molecular basis and biological function of
compartmentalization in microorganisms. Nevertheless, recent
developments in this field have yielded an extraordinary leap
in understanding. In this review, we highlight representative
examples of phase-separated condensates observed in microbial
cells. Using these examples, we summarize the underlying
mechanisms accounting for the composition, function,
and the assembly/disassembly of microbial membrane-less
compartments. We have also highlighted a series of challenges
and future perspectives in this exciting area.

LIQUID PHASE-SEPARATED
ORGANELLES IN MICROORGANISMS

In Tiebackx (1911) firstly reported that coacervation was
achieved through liquid-liquid phase separation (LLPS). Then,
the concept of LLPS was applied in organic chemistry, especially
in polymer chemistry (Jong and Kruyt, 1929). In this context,
coacervation can be attained using either a mixture of oppositely
charged polyelectrolytes (complex coacervation) or a polymer
capable of self-association (self-coacervation) (Jong and Kruyt,
1929; Gabryelczyk et al., 2019). When a homogeneous polymer
solution of macromolecules undergoes LLPS, two different phases
are formed, a phase of concentrated molecules (dense phase) and
a dilute molecule-depleted phase (dilute phase). The dense phase
resembles liquid droplets (Alberti et al., 2019), and molecules
in this phase can move quickly and are free to exchange
interactions with multiple other molecules. Because molecules in
the dense phase are highly likely to experience random molecule-
molecule collisions, the potential for these molecules to complete
biochemical reactions is high.

As early as 120 years ago, Wilson raised that protoplasm
might be constructed by condensed liquid-droplet-like granules
(Wilson, 1899). However, the commonly held view considered
the cytoplasm as a fluid-like homogeneous mix of soluble
proteins and compounds. It is only in the past decade, studies
revealed that the cytosol does not act simply as a continuous
medium but demonstrates complex rheological characteristics
(Brangwynne et al., 2009; Guo et al., 2014; Shin and Brangwynne,
2017). The bacterial cytoplasm displays properties characteristic
of glass-forming liquids and can solidify to resemble soft glass,
depending on the metabolism, component sizes, and non-
steric interactions (Parry Bradley et al., 2014; Xiang et al.,
2021). Modern microscopy techniques reveal that the many
proteins in bacteria tend to form large complexes targeted to
specific regions within the cytosol (Abbondanzieri and Meyer,
2019). Some of the regions exhibit remarkable liquid droplet-
like behaviors and undergo rapid assembly and disassembly
in response to stress or cell signaling events (Sehgal et al.,
2020). Evidence for this phenomenon includes the gathering
of RNA degradosomes into bacterial ribonucleoprotein bodies
(BR-bodies) displaying liquid-like behavior in Escherichia coli,
Bacillus subtilis, and Caulobacter crescentus (Al-Husini et al.,
2018, 2020; Hamouche et al., 2020). According to Hyman’s
hypothesis (proposed by Hyman et al., 2014), the formation of
phase-separated condensates in eukaryotes occurs through three
main steps (Hyman et al., 2014; Strom et al., 2017; Peng and
Weber, 2019): nucleation; rearrangement; and supersaturation
(Figure 1). A saturation concentration, Csat, was defined such
that: for C < Csat, the molecules are diffuse in solution; and for
C > Csat, dense droplets form. If the concentration consistently
increases, the liquid-like condensate may change into its gel-
like or solid states (Figure 1; Nandana and Schrader, 2021).
Notably, Csat values are not fixed, but vary with the concentration
of condensate components (Dzuricky et al., 2020; Riback et al.,
2020; Zhang et al., 2021). In yeast P bodies, seven proteins
are present at high concentrations (5–15 mM), forming the
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FIGURE 1 | Schematic view of a phase diagram. Phase separation is a function of molecular concentration under environmental conditions such as temperature,
ionic strength, pH, etc. At a concentration below Csat, the system remains in the one-phase regime. As the concentration increases, two-phase regimes will coexist
in the system, and the required concentration is effected by the environmental change as represented in the y-axis. Within the coexistence line (black), molecules
often condense into smaller droplets and fuse into bigger droplets to lower the surface tension. These processes are usually reversible. When the concentration
continuously increases, the droplets may irreversibly turn into gel-like or solid condensates.

“core” of the condensate, and 24 additional P-body proteins
are present at lower concentrations (<2.6 mM) (Xing et al.,
2020). It is important to note that Hyman’s hypothesis is not
limited to eukaryotic cells (Azaldegui et al., 2021). It can also
be applied to bacteria, which were once considered amorphous
“bags of enzymes” lacking membrane-bound organelles (Al-
Husini et al., 2018). For example, E. coli FtsZ, a well-studied
tubulin homolog that is essential for cytokinesis, is capable
of forming crowding-induced condensates (Monterroso et al.,
2019). In vitro experiments indicate that FtsZ-rich droplets are
formed only when FtsZ is in a complex with nucleoid-associated
inhibitor SlmA (which antagonizes FtsZ polymerization while
binding to specific sites on the E. coli chromosome), and that
concentrations of SlmA greater than 40 µM (far above the
physiological concentration) are required for FtsZ condensates to
form (Han et al., 2012).

Although the fundamental role played by phase separation in
the spatiotemporal organization of essential microbial processes
has recently been revealed (Table 1 and Supplementary Table 1),
many of these processes have been scarcely explored in bacteria,
largely owing to their small sizes and to resolution limits.
Nevertheless, ten bacterial LLPS systems have already been
identified (Azaldegui et al., 2021), and the number is increasing.

These observations support the proposal that LLPS in microbes
may be more the rule than the exception. In E. coli, aggregated
proteins can be disaggregated during environmental stresses by
chaperones, and their spatio-temporal localization is changed
in the process (Winkler et al., 2010). In rod-shaped bacterial
cells, cell poles are special regions for the localization of
signaling and sensing proteins, and here proteins like MreB
exhibit random movement (Lopian et al., 2010; Van Teeffelen
et al., 2011; Govindarajan et al., 2013; Shi et al., 2018).
Furthermore, a high-throughput tagging pipeline of C. crescentus
proteins revealed 153 proteins with patchy or spotty subcellular
localization patterns (Werner et al., 2009). Together, the above
observations provide evidence that LLPS may be widely involved
in subcellular organization across different microorganisms,
although compartments remain to be discovered.

CONTROL OF PHASE SEPARATION IN
THE FORMATION OF BIOMOLECULAR
CONDENSATES

Although many key questions regarding the organizing
principle and physicochemical driving forces of phase separation
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TABLE 1 | Proposed phase-separated biomolecular condensates in microbial cells.

Systems Representative
species

Biological processes Functions Molecular
mechanisms

References

LLPS systems in eukaryotic microbes

P body Saccharomyces
cerevisiae

Regulate gene
transcription

Act against stresses Defined modular
domains (Modules),

Intrinsically
disordered regions

(IDRs)

Decker and Parker, 2012; Jain and
Parker, 2013; Hubstenberger et al.,
2017; Loll-Krippleber and Brown,

2017; Luo et al., 2018

Stress granules Saccharomyces
cerevisiae

Regulate translation Act against stresses IDRs Buchan et al., 2011; Kato et al.,
2012; Jain et al., 2016; Khong et al.,

2017

Large 1 (Lge1) protein Saccharomyces
cerevisiae

Accelerate the
ubiquitination of histone

Regulate metabolic flux IDRs Turco et al., 2015; Kim et al., 2018;
Gallego et al., 2020

G body Saccharomyces
cerevisiae

Enhance glycolysis Act against stresses IDRs Jin et al., 2017; Fuller et al., 2020

Pyrenoid Chlamydomonas
reinhardtii

CO2 concentration Regulate metabolic flux IDRs Mackinder et al., 2016; Freeman
Rosenzweig et al., 2017; Wunder

et al., 2018; He et al., 2020

Yeast ataxin-2 protein
(Pbp1)

Saccharomyces
cerevisiae

Regulate cellular
signaling and
autophagy

Act against stresses Modules Kato et al., 2019; Yang et al., 2019

DNA repair droplet Saccharomyces
cerevisiae

DNA repair Act against stresses IDRs Lao et al., 2008; Oshidari et al., 2020

Membrane invagination Saccharomyces
cerevisiae

Endocytosis Act against stresses IDRs Bergeron-Sandoval et al., 2021; Lyon
et al., 2021

Prion protein Saccharomyces
cerevisiae

Regulate translation Act against stresses Modules, IDRs Franzmann et al., 2018

Heterochromatin
protein 1 (HP1)

Schizosaccharomyces
pombe

Chromatin compaction Regulate metabolic flux Modules Canzio et al., 2013; Larson et al.,
2017; Sanulli et al., 2019

TBP associated factor
14 (Taf14)

Saccharomyces
cerevisiae

Regulate gene
transcription

Regulate metabolic flux Modules Schulze et al., 2010; Chen et al.,
2020; Peil et al., 2020

Cajal body homologs Saccharomyces
cerevisiae

Telomerase recruitment Regulate metabolic flux Modules Verheggen et al., 2001; Mao et al.,
2011

LLPS systems in prokaryotic microbes

Carboxysome Synechococcus
elongatus

CO2 concentration Regulate metabolic flux IDRs Cameron et al., 2013; Chen et al.,
2013; Sun et al., 2019; MacCready
et al., 2020; Oltrogge et al., 2020

BR-bodies Caulobacter crescentus Regulate RNA
metabolism

Act against stresses IDRs Hardwick et al., 2011; Al-Husini et al.,
2018, 2020; Bayas et al., 2018

ParABS DNA
segregation system

Escherichia coli Regulate DNA
segregation

Regulate metabolic flux Modules Sengupta et al., 2010; Graham et al.,
2014; Sanchez et al., 2015;

Debaugny et al., 2018; Guilhas et al.,
2020

RNA polymerase
clusters

Escherichia coli Control transcription Regulate metabolic flux Modules, IDRs Cabrera and Jin, 2003; Weng et al.,
2019; Ladouceur et al., 2020

Pole-organizing protein
(PopZ)

Caulobacter crescentus Control spatial
patterning

Regulate metabolic flux IDRs Dahlberg et al., 2020; Lasker et al.,
2020

Single-stranded
DNA-binding protein
(SSB)

Escherichia coli DNA replication, repair,
and recombination

Act against stresses Modules, IDRs,
Crowded

environments

Zhao et al., 2019; Harami et al., 2020

ATP-binding cassette
transporter (Rv1747)

Mycobacterium
tuberculosis

Cell growth Regulate metabolic flux IDRs Spivey et al., 2011; Heinkel et al.,
2019; Owen and Shewmaker, 2019

Filamentous
temperature-sensitive
protein Z (FtsZ)
assembly

Escherichia coli Cell division Regulate metabolic flux Crowded
Environments

Monterroso et al., 2016, 2019

PolyP granules Pseudomonas
aeruginosa

Starvation response
and regulation of DNA

replication

Act against stresses Modules, IDRs,
Crowded

environments

Kreuzer, 2013; Racki et al., 2017

DNA-binding protein
from starved cells (Dps)

Escherichia coli Protect nucleoid from
damage

Act against stresses IDRs Kim et al., 2004; Janissen et al., 2018
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remain unanswered, in many cases, weak and reversible
multivalent interactions between proteins and/or nucleic
acids have been demonstrated to be important drivers of
biomolecular condensates (Banani et al., 2017). Several different
theories explaining phase separation in condensates have been
proposed, positing a role for electrostatic interactions, cation-π
interactions, aromatic interactions, volume exclusion/crowding,
surface tension, or the permeability rate of molecules. With these
theoretical frameworks, it may now be possible to explain how
the assembly, composition, dynamics, physical properties, and
biochemical functions of these biomolecular condensates are
regulated. Here, we focus on known mechanisms involved in
driving LLPS in microorganisms.

Multivalency-Driven Phase Separation
In Li et al. (2012) proposed that multivalent interactions are
key factors involved in the phase separation of biomolecules.
This view holds that biomolecular condensates are composed of
large numbers of multivalent molecules, and thus they contain a
variety of elements that control intramolecular or intermolecular
interactions. For example, complex condensations can be built
through the processes that receptors use to specifically combine
with ligands. Therefore, increasing the number, valence, and
interaction force of receptors and ligands may promote the
formation of stable and large cell condensations. If these
interactions occur among multivalent molecules, the molecules
will form oligomers and condensations with large stoichiometric
ratios (Jin et al., 2019). The essential proteins that drive reversible
condensate formation are classified as “scaffolds,” and proteins
that preferentially partition into the condensates have been
classified as “clients” (Figure 2A). Notably, the two roles are
not static or absolute, and it can be hard to unambiguously
distinguish these roles in some biomolecular condensates under
set environmental conditions (Banani et al., 2016, 2017). In
cells, the diffusion speed of clients is much faster than that of
scaffolds, and thus client/scaffold interactions are more transient
than scaffold/scaffold interactions. The interactions are therefore
often selective. For instance, bacterial polar protein PopZ has
been shown to act as a selective scaffold that imposes a diffusion
barrier to cytosolic proteins (such as the signaling protein
CtrA) and constrains the mobility of these proteins at cell
poles (Lasker et al., 2020). Furthermore, these interactions are
frequently promoted by proteins composed of multiple-folded
modular domains and/or intrinsically disordered regions (IDRs)
(Gomes and Shorter, 2019).

Proteins With Defined Modular Domains
Proteins with defined modular folding domains can assemble
into higher-order oligomers via intermolecular interactions
involving other proteins harboring compatible modular domains.
These intermolecular interacting modular domains may be
comprised of multiple folded domains or short linear motifs.
A typical example from microorganisms is E. coli NusA, a
transcription anti-termination factor that interacts directly with
RNA polymerase (RNAP) (Ladouceur et al., 2020). NusA,
working as a scaffold, contains six folded domains, including
two C-terminal acidic repeat Arg-rich domains that recruit

clients such as RNAP (and other anti-termination factors).
After the scaffold has been built (scaffold proteins have been
assembled), more molecules can be recruited to the system to
complete the assembly of the condensates. The folded modular
domains are often connected by IDRs or low complexity regions
(LCRs), and these determine the material properties of the
condensates (Harmon et al., 2017). TATA-binding protein-
associated associated factor 14 (Taf14) from yeast was once
thought as an exception that do not contain IDR or LCR (Chen
et al., 2020), but sequence analysis using PONDR (Xue et al.,
2010) and SMART (Letunic and Bork, 2018) show that it has
two IDRs with Arg/Lys-rich and Glu-rich (Figure 2B). Taf14
is a well-studied, phase-separated transcriptional regulator that
associates with a variety of other transcriptional regulators. It
contains a YEATS (Yaf9, ENL, AF9, Taf14, and Sas5) domain as an
effective reader of histone lysine crotonylation via a unique π–π

stacking mechanism and an extra-terminal (ET) domain that
recognizes a common motif in diverse transcriptional coactivator
proteins such as RSC, SWI/SNF, NuA3, INO80, TFIID, and
TFIIF (Andrews et al., 2016; Chen et al., 2020; Figure 2B).
Meanwhile, some Taf14-binding partners (e.g., Tfg1) have a
number of ET-binding sites that balance the stoichiometric ratio
of different complexes in the compartmentalized transcriptional
unit (Andrews et al., 2016; Chen et al., 2020).

Proteins With Intrinsically Disordered
Regions (IDRs)
In comparison to proteins with defined modular domains,
proteins containing IDRs are characterized by more multi-
valency and more flexible interaction modes, and therefore
they represent the most abundant class of macromolecules that
can drive phase separation under physiological conditions. By
definition, IDRs lack a defined three-dimensional structure, and
they encode multiple short-length amino acid motifs which can
provide the basis for multivalent weakly adhesive intermolecular
interactions. These motifs typically have a strong bias toward
a limited number of amino acids, and are referred to as low
complexity sequences (LCSs). They are classified as “stickers”
because they demonstrate adhesive properties through π-π
stacking, cation-π interactions, or charge-charge interactions
(Figure 2A; Wang et al., 2018; Martin et al., 2019). Sequences
between the motifs are referred to as “spacers.” Site-directed
mutagenesis (or other modifications) in spacer residues can
affect the thermophysical properties of the proteins, and thus
change the material properties of condensates (Wang et al.,
2018). A surprising degree of motional organization of IDPs
(intrinsically disordered proteins) has been detected on the
ps – ns scale, with IDPs demonstrating fast local vibrations and
conformational sampling of backbone dihedral angles, and this
may drive LLPS (Salvi et al., 2017).

Based on the examples already known, the biased amino
acid compositions of IDRs in bacteria share common hallmarks
with IDRs from higher eukaryotes. Thus, IDRs can be: (1) Rich
in polar and uncharged amino acid residues such as Gln and
Asn. Examples include the “prion-like” sequences in NIDR, the
linker IDR of SARS-CoV-2 (Perdikari et al., 2020), and the
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FIGURE 2 | A model for the control of biomolecular condensates. (A) Multivalent interactions that drive LLPS. Scaffold molecules (red) that undergo LLPS are in
stoichiometric excess (often in a crowding environment) and enriched for defined modular domains or intrinsically disordered regions. Client molecules (green) are
recruited by binding to the free cognate sites in the scaffold. The critical scaffold/client or scaffold/scaffold interactions include electrostatic, cation-π, and π-π
contacts. (B) Model of yeast Taf14-mediated transcriptional condensate. The Taf14 protein contains two main domains, an N-terminal YEATS (Yaf9, ENL, AF9,
Taf14, Sas5) domain (yellow) that recognizes lysine acylation modification, as well as a C-terminal ET domain (green) that is reported as a protein-protein interaction
domain and recognizes peptide substrates. The disordered regions of Taf14 were predicted by PONDR (Xue et al., 2010). Taf14 works as a scaffold protein that
promotes phase separation of condensates and concentrates different transcriptional machinery to form Taf14-containing complexes, thereby enhancing
transcription efficiency (Chen et al., 2020). (C) Model of Caulobacter RNase E BR-body assembly. The domain architecture for the RNase E protein is shown, and
the disordered regions were predicted by PONDR (Xue et al., 2010). The N-terminal catalytic DNaseI domain (blue) and C-terminal disordered regions (yellow and
red) are highlighted. The disordered regions contain positive-charged patches (Arg-rich RNA binding sites, yellow) and negative-charged patches (facilitating
multivalent interactions with RNA, red), causing self-assembly of BR-bodies into condensates through electrostatic interactions (Al-Husini et al., 2018, 2020).

Gln-rich region in McdB proteins that drives the positioning
of the carboxysome (Cameron et al., 2013; MacCready et al.,
2020); (2) Rich in charged residues such as Arg/Lys and
Glu/Asp. Examples include the Arg-rich C-terminal domain
of RNase E that is required for assembly of the core of the
bacterial ribonucleoprotein body (BR-body) (Figure 2C; Al-
Husini et al., 2018, 2020). Using these concepts, Wei et al. (2020)
has developed an artificial membrane-less organelle in E. coli
through heterologous overexpression of silk-like proteins using
IDRs containing GGX (X = Lys, Tyr, Gln, or Ala) motifs, and this
condensate is capable of catalyzing biochemical reactions (Yang
et al., 2016; Wei et al., 2020).

Intrinsically disordered regions are notably scarce in bacterial
proteomes (comprising less than 2–5% of the proteome) when
compared with eukaryotic proteomes (where they comprise 30–
40% of the human proteome) (Ward et al., 2004). However, this
scarcity does not mean that phase-separation proteins are less
relevant in bacteria. Indeed, evidence is accumulating to suggest
that IDRs are key players within bacteria, and that these proteins
drive LLPS to achieve cell divisions, metabolisms, and nucleoid
organizations (Abbondanzieri and Meyer, 2019). Besides, several

dedicated computational tools and resources have been published
to serve as platforms for collecting, predicting, and annotating
LLPS-associated proteins, providing convenient guides to study
LLPS proteins in microbes. These databases include PhaSepDB
(1You et al., 2020), LLPSDB (2Li et al., 2020), DrLLPS (3Ning et al.,
2020), PhaSePro (4Mészáros et al., 2020), and so on. For a detailed
review, see Pancsa et al. (2021).

Crowded Environments
The cytosol is a highly crowded environment in which
macromolecules such as proteins, nucleic acids, and
polysaccharides must push against and compete with each
other to carry out their biological functions (McGuffee and
Elcock, 2010; André and Spruijt, 2020). The macromolecule
concentration in the cytosol of E. coli has been estimated to
be ∼300 – 400 mg/mL. In vitro studies have demonstrated

1http://db.phasep.pro/618891875618891875
2http://bio-comp.org.cn/llpsdb/
3http://llps.biocuckoo.cn
4https://phasepro.elte.hu/
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that the addition of “inert” crowding agents can induce or
enhance LLPS in almost all cases. These agents help mimic a
system with high viscosity and a low diffusion coefficient that
is favorable for biochemical reactions. Using this system, the
effects of pH, temperature, and ionic strength factors can be
generally explored (André and Spruijt, 2020). For example,
the addition of BSA facilitated the condensation of single-
stranded DNA-binding protein (SSB) (Harami et al., 2020),
whereas PEG/DNA enhanced the formation of phase-separated
condensates composed of FtsZ-SlmA-SBS (Monterroso et al.,
2019). In most of these cases, macromolecular crowding
can be conceptualized as an “excluded volume effect” (i.e.,
different species cannot occupy the same space). Thus, inert
crowding agents exclude other species from a definite volume
(the excluded volume) (Minton, 1990; Ellis, 2001). In general,
the total excluded volume depends on the size of the target
biomolecules, their number, and their shape (Ellis, 2001). Using
the example of the formation of FtsZ-SlmA-SBS droplets, the
PEG/dextran system induced an asymmetrical distribution of the
condensates (Monterroso et al., 2019). In general, the exclusion
volume of macromolecules (such as proteins) is much larger
than that of small molecules. As a consequence of this exclusion
volume, there can be an accompanying increase in the effective
concentration of biomolecules of several orders of magnitude,
and this may alter the equilibrium, thermodynamic, and kinetic
properties of biochemical reactions (Laurent, 1963). Moreover,
this can lead to the formation of biomolecular condensates
(Figure 2A; André and Spruijt, 2020). Notably, investigations of
crowded environment effects were mainly performed in vitro by
mimicking cytosol conditions. However, the excluded volume
is affected by the crowders’ abundance, size, and polydispersity
(Kim et al., 2015; Yang D. et al., 2020). For example, a 25%
decrease in the crowding level from the physiological level was
proposed to lead to an utterly diffuse chromosome. In contrast,
a 30% increase in the crowder level could lead to a three-fold
decrease in the volume of E. coli nucleoids (Yang D. et al., 2020).
Besides, even the most widely used uncharged crowders (such
as PEG) are usually not chemically inert. They may mediate
non-steric interactions that contribute to folding proteins and
chromosomes in vivo (Sheth and Leckband, 1997; Xiang et al.,
2021). Thus, it is important to investigate the crowding effect
in living cells.

Remarkably, there are two issues with the organizing
principles that require further consideration, “nucleation” and
“nuclear size control” (Hyman et al., 2014). During nucleation,
molecules that can randomly assemble with the correct
configuration are able to form new droplets. However, because of
the limited time, homogeneous nucleation is extremely difficult
(Malinovska et al., 2013). Nucleation can occur more favorably
at pre-existing locations, such as ribosomes, RNA, etc., and thus
cells may control the number and configuration of nucleation.
Regarding nuclear size control, cells can control the nucleus size
by stopping the merging process (Feric and Brangwynne, 2013).
Using the surface effect, cells can utilize additional components
that can only be dissolved in droplets to prevent droplets from
Ostwald ripening (Webster and Cates, 1998; Zwicker et al., 2015;
Bressloff, 2020). Currently, frameworks have been proposed for

studying the non-equilibrium dynamics of the dense cellular
aggregates, facilitating the link between phase separation and the
gene regulatory processes inside the nucleus (Yamamoto et al.,
2020; Kuan et al., 2021; Laghmach and Potoyan, 2021).

THE BIOLOGICAL FUNCTION OF
PHASE-SEPARATED CONDENSATES IN
MICROORGANISMS

In cells, phase separation is controlled by the assembly and
material state of a variety of chaperone proteins, posttranslational
modifications (PTMs), and cellular factors, and these in turn
determine the size, assembly rate, and material properties of
protein condensates, ensuring that distinct cellular functions can
be spatiotemporally coordinated (Wang and Zhang, 2019; Quiroz
et al., 2020). The various biological activities coupled with LLPS
include the classification of misfolded and unwanted proteins
for degradation, chromatin organization, gene expression, the
assembly of signaling clusters, actin- and microtubule-based
cytoskeletal networks, the asymmetric segregation of cell fate
determinants, and the formation of pre- and post-synaptic
density signaling assemblies (Marrone et al., 2019; Zhang et al.,
2020). The functional mechanisms of biomolecular condensates
in microorganism are listed in Table 1. Here, we highlight the
main functions and summarize them into two main categories.

Regulating Metabolic Flux
Enhancing Activities by Concentrating Enzymes and
Substrates
While membrane-bound organelles in eukaryotic cells are
widely known to sequester biochemical pathways, membraneless
organelles are also capable of organizing internal biochemical
reactions. A classic example is the ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) condensates found in both
eukaryotic and prokaryotic photosynthetic microorganisms. In
cyanobacteria and other chemoautotrophic bacteria, Rubisco
(the most abundant protein on the planet and the first
major enzyme in the Calvin cycle) is encapsulated in a
specialized protein-encased micro-compartment termed the
carboxysome (Figure 3A). This compartment facilitates HCO3

−

accumulation and conversion into CO2, known as the CO2
concentrating mechanism (CCM). Due to its proteinaceous shell,
the carboxysome was previously believed to be para-crystalline in
nature. However, recent discoveries have revealed that biogenesis
of the β-carboxysome is achieved through LLPS by forming
Rubisco-CcmM condensates (Figure 3A; Wang et al., 2019). In
contrast, initiation of the a-carboxysome involves the coalescence
of Rubiosco and CsoS2, a protein containing IDRs (Oltrogge
et al., 2020). Furthermore, even distribution of the carboxysome
is regulated by McdB, which is able to form pH-dependent
droplets in vitro (MacCready et al., 2020).

In eukaryotic microalgae, liquid-like Rubisco-EPYC1
(Essential Pyrenoid Component 1) condensates display
functional similarity to Rubisco-CcmM condensates, they
are found compartmentalized in an analogous chloroplast-
like CCM compartment called the pyrenoid (Figure 3B;
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FIGURE 3 | Schematic illustrations of CO2-fixing phase-separated liquid organelles in prokaryotic or eukaryotic cells. (A) Carboxysome-based Rubisco condensate
found in the prokaryotic cyanobacterium Synechococcus elongatus PCC7942. As a scaffold protein, CcmM peptide (red) binds the Rubisco large subunit (RbcL,
green) and Rubisco large subunit (RbcS, yellow) via salt bridges and van der Waals contacts to form the CcmM-Rubisco complex. It includes the condensates in the

(Continued)
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FIGURE 3 | (Continued)
carboxysome covering with protein shells. As shown in the cryo-EM structure (6hbc, Wang et al., 2019), CcmM fills a pocket between the RbcL dimers and the loop
of RbcS. (B) Pyrenoid-based Rubisco condensate found in the eukaryotic microalgae Chlamydomonas reinhardtii. The pyrenoid matrix is predominantly composed
of Rubisco-EPYC1 complexes, forming by the multivalent interactions of EPYC1 peptide (orange) and Rubisco (green and yellow) (Freeman Rosenzweig et al., 2017;
Wunder et al., 2018; Meyer et al., 2020; Barrett et al., 2021). Cryo-EM supported a structural model (7jsx, He et al., 2020), showing that EPYC1 binds close to the
equator of the Rubisco cylinder and forms a codependent network of the specific low-affinity bonds (Mackinder et al., 2016; He et al., 2020). (C) Alignment of the
Rubisco-binding regions from both CcmM and EYPC1 peptides by using Clustal Omega (Sievers and Higgins, 2021) and ESPript 3.0 (Robert and Gouet, 2014).

Freeman Rosenzweig et al., 2017; Wunder et al., 2018; Barrett
et al., 2021). Co-expression of EPYC1 and a plant-algal hybrid
Rubisco in higher plant Arabidopsis chloroplasts can lead
to phase-separated condensation of Rubisco in chloroplasts
(Atkinson et al., 2020). Unlike carboxysome, the pyrenoid lacks
proteinaceous shells. Interestingly, cryo-electron tomography
(cryo-ET) revealed that the packing of the pyrenoid-based
Rubisco condensates in microalgae resembles the hexagonal
lattice found in cyanobacterial Rubisco condensates (Engel
et al., 2015). Cryo-ET also showed that both the algal EPYC1
and cyanobacterial CcmM bind close to the equator of the
Rubisco cylinder (Wang et al., 2019; He et al., 2020), although the
binding sites are different. Specifically, EPYC1 binds uniquely
to the Rubisco small subunit (RbcS) via electrostatic and
hydrophobic interactions (Figure 3B; He et al., 2020; Meyer
et al., 2020), while CcmM contacts both Rubisco large subunit
(RbcL, Wang et al., 2019) and RbcS via salt bridges and van
der Waals contacts (Figure 3A). Both EPYC1 and CcmM have
repeat regions and intrinsically disordered proteins, and as
has been side, the Rubisco condensation events appear to be
regulated in a similar multivalent mechanism. However, their
amino acid compositions (15.2% identity in the Rubisco-binding
regions, Figure 3C) are considerably divergent (Mackinder
et al., 2016; Wang et al., 2019). Altogether, these observations
strongly suggest an evolutionary convergence of Rubisco
condensates for the vital biological process of CO2 fixation.
Likewise, convergent evolution has also been revealed in the
formation of ribonucleoprotein (RNP) condensates aiding RNA
metabolism in eukaryotic and bacterial cells, both depending on
the modulation of DEAD Box ATPases. For a detailed review, see
Nandana and Schrader (2021).

A phase-separated condensate may also contain multiple
dense phases, so that different enzymes in the cascade can
be concentrated in different compartments. In each separation
phase, weak interactions between proteins and/or substrates
are strongly amplified (Zeng et al., 2018), and the substrates
undergo a vectorial transfer from one dense phase to another
one while being enzymatically modified in each phase. The
best biochemical example of vectorial organization within
a biomolecule condensation is the production of ribosomes
in nucleoli, where ribosomal RNA is transcribed in the
innermost layer, and then processed and assembled as the
ribosomal proteins pass through the outer phase (Feric
et al., 2016). By concentrating one specific protein with its
potential interacting molecules (and excluding other molecules),
the condensates can control the specificity of the reaction.
In a process akin to the classic Ostwald Ripening, larger
condensates can grow bigger while smaller condensates lose

molecules (Alexandrov, 2014). In Mycobacterium tuberculosis,
ABC transporter Rv1747 undergoes controllable phase separation
by acting in conjunction with several cluster-promoting factors
that function as serine/threonine protein kinases (STPKs).
The majority of these STPKs facilitate specific multivalent
interactions by phosphorylation and Rv1747 clustering, whereas
the remaining STPKs are involved in extensive signaling
cross-talk and serve to dissolve the Rv1747 droplets via
dephosphorylation (Heinkel et al., 2019). Thus, STPKs comprise
a “multi-valency dial” which allows rapid and reversible
differentiation of Rv1747 condensates in response to intracellular
signaling (Glass et al., 2017; Heinkel et al., 2019).

Inhibition of Activities Through Sequestration
However, it should be noted that condensation does not
always result in the acceleration of reaction velocity. For
example, guide RNA (gRNA), the basic modification element
for small nuclear RNA (snRNA), is usually concentrated in
Cajal bodies. However, suppression of Cajal bodies does not
appear to impact the modification effectiveness of snRNA,
even though the gRNA is scattered as a consequence (Davis
et al., 2015). The reasons behind the activity inhibition are
manifold. Firstly, enzymes and the high concentrated scaffold
proteins may interfere with each other. The scaffold may
inhibit (via covalent modification) the activities of enzymes that
disperse condensates (Kuznetsova et al., 2015; Banani et al.,
2017). The reduction in available volume associated with high
molecular condensation (molecular crowding) is also likely to
influence allosteric modulation of enzymes and their binding
affinity for substrates, consequently affecting enzyme activity
(Kuznetsova et al., 2015). In addition, the condensates are porous
structures, and the high concentration of small molecules in
solution will slow down the movement of other molecules.
For instance, free volume between the concentrated scaffold
components may be used as a pore through which small proteins
will move (as if the polymer does not exist). In contrast,
the movement of macromolecules that cannot access these
pores is restricted. This effect may be especially significant for
condensates containing ribonucleic acid. Finally, variances in
the viscoelasticity of condensates, caused by the degree of IDR
maturity, the interaction dynamics of multi-domain scaffolds,
RNA composition, or energy consumption processes, may affect
molecular dynamics within and on the boundaries.

Acting Against Noise and Stress
Buffering Cellular Noise
Liquid-liquid separation may reduce intracellular protein
condensation fluctuations (protein noise) caused by the
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stochastic nature of gene expression in prokaryotic and
eukaryotic cells. In a phase-separating system, protein
concentrations inside and outside the droplets are constrained
by the solubility threshold. In response to a change in the total
concentration of protein, the number and size of the droplets are
adjusted to reduce these fluctuations in protein concentration,
thus increasing the robustness of cellular processes (Klosin et al.,
2020). For example, the amount of bacterial single-stranded
DNA binding protein (SSB), an essential protein in genome
metabolism, is considerably higher than the amount required
during replication (Bobst et al., 1985). The excess SSB and its
interacting proteins are dynamically phase-separated within
droplets and stored at the cell membrane. In the event of DNA
damage, the droplets are rapidly (half-time, ∼70 ms) dissolved
and SSB is released to protect the exposed ssDNA and repair the
damage (Harami et al., 2020).

Sensing Stimuli and Switching
Macromolecules inside the condensates can communicate freely
with external environmental factors, making it possible for the
macromolecules to respond rapidly when cells sense external
stimuli (Riback et al., 2017; Ruff et al., 2018). Hence, cellular
functions may be turned on/off by controlling the formation
or dissolution of condensates. For example, the budding yeast
translation termination factor Sup35 can form reversible liquid-
like condensates in response to sudden stress, ensuring that the
function of the translation termination factor is retained, while
the condensates can subsequently solidify to form protective
protein gels. During this process, negatively charged amino acids
in the prion-domain of Sup35 (which are at a high density)
function as a pH sensor involved in regulating condensate
formation. Upon release from stress, the gel-like condensates are
dissolved (Franzmann et al., 2018). Similar processes explain the
fitness advantages of yeast P-bodies, stress granules, and bacterial
BR-bodies during cell stress (Shah et al., 2013; Wheeler et al.,
2016; Al-Husini et al., 2018).

Another active response of condensates to stimuli involves the
modulation of polymer folding states. For example, in response
to heat stress, heat-labile proteins migrate into the nucleus
where they bind with nucleolar protein and form condensates
that protect the protein from irreversible aggregation. When
the heat stress is removed, these proteins can fold into the
correct conformation (Frottin et al., 2019). Likewise, mRNA
poly(A) binding protein Pab1 in budding yeast undergoes rapid
condensation following heat shock (Riback et al., 2017). In
bacteria, similar processes were observed with the DNA-binding
protein from starved cells (Dps). In response to stress, Dps binds
DNA to change its topology, compacting the DNA into a dense
condensate. However, RNA polymerase can freely access the
“buried” genes (while other proteins are blocked) (Janissen et al.,
2018). This “one-size fits all” approach protects the genome from
damage and helps bacteria survive over a diverse range of stress
conditions, including heat shock and oxidative stress (Karas et al.,
2015; Janissen et al., 2018).

In the face of stresses, biomolecular condensates can even
generate and transduce force and thus reshape the cellular
architecture. A typical example in yeast is the formation of

condensates at the sites of clathrin-mediated endocytosis (CME).
The endocytic coat protein Sla1 at the hub of the condensates
can bind with both membrane and cytosol proteins (Bergeron-
Sandoval et al., 2021). By balancing condensate-membrane and
condensate-cytosol interaction energies, the force is exerted
sufficiently to drive membrane invagination (Bergeron-Sandoval
et al., 2021; Lyon et al., 2021).

DISCUSSION

Evidence is accumulating that phase transitions may be a general
mechanism through which microorganisms regulate cellular
functions and rapidly adapt to a changing environment. The
functions are presented as a model in Figure 4. However, several
issues remain unresolved: What mechanisms regulate the specific
recruitment of macromolecules in membrane-less organelles?
In particular, why are some molecules allowed entry into these
organelles while other molecules are selectively excluded? How
(and under what circumstances) are these condensates assembled
and disassembled? How can the biochemical reactions inside
the condensates be scrutinized? By what mechanisms do some
condensates divide further into additional compartments (or
structured regions) that perform specialized functions? These
questions may be addressed by studying the behavior of
microbial cells at length over a relative long time scale, and by
studying the structural, dynamic, and thermodynamic aspects of
these condensates.

Numerous technical challenges need to be overcome to solve
these problems. In microbial condensates (especially condensates
from prokaryotic cells), the major hurdle is condensate size
(Alberti et al., 2019). While traditional microscopic approaches
can be used to detect LLPS in eukaryotic cells, LLPS in
prokaryotic cells are typically an order of magnitude smaller
(McSwiggen et al., 2019). Thus, prokaryotic condensates in vivo
are typically <100–300 nm in diameter (Cho et al., 2018)
which is beyond the spatial resolution of light microscopy
(∼300 nm, Wenger et al., 2007), resulting in all the condensates
appearing spherical. In vitro studies in simulation systems, can
be a viable alternative to the in vivo assays. To date, almost
all understanding of the protein structures and dynamics
involved in bacterial condensates have been garnered from
in vitro studies using recombinant proteins. However, these
systems are comprised of only one or (at most) two components,
and are considerably less complex than in vivo systems,
which have properties that are determined by the coexistence
of hundreds of thousands of macromolecules and small
molecules in a highly confined volume. To mimic the crowded
subcellular environment, crowding agents can be added to
the in vitro systems. As mentioned above, however, it is
not a simple matter to mimic typical condensate viscosity
or viscoelasticity. Recently, single-molecule tracking/single-
particle tracking (SMT/SPT) super-resolution microscopy
and fluorescence correlation spectroscopy (FCS) have proved
to be promising tools for investigating the properties of
condensates in microorganisms (Gahlmann and Moerner, 2014;
Tuson and Biteen, 2015; Sahoo et al., 2016; Jiang et al., 2017;
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FIGURE 4 | Overview of biological functions of biomolecular condensates in microbial cells. The image shown is representative of nine main functions of LLPS in
microbial condensates, which could be further summarized into two categories: ∗,condensates play a role in regulating metabolic flux. ∗∗,condensates play a role in
acting against noise and stress.

Wei et al., 2017; Maharana et al., 2018; Sieben et al., 2018;
Coelho et al., 2020; Gwosch et al., 2020; Peng et al., 2020),
while proximity-dependent labeling approaches have been
applied to map the protein interactome within the condensates
(Govers et al., 2017; Markmiller et al., 2018; Ramanathan
et al., 2018). Fluorescence recovery after photobleaching
(FRAP), the “gold standard” assay in eukaryotic cells
for measuring condensate fluidity and the dynamics of
protein exchanges, may also be applied to study bacterial
condensates, although model choice and data analysis need
to be carefully considered (McSwiggen et al., 2019; Taylor
et al., 2019). Together, the application of new fluorescence
microscopy techniques to the study of microbial LLPS may
prove ground-breaking, creating exciting new perspectives
(Cambre and Aertsen, 2020).

To mimic subcellular compartmentalization and
control micro-reactions in space and time, artificial
membraneless organelles with liquid-like properties have
been successfully constructed.

For example, artificial intracellular condensates were de novo
designed in E. coli basing on a simple repeat sequence of
(Gly-Arg-Gly-Asp-Ser-Pro-Tyr-Ser)XX (where XX is the number
of repeats, between 20 and 80). They exhibited controllable
dynamics by modulating the molecular weights (number of the

repeats, Dzuricky et al., 2020). Protein/RNA coacervates, spider
silk protein, and elastic-like protein were also engineered in
E. coli with reversible formations, tunable dynamics, and selective
enrichments in components, depending on the protein levels and
the ratio of charged residues (Mushnikov et al., 2019; Wei et al.,
2020; Yeong et al., 2020). In a recently engineered condensate
comprised of small ubiquitin-like modifier (SUMOylation),
enzyme activity increased approximately 36-fold in the droplets
(compared with the surrounding bulk solution) (Peeples
and Rosen, 2021). These studies have paved the way for
the construction of synthetic membraneless organelles with
designer functions in prokaryotes. These synthetic membraneless
organelles have broad application prospects in biocatalysis,
synthetic biology, and metabolic engineering (Deshpande
et al., 2001). Multi-stimuli-responsive carriers (thermal or pH-
responsive reversible coacervate droplets) can also be imbued
with the ability to package and deliver drugs (Gabryelczyk et al.,
2019). Furthermore, microfluidic techniques can be employed to
create monodisperse coacervate droplets, making it possible to
mimic diverse intracellular activities within uniform unilamellar
lipid vesicles (Deshpande et al., 2001; Van Swaay et al., 2015; Deng
and Huck, 2017; Love et al., 2020; Zhao et al., 2021). However,
the intrinsic properties and functions of these coacervate droplets
may differ dramatically as a function of size, and it remains
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unclear how large a condensate must grow before specific
functions can arise (Lyon et al., 2021). One of the biggest
challenges is spatiotemporal control over the time-programmed
condensation and disassembly of the coacervate. The time-
programmed phase behavior is currently available by changes in
pH, temperature, ionic strength, light (UV), and more recently
by enzyme-mediated catalytic activity (Shin et al., 2017; Schuster
et al., 2018; Martin et al., 2019; Wheeler et al., 2019; Garabedian
et al., 2021). Furthermore, by converting chemical fuels, the
coacervate droplet could behave like a protocell capable of self-
division, making it an ideal model for approaching the dynamic
complexity of living cells (Zwicker et al., 2017; Donau et al., 2020;
Karoui et al., 2021).

In summary, the number of liquid-like condensates identified
in microorganisms has grown rapidly during the last few
years. While the fundamental role of LLPS in membrane-less
compartmentalization has drawn intense interest, new questions
and hypotheses concerning the molecular mechanisms and
biological processes associated with these microbial condensates
have been raised. These gaps in knowledge may be filled through
the development of multiscale and interdisciplinary approaches.
As the field moves forward, new applications for microbial
condensates will be explored.
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