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ABSTRACT

Objectives: Patient-generated health data (PGHD) are important for tracking and monitoring out of clinic health

events and supporting shared clinical decisions. Unstructured text as PGHD (eg, medical diary notes and tran-

scriptions) may encapsulate rich information through narratives which can be critical to better understand a

patient’s condition. We propose a natural language processing (NLP) supported data synthesis pipeline for un-

structured PGHD, focusing on children with special healthcare needs (CSHCN), and demonstrate it with a case

study on cystic fibrosis (CF).

Materials and Methods: The proposed unstructured data synthesis and information extraction pipeline extract

a broad range of health information by combining rule-based approaches with pretrained deep-learning mod-

els. Particularly, we build upon the scispaCy biomedical model suite, leveraging its named entity recognition ca-

pabilities to identify and link clinically relevant entities to established ontologies such as Systematized Nomen-

clature of Medicine (SNOMED) and RXNORM. We then use scispaCy’s syntax (grammar) parsing tools to

retrieve phrases associated with the entities in medication, dose, therapies, symptoms, bowel movements, and

nutrition ontological categories. The pipeline is illustrated and tested with simulated CF patient notes.

Results: The proposed hybrid deep-learning rule-based approach can operate over a variety of natural language

note types and allow customization for a given patient or cohort. Viable information was successfully extracted

from simulated CF notes. This hybrid pipeline is robust to misspellings and varied word representations and

can be tailored to accommodate the needs of a specific patient, cohort, or clinician.

Discussion: The NLP pipeline can extract predefined or ontology-based entities from free-text PGHD, aiming to

facilitate remote care and improve chronic disease management. Our implementation makes use of open

source models, allowing for this solution to be easily replicated and integrated in different health systems. Out-

side of the clinic, the use of the NLP pipeline may increase the amount of clinical data recorded by families of

CSHCN and ease the process to identify health events from the notes. Similarly, care coordinators, nurses and

clinicians would be able to track adherence with medications, identify symptoms, and effectively intervene to

improve clinical care. Furthermore, visualization tools can be applied to digest the structured data produced by

the pipeline in support of the decision-making process for a patient, caregiver, or provider.
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Conclusion: Our study demonstrated that an NLP pipeline can be used to create an automated analysis and

reporting mechanism for unstructured PGHD. Further studies are suggested with real-world data to assess pipe-

line performance and further implications.
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INTRODUCTION

In today’s healthcare system, a large volume of patient health infor-

mation is stored by healthcare providers (HCP) within their elec-

tronic health records (EHR) systems. However, much of the

information is dependent on a patient’s recall of personal health

events occurring outside the clinic (symptoms, medication compli-

ance, over-the-counter medicines, etc.), and the HCP’s interpretation

before recording these events in the EHR. This approach may lead to

noncohesive, incomplete, and even erroneous health records,1,2

which may limit providers’ understanding of a patient’s condition

and negatively impact clinical decision-making.3 This issue raises

concerns for patients with chronic conditions, particularly children

with special healthcare needs (CSHCN), who typically have higher

and more complex clinical care requirements. CSHCN are at risk for

chronic physical, developmental, behavioral, and/or emotional con-

ditions and have a continuous need for healthcare services.4 Accord-

ing to the Health Resources and Services Administration’s report,

more than 80% of CSHCN require prescription drugs in addition to

the support for specialty care services, mental health services, occu-

pational, physical, and speech therapies, and special medical equip-

ment including aids for hearing, mobility, and communication.5

Providing adequate care to CSHCN requires frequent, accurate,

and consistent health information capture and communications

among all stakeholders including patients, caregivers, providers,

home nurses, care coordinators, and more. Traditionally, transmit-

ting out-of-clinic health information, such as presence and frequency

of symptoms, adherence to medical therapies, and changes in clinical

status, has occurred through phone triage calls, clinic appointments,

or visits to the hospital. The fragmented nature of this communica-

tion may result in omissions or inconsistencies in the medical EHR

notes. Reducing barriers to capturing health data outside of the

clinic (ie, patient-generated health data [PGHD]) and automating in-

formation flow from the home environment into the EHR could im-

prove care coordination, clinical decision-making, follow-up

planning, and optimize health and patient/family quality of life, as

outlined by patient, caregiver, and provider stakeholders in earlier

research.6,7 Furthermore, the COVID-19 pandemic has highlighted

a greater need for and benefit of maintaining home-based care and

monitoring,8,9 though collecting relevant and complete health infor-

mation at home remains challenging and requires an innovative ap-

proach.

Patient-generated health data
PGHD, such as medical diaries used by families to keep track of

health information and events at home, has primarily been collected

through mobile devices10–12 and is used to support clinical decision-

making13 and improve quality of life.14 In addition, communication

and data-sharing technologies, such as patient portals,15 cloud-

based care plan sharing, and other approaches,16,17 have been lever-

aged to enhance care coordination and management for children

with chronic diseases. As mobile devices become more ubiquitous,

care coordination and communications are increasingly supported

by mobile health technologies.18,19 PGHD is growing in quantity

and usage, allowing for improved clinical decision-making and con-

tributing to patient-reported outcomes within pediatric set-

tings.14,20–22 However, PGHD in the pediatrics population is

infrequent and not publicly available, and its size could not be esti-

mated from the published literature.

Structured PGHD (data that are stored in a predefined format,

eg, home address, list of medication, sensor data) collected through

the healthcare technologies can generally be integrated with EHR

through currently established structure and standardized methods,

such as, using Application programming interfaces (APIs) to transfer

data into EHR flowsheets . In contrast, unstructured PGHD (eg,

free-text notes, voice recordings) are expected to be reviewed and

processed (put into a structure) individually by either patients, care-

givers, or providers, thus introducing a significant burden of leverag-

ing the data.6 However, unstructured text may encapsulate rich

information through narratives (contextual, semantic) which can be

critical to understanding a patient’s condition beyond what can be

captured in a fixed structured format.23

Existing artificial intelligence (AI) technologies can be leveraged

to overcome barriers in creating and processing unstructured

PGHD. Unstructured text data can be generated through voice-in-

teractive software, allowing patients and caregivers to easily gener-

ate notes with minimal effort or familiarity with data entry, a key

LAY SUMMARY

Free-text (or unstructured) patient notes are fundamental components for understanding patient’s health conditions outside

of the hospital, and therefore, impact healthcare and clinical decisions. These patient notes could be created through medi-

cal diaries, mobile apps, and devices through typing or speech transcriptions. We proposed a natural language processing

model to analyze patient notes and extract critical information to improve the understanding of patient notes. To present the

model, we used a cystic fibrosis case study and simulated patient notes. Our model was able to retrieve phrases associated

with medication, dose, therapies, symptoms, bowel movements, and nutrition information. The model could be embedded

to mobile apps or web portals to analyze patient notes and timely inform patients and caregivers. Furthermore, integration

with to electronic medical records could enable providers to timely access patient health information and improve shared

decision-making.
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consideration for the overburdened families of chronically ill

patients.6 Furthermore, allowing narrative notes, whether spoken or

typed, overcomes the limitations associated with predefined struc-

tured data entry, also enabling rich information capture. As

expected, it takes an additional step to process the narrative notes,

but natural language processing (NLP) and text mining approaches

are potentially useful to digest and synthesize unstructured text.23

The OurNotes project (part of OpenNotes initiative)24 is a gateway

for NLP-supported note processing to improve the extraction of

valuable information from patient-generated notes and enhance

shared clinical decision-making. In the literature, there is consider-

able promising exploration and application of NLP to clinical notes

authored by clinicians and clinical staff to identify symptoms and

conditions.25–27 In contrast, NLP application to patient-generated

notes has been limited.28,29

NLP literature
Automated analysis of free-text PGHD promises to ease documenta-

tion burdens, maximize value for patients, enable comprehensive pa-

tient information access for providers, and improve patient-clinician

interaction. However, since PGHD often consists of entirely un-

structured data with highly individualistic narration styles, the syn-

thesis of PGHD to create meaningful and digestible information

remains a challenge. A host of prior work has attempted to analyze

free-text PGHD, using rule-based and deep-learning methods.23

Rule-based methods are able to directly leverage existing work in

the clinical domain, such as ontologies for accurate and relevant en-

tity extraction, at the cost of generalizability over varied forms of

free text.26 Deep-learning solutions are able to account for variation

in spelling and grammar by utilizing a probabilistic model of word/

sentence meaning instead of deterministic rules23 demonstrating bet-

ter performance than rule-based methods.30 Deep learning, how-

ever, typically requires costly data annotation and model training,

leading to existing work on clinical information extraction (IE) be-

ing focused on narrow tasks such as drug event extraction. Some sol-

utions have attempted to combine both deep-learning and rule-

based methods but they do not focus on extracting the needed data

for chronic disease management and still often require high-cost

deep-learning model training.23 For an IE pipeline to be helpful for

chronic disease management using PGHD, it must extract symptom

and drug information while being easily tuned to a specific cohort

and be robust enough to capture various forms of text.

Objectives
In this paper, we introduce an IE pipeline which leverages a combi-

nation of rule-based methods and pretrained deep-learning NLP

models to automatically extract information from caregiver or

PGHD, specifically unstructured patient-reported medical notes col-

lected at home. This hybrid pipeline is robust to misspellings and

varied word representations while providing the ability to accom-

modate the needs of a specific patient, cohort, or clinician. We also

propose a series of data integration methods that may aid in down-

stream data visualization, sharing, and assessment for caregiver/pa-

tient and provider.

METHODOLOGY—SMART SUMMARIZATION OF
NOTES

Due to the informal nature of narrative notes, we chose to construct

our IE pipeline around the scispaCy suite of deep-learning models

which are pretrained on medical data with ontologies in mind.31

The advanced scispaCy toolset considers representations of words

according to their approximate meaning instead of performing a

simple text match. This generalizability allows for rapid identifica-

tion of key entities as well as attributes pertinent to these entities or

to a sentence as a whole. Temporal information on health conditions

is important for condition monitoring and clinical decision-making.

Therefore, extracted note content is tagged with message time-

stamps to enable downstream visualizations in the form of easy-to-

digest timelines of information key to communication for and care

of patients with chronic diseases.32 These “smart summary” time-

lines of the note content are available for 4 major information cate-

gories: drug, symptom, other qualitative entities (OQLEs), and

other quantitative entities (OQNEs).

An overview of the proposed NLP pipeline is illustrated in Fig-

ure 1. This pipeline accepts user-generated data in the form of text

or voice (upper green box). We then use an NLP model pretrained

on clinical data31 to extract key entities and link to ontologies if pos-

sible (blue boxes). The key entity extraction can also be augmented

by entering manually defined entities for a given patient or cohort

(lower green box). The process of entering manually defined entities

acts as a real-time interactive query in that the visualization content

will be immediately responsive to manually entered entities. Finally,

we leverage the dependency parsing capabilities of the NLP model

to extract further detail regarding each entity (yellow boxes) and the

extracted data are aggregated and presented (white box).

The model
We employ the scispaCy package which contains spaCy models pre-

trained to process biomedical and clinical text.31 SpaCy uses deep-

learning methods, namely convolutional neural networks, to create

generalized tools that can be applied to individual steps in an NLP

pipeline.33 We particularly leverage the named entity recognition

(NER) and dependency parsing capabilities of scispaCy.

NER refers to the extraction and identification of key entities

within a text span. ScispaCy reviews each term (word or phrase) in a

given text span and predicts the chance that a given term is an entity.

In cases where this prediction has high confidence, scispaCy further

attempts to predict a Unified Medical Language System (UMLS) ID

for the entity in a subprocess referred to as Named Entity Linking.34

We also allow customization of the NER process through the addi-

tion of manually defined entities alongside those flagged by scis-

paCy, allowing the pipeline to be fit to the needs of a given cohort.

Dependency parsing refers to the prediction of the grammatical

structure tree for a given text span. For each word in the text span,

scispaCy assigns a link to either a child word or a parent word.

These links create a tree-like structure that can be traced to identify

subsentence components such as clauses (phrases), or, more directly,

word-to-word dependencies. In addition, this task is trained along-

side the subtask of part-of-speech tagging which labels words based

on what grammatical form they most likely take (ie, Noun, Verb,

Determinant). Figure 2 depicts one example of how dependency

trees are used within our pipeline.

CASE STUDY: CYSTIC FIBROSIS

Cystic fibrosis cohort
We applied our pipeline to a simulated case of a child with cystic fi-

brosis (CF) to demonstrate its applicability and value. CF is a preva-

lent health condition among CSHCN given the need for frequent,
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intensive care in the home environment. More than 30 000 people live

with CF in the United States, with more than 70 000 patients world-

wide. Approximately 1000 new cases of CF are diagnosed each year,

with the vast majority of patients diagnosed before the age of 2.35

Daily care of an infant or child with CF generally requires the ad-

ministration of frequent medications and chest therapies in order to

optimize nutrition and lung health. Most children with CF require

enzyme medications with every meal, along with supplemental vita-

mins and salt. Children with CF require increased caloric intake

compared with their non-CF peers in order to maintain appropriate

growth. Optimal lung health requires regular chest therapies involv-

ing several nebulized medications in addition to 20–30 min of chest

physiotherapy (CPT) multiple times per day. During infancy, CPT is

performed manually, requiring a significant amount of time and ef-

fort by caregivers.

To manage these children clinically, medical providers ask

parents to monitor for signs of nutritional intake (amount, fre-

quency of feeds), gastrointestinal malabsorption (frequency of bowel

movements, presence of grease or oil in stools), and respiratory

symptoms (cough, heavy breathing, wheezing). Depending on the

age of the child and presence of symptoms, clinical visits may be as

frequent as every 2 weeks or may stretch as long as every 3 months.

Caregiver reports of the symptoms and findings noted above are vi-

tal to clinical decision-making though most often rely on memory or

require a caregiver-initiated phone call or message to discuss con-

cerns between medical visits. Accurate reporting can be particularly

challenging when multiple people are responsible for the child’s care

at home (parents, grandparents, daycare, etc.). Practically, it is diffi-

cult to consistently and accurately document or provide health

updates for CF patients in a timely manner to best address clinical

concerns. Caregivers often have their hands full as they are adminis-

tering medications, feeding their babies, and maintaining respiratory

treatments. This suggests the need for a new approach to collect and

communicate relevant health information to the medical team,

which may allow for quicker clinical intervention when symptoms

of malabsorption or respiratory concerns arise, potentially improv-

ing clinical outcomes and quality of life.

Note creation and IE overview
In order to evaluate our pipeline, we created notes which simulate

the daily care for a young boy (Jon Doe) with CF. Each day has 2

notes, totaling 30 notes over a simulated 15-day period. We opted

to use this synthetic dataset over true notes in order to target edge

cases that may never arise in a true dataset and to lower data acqui-

sition costs. Since this pipeline is oriented to being customizable for

a given patient or cohort, the data collection process would necessi-

tate the long-term commitment of a small subset of patient families.

Instead, each note was constructed realistically with the support of a

CF clinician (KK) to represent patterns that may be common for

quick notation, such as text entry on a phone or verbal entry via

Figure 1. Process flow of note processing and information extraction.

Figure 2. An example for drug dosage extraction using dependency trees. The NER model identifies the drug within the sentence, that is, Tylenol (green). Once

identified, we move up the dependency tree until we either find an NUM or NOUN. If we find an NOUN (blue), we see if there is an NUM as a child to the NOUN.

It is assumed that this NUM child (yellow) is the quantity and the NOUN (blue) is the unit for the drug’s dosage. If no NOUN or NUM occurs in the same clause of

the sentence, or subsection of the dependency tree, then no dosage information is extracted. NER: named entity recognition.
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speech-to-text. In real terms, this patterning refers to shorter, occa-

sionally incomplete sentences as well as the use of shorthand for var-

ious terminology. Likewise, we attempt to diversify the types of

sentences to mimic the diversity of usage that may occur. Even so, it

is important to recognize this diversity of patterns is not exhaustive.

Management of CF involves nutritional and medicational considera-

tions as well as the regular practice of therapies and tracking of

symptoms. In the following sections, we describe how our pipeline

extracts each of these components from our simulated PGHD.

In the following sections, we describe the types of information

our pipeline extracts as well as how each category may lend itself to

customization for a given cohort. While some of the entities in these

categories are extracted automatically using NER and ontologies, all

of the following categories allow the clinician or parent to manually

define terms to highlight as entities and then process accordingly.

These manually defined entities can be entered before or after notes

are generated. This flexibility allows the IE pipeline to be tailored to

fit a given cohort/patient situation as new questions arise. Table 1

provides an IE pipeline focusing on extraction of symptom, drug,

OQLE, and OQNE categories.

Symptom extraction
One of the meaningful applications of this pipeline is for symptom ex-

traction. Here, we take the gathered entities and compare them against

the Systematized Nomenclature of Medicine (SNOMED) ontology,26

specifically, the class names within the subtree of Clinical Findings.36

For the entities with UMLS IDs, we directly compare them against the

UMLS IDs of the SNOMED classes, allowing for an exact match.

Otherwise, we compare the raw entity text against the raw class name

texts to identify a match. If the given entity has a match within the

SNOMED Clinical Findings subtree, it is marked as a symptom.

Many of the symptoms of concern for a CF patient are described

within the SNOMED ontology as standardized terms (eg, “fever” and

“diarrhea”) and were automatically identified via the NER lookup.

OQLE extraction
To further target ailments and nutritional considerations common

in CF patients, we add OQLEs to allow the physician to get a quick

snapshot of key terms (ie, tracking all references to “stool” to gather

an understanding of the patient’s bowel movements). To identify

OQLEs, such as “Pediasure” for tracking nutritional information,

we directly scan the text instead of focusing only on automatically

extracted entities. Using the set of manually defined entities entered

by the parent, caregiver, and/or physician, our algorithm searches

for these terms within each note. Then, leveraging the dependency

tree, we identify child or parent adjectives related to the key term.

These adjectives serve as qualitative descriptors and are presented as

modifiers to the given term. These descriptors are aggregated in the

final presentation with included time-stamp information.

Drug/supplement and dosage extraction
To identify drug entities, we compare the extracted entities against

RXNorm.37 If there is a match, the entity is considered to be a drug.

We then leverage the dependency tree to identify the relevant dosage

information by moving up the tree from the drug entity to the first

span of parent terms which are numbers. To identify the unit of

measurement, we similarly move up the tree and identify the first

noun. If no noun occurs before the first number, it is assumed that

no unit of measurement was given.

Drug information encompasses a variety of units (eg, capsules or

puffs) and can be mentioned both in terms of generic name as well

as brand name. While our system was able to automatically identify

generic names as drugs, some brand names or common shorthands

(ie, “neb” for nebulizer) needed to be manually entered for tracking.

Nutritional supplements, much like typical drugs, require the system

to gather unit information. As such, we added manually defined en-

tities to the system with the names of nutritional supplements being

used by our hypothetical patient, allowing information to be

extracted as it would for our drug dosage IE pipeline.

OQNE extraction
OQNE extraction uses a similar methodology to OQLE detection

by collecting a user-defined set of OQNEs that are then searched

for in each note. Once identified, we proceed to collect adjective

information as well as quantity and unit information. This quantity

information is extracted using a similar method to drug dosage ex-

traction but allows broader forms of quantitative data, such as dura-

tion, frequency, or dosage. The flexibility of this algorithm to allow

for user-specified input allows for customization specific to each dis-

ease, patient, and care institution. To target this cohort, we build a

set of OQNEs that target CF treatments (ie, High Frequency Chest

Wall Oscillation [Vest] therapies) which require both quantifiable

dosage and qualitative attribute information.

Summary of extracted entities
Given these drugs, OQNEs, OQLEs, and symptoms, we were then

able to generate and analyze a simulated set of parent- or patient-

provided notes. Examples of terms in each of these categories, as

well as an example sentence in which they are used, are shown in

Table 2. As information regarding each of these 4 categories is

extracted, we populate a series of tables that organize the infor-

mation longitudinally. An example of the type of notes generated,

as well as the form of the extracted information, is presented in

Table 2.

Deployment and implementation
The proposed pipeline aims to extract meaningful information from

patient-generated notes and present them in a digestible and action-

able manner. The presentation could be through charts and/or visu-

Table 1. Information extraction pipeline focusing on extracting 4 categories of entities alongside quantitative and qualitative descriptors for

each

Category Type of information extracted Entity recognition method

Symptom Qualitative NER and manually defined

Drug Quantitative NER and manually defined

Other qualitative entities (OQLEs) Qualitative Manually defined

Other quantitative entities (OQNEs) Quantitative and qualitative Manually defined

Note: These entities can be manually defined or detected automatically using NER linked to ontologies.

NER: named entity recognition.
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alizations (a mock-up data visualization tool is shared in Supple-

mentary Appendix S1), which could improve symptom awareness

and facilitate health communications and interpretability of the

health data by patients, caregivers, and providers.32 The ultimate

goal of developing this pipeline is the adoption by all stakeholders in

the care of CSHCN, including patients, caregivers, and providers.

The algorithm could be deployable on patient or caregiver phones

via a web portal, or more conveniently via an app, where users take

medical notes and track symptoms.6 Eventually, the integration of

this pipeline within the EHR may ease the dependencies and burdens

of patients and enable providers to access patient information and

improve clinical care decisions in a timely manner.

The 21st Century Patients Cures Act allows access to personal

health information and enables sharing with 3rd party apps through

APIs.38 Mobile app and PHGD integration with an EHR are increas-

ingly being supported using interoperability standards (eg, Fast

Healthcare Interoperability Resources [FHIR]).39 However, from a

health institution perspective, integrating external platforms with

the EHR might be challenging due to interference with existing clini-

cal workflow, internal security, and privacy measures and protocols

which may vary for each health institution and EHR systems. As an

alternative approach, patient portals could be leveraged for data

sharing. Patient portal adoption has drastically increased due to the

rapid deployment and adoption of telehealth during the COVID-19

pandemic. Therefore, apps to collect and manage notes generated by

a patient could be linked to the patient’s EHR, potentially through

authentication of the patient portal (eg, Epic App Orchard API).

Special considerations are needed for patients seeking care at multi-

ple provider organizations.

DISCUSSIONS

Principal findings
The pipeline presented in this paper provides a viable avenue for

patient-initiated health tracking that prioritizes ease-of-use for both

the patient and clinician end-users. By leveraging contemporary

NLP methodologies, we are able to process patient-generated text

(eg, free-text notes, voice transcripts), create structured information,

and organize the information for tabular and graphical presentation.

Existing PGHD IE approaches that focus exclusively on deep-

learning or rule-based methods miss out on rapid deployment and

generalizability, respectively.23,26 Hybrid approaches attempt to

mitigate these issues yet still typically require costly deep-learning

model training and have limited customization.23 Likewise, few of

these approaches directly target the critical use case of chronic dis-

ease management, and the need to comprehensively extract symp-

toms, drugs, treatments, and patient-specific information.23 Unlike

previous work, our approach focuses on extracting information rele-

vant to chronic health conditions while allowing customization—

manual entry of specific target terms—to maximize the utility of the

tool.

In addition, since the pipeline leverages publicly available deep-

learning models and ontologies, it can be easily replicated and cus-

tomized for different cohorts and institutions. As the NLP model

used has been pretrained on clinical data, replication of this pipeline

has no cost for training and annotating data for the model, as well

as limited need for deep-learning expertise. Likewise, the use of

ontologies for entity linking allows the model to work with different

clinical domains and ontologies, ensuring the entities identified are

pertinent to the given cohort and task. We currently employ ontolo-

gies that target drugs and symptoms (RXNORM and SNOMED, re-

spectively), but this pipeline can be expanded to include more

specific ontologies (eg, NCIT for cancer; APAONTO for psychol-

ogy).

From a practical standpoint, the use of the NLP pipeline may in-

crease the amount of clinical data recorded as families of CSHCN

are able to easily identify health events (eg, symptoms and medica-

tion changes) from the notes. Away from the clinic, such a process-

ing mechanism could improve health management and eventually

aid in adherence and early symptom detection. Iqbal et al40 empha-

sized the value of remote care and alert systems being effective in re-

ducing hospitalization. Clinically, integrating the proposed NLP

pipeline with the EHR would allow providers to effectively observe

the changes which are not easily and completely available from an-

ecdotal notes, such as nutrition flowsheets in the EHR which depend

on intermittent triaging to be completed. Using the integrated tools,

care coordinators, nurses and clinicians would be able to access a

more holistic view of a patient’s health journey, improve care coor-

dination and communications, and effectively intervene to improve

clinical care.

Potential applications extend beyond the demonstrated use case

of the CF and could be highly beneficial to any population impacted

by chronic medical conditions. For any families with CSHCN, keep-

ing track of health events out of the hospital is a necessary compo-

Table 2. Examples of extracted entities, definitions, types, and sentences in each category

Extracted entities Entity definitiona Related information Type Example sentences

Pediasure Manual – Drug/supplement “Took his Pediasure before bed time,

and had 3 vitamins.”

Vitamins Manual Quantity: “3”

Vest Manual Quantity: “2” OQNE “Jon had the vest two times today.”

Albuterol Automatic Dosage: “5 mg” Drug “Took his albuterol, pulmozyme,

and tobi.”Pulmozyme Automatic –

“I gave him 5 mg of albuterol

today.”

Tobramycin Manual –

Diaper Manual Diaper details: “wet” OQLE “Changed the wet diaper twice with

loose stool before noon.”Stool Manual Stool details: “loose”

Coughing Automatic Coughing details: “brief” Symptom “Jon had a brief coughing fit just

now.”

aEntity definitions are “Automatic” if they are present within the ontologies used (SNOMED and RXNORM). “Manual” refers to entities that were added

manually via interactive customization to target this specific cohort and simulated patient.

OQLE: other qualitative entity; OQNE: other quantitative entity; SNOMED: Systematized Nomenclature of Medicine.
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nent for patients and caregivers to maintain health communications

with providers and clinical decision-making.12,20,22,39. Especially, if

the patients are seeing multiple providers, required documentation

and information during home care for each provider may potentially

create burden, lead to recall bias, and adversely affect patient-pro-

vider communications.41,42 With integration to mobile apps19 or

voice-interactive platforms,6,7 daily note keeping burden can be sub-

stantially reduced. Furthermore, shared apps and platforms could be

nested in a family’s digital ecosystem where patients and caregivers

can conveniently track health events. In addition, health manage-

ment systems in sync with PGHD and consolidating outpatient com-

munication may improve interpretation of free-text PGHD by the

providers.43 In that regard, integrated systems with apps and EHRs

would support the shared decision-making and align with the Open-

Notes initiative to improve patient healthcare communications.24

The pipeline has the potential to be used by health systems to sup-

port remote care, symptom tracking, and adherence, which also fits

with the Creating Opportunities Now for Necessary and Effective

Care Technologies (CONNECT) for Health Act.

Technical limitations and special considerations
While this pipeline allows customization via the addition of manual

entities, the functionality over these entities (manual or automatic)

cannot be customized. For example, while the considered set of

drug terms can be expanded, this algorithm is limited regarding

where it can subsequently acquire dosage and unit information.

One key limitation is the fact that the current methodology does

not support entailment between sentences. In the example “I gave

him midazolam. He took 1 pill,” the algorithm would be unable to

identify “1 pill” as a reference to “midazolam” due to the reference

being in a separate sentence, and thus a different dependency tree.

Likewise, unexpected grammatical structure can additionally cause

erroneous values. To address this in future iterations of the pipeline,

we could improve the error mitigation by creating simple functional-

ity to “ignore future results like these” for end-users to mark in or-

der to filter out similar results based on the underlying structure.

Moreover, our current evaluation metrics are limited in their

scope due to each version of the system being modified for a given

set of patients. Namely, we iteratively add entities to fit information

that was originally missed by the model. This, in turn, creates a situ-

ation where a given evaluation can either perform better through

more thorough keyword augmentation or perform worse in a more

generalized scenario. In addition, our limited set of 30 synthetic

notes bottlenecks the extent of our evaluations. In the future studies,

we plan to collect real-world data and test our pipeline to produce

generalizable results.

CONCLUSION

With recent advances in medically oriented, pretrained, and publicly

available NLP models, such as scispaCy,31 it is possible to parse sen-

tences according to their grammatical structure and identify terms

present in given ontologies. This allows the creation of structured

data from otherwise unstructured notes, with no requirement to

identify targeted entities and attributes in advance. The data can be

integrated with the EHR and visualized for patients, caregivers, and

providers to track and manage healthcare activities. Altogether, the

proposed pipeline can lower the burden for remote care and chronic

disease management associated with CSHCN and improve utiliza-

tion of unstructured PGHD.
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