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Abstract 

Background:  Alzheimer’s disease (AD) is a pervasive age-related and highly heritable neurodegenerative disorder 
but has no effective therapy. The complex cellular microenvironment in the AD brain impedes our understanding of 
pathogenesis. Thus, a comprehensive investigation of cell type-specific responses in AD is crucial to provide precise 
molecular and cellular targets for therapeutic development.

Methods:  Here, we integrated analyzed 4,441 differentially expressed genes (DEGs) that were identified from 263,370 
single-cells in cortex samples by single-nucleus RNA sequencing (snRNA-seq) between 42 AD-pathology subjects 
and 39 normal controls within 3 studies. DEGs were analyzed in microglia, astrocytes, oligodendrocytes, excitatory 
neurons, inhibitory neurons, and endothelial cells, respectively. In each cell type, we identified both common DEGs 
which were observed in all 3 studies, and overlapping DEGs which have been seen in at least 2 studies. Firstly, we 
showed the common DEGs expression and explained the biological functions by comparing with existing literature 
or multil-omics signaling pathways knowledgebase. We then determined the significant modules and hub genes, 
and explored the biological processes using the overlapping DEGs. Finally, we identified the common and distinct 
dysregulated pathways using overall DEGs and overlapping DEGs in a cell type-specific manner.

Results:  Up-regulated LINGO1 has been seen in both oligodendrocytes and excitatory neurons across 3 studies. 
Interestingly, genes enriched in the mitochondrial module were up-regulated across all cell types, which indicates 
mitochondrial dysfunction in the AD brain. The estrogen signaling pathway seems to be the most common pathway 
that is disrupted in AD.

Conclusion:  Together, these analyses provide detailed information of cell type-specific and overall transcriptional 
changes and pathways underlying the human AD-pathology. These findings may provide important insights for drug 
development to tackle this disease.

Keywords:  Alzheimer’s disease, cell type-specific, transcriptomic, mitochondrial dysfunction, estrogen signaling 
pathway
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Background
Alzheimer’s disease (AD) is the most common form of 
dementia characterized by the accumulation of extra-
cellular amyloid-β (Aβ) and neurofibrillary tangles, and 
progressive synaptic and neuronal dysfunction and 
degeneration [1–3]. However, AD pathogenesis is not 
restricted to neurons and increasing evidence suggests 
that multiple cell type interactions in the brain promote 
AD development [4–8]. Immune response-induced 
chronic neuroinflammation has been considered as a 
critical component in the progression of AD, but anti-
inflammatory drug candidates still failed in clinical trials 
[9–11]. The complex interplay of cells in the brain may 
limit our understanding of the pathological mechanisms 
of AD. Thus, it’s important to clearly understand how 
different cell types contribute to AD progression and 
outcome.

Microglia serve as the brain’s resident macrophages 
with immune-modulating and phagocytic capability. 
Compelling evidence revealed an extended microglial 
gene network in AD [12–14] and has firmly linked 
microglia to Aβ deposition and synaptic loss [15, 16]. 
Microglia in AD, a double-edged sword, protect against 
the initiation of AD, and their activation-induced 
inflammation also leads to AD progression [8, 17, 18]. 
Astrocytes provide trophic and metabolic support 
to neurons in the brain, however, microglia secreted 
inflammatory cytokines activate the neurotoxic A1 
astrocytes, which cooperate with microglia to mediate 
complement-dependent neuronal loss [6, 19]. Activated 
astrocytes have been found from both postmortem AD 
patients and animal models [4, 20]. Moreover, a recent 
in  vivo study showed that astrocytes are also involved 
in the engulfment of apoptotic neurons to maintain 
brain homeostasis [21], which may play an important 
role in the AD brain.

Genome-wide associated studies have indicated that 
most of the risk factors for AD are expressed by micro-
glia (such as APOE and TREM2) and astrocytes (such 
as CLU), which are associated with immune response, 
as well as oligodendrocytes (such as BIN1) [13, 20, 22]. 
Oligodendrocytes produce the myelin that ensheaths 
axons, provide trophic and metabolic support to neu-
rons, and regulate neuronal connectivity. Reduced 
oligodendrocytes and myelin have been observed 
consistently in AD, which may be caused by Aβ toxic-
ity and increased inflammation and oxidative stress in 
the brain [5, 23, 24]. Moreover, in most AD patients, 
Aβ deposition has been seen around perivascular, 
which leads to endothelial cell dysfunction and death, 
increases the permeability of the blood-brain barrier 
(BBB) and neuroinflammation, and further contributes 
to AD progression [7, 25, 26].

Therefore, it’s critical to comprehensively analyze the 
transcriptomic changes in different cell types in the AD 
brain. Here, we integrated analyzed the differentially 
expressed genes (DEGs) identified from cortex sam-
ples of AD individuals and normal controls in 3 single-
nucleus RNA sequencing (snRNA-seq) studies (Mathys 
et al, Grubman et al, and Lau et al) [27–29]. Our compre-
hensive molecular profiling of the human AD brain may 
figure out the cell type-specific and overall pathogenic 
genes and disease-associated signaling pathways, which 
may provide therapeutic targets for AD.

Methods
Data Source and identification of overlapping DEGs
Transcriptome results were from age and sex-matched 
AD-pathology individuals and normal controls. In 
the study of Mathys et  al, 24 prefrontal cortex sam-
ples were used in each group and statistical enrich-
ment for sets of marker genes [30, 31] was used for 
the identification of cell types. 1,031 DEGs were iden-
tified from 70,634 single-cells transcriptomes in 6 
cell types (FDR-corrected P < 0.01 in two-sided Wil-
coxon-rank-sum test, absolute log fold change> 0.25, 
and FDR-corrected P < 0.05 in Poisson mixed model). 
Gene expression results of Mathys et al were obtained 
from Supplementary Material 4. To be noticed, mito-
chondrial genes have been removed in the study of 
Mathys et  al. In the study of Lau et  al, 21 prefrontal 
cortex samples (AD = 12, normal controls = 9) were 
included for transcriptome analysis, and Seurat was 
used to identify the cell types. 2,190 DEGs were iden-
tified from 169,496 nuclei in 6 cell types (adjusted P 
< 0.1, absolute log2 fold change ≥ 0.1). DEGs results 
were obtained from Supplementary file 4. In the study 
of Grubman et  al, BRETIGEA [32] was used to iden-
tify the cell types. Gene expression results were down-
loaded from http://​adsn.​ddnet​bio.​com, and FDR < 
0.01, absolute log fold change > 0.5 were considered 
as statistically significant differences between AD and 
normal controls (n = 6 entorhinal cortex samples per 
group). 1,726 DEGs were defined from 13,214 nuclei 
in 8 classified cell types. DEGs that were used in this 
study have been added in the Supplemental Files.

Venn Diagram (http://​bioin​forma​tics.​psb.​ugent.​be/​
webto​ols/​Venn/) was used to calculate and draw a venn 
map for each cell type, and overlapping DEGs were 
retained for further analysis. The log2 fold change of 
overlapping DEGs was used to generate Heatmap using R 
software (version 3.4.210).

Construction of PPI network and module analysis
Overlapping DEGs was used to construct protein-protein 
interaction (PPI) network [33, 34] using STRING analysis 

http://adsn.ddnetbio.com/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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(http://​string-​db.​org Version:11.0) and was further ana-
lyzed in Cytoscape software (3.7.2 version) by both cyto-
Hubba and Molecular Complex Detection (MCODE) 
plugins in Cytoscape to select significant hub genes and 
modules from the PPI network [35, 36] in each cell type. 
Hub genes were ranked by MCC method in cytoHubba 
and presented by nodes with different colors in figures 
(red to yellow means ranking from high essential to 
essential). Edges mean interactions, reactions, or regula-
tions among nodes in the network. Modules were identi-
fied by MCODE and presented with a circle layout. The 
selection criteria of MCODE: degree cutoff = 2, node 
score cutoff = 0.2, and k-score = 2, max. Depth = 100.

Signaling pathways analysis
The Signaling Pathway Project (https://​www.​signa​lingp​
athwa​ys.​org/​index.​jsf ), a multil-omics knowledgebase for 
cellular signaling pathway [37, 38], was used to evaluate 
the cellular signaling pathways that single differentially 
expressed gene involved in. Human transcriptomics data-
sets were chosen, and FDR significant cut-off = 1E-02.

GO biological process and KEGG pathways enrichment 
analysis
The annotation function of GO biological process of 
overlapping DEGs was carried out using the online 
DAVID Bioinformatics database 6.8 [39], which is a data-
base resource for understanding high-level functions and 
utilities of the genes. KEGG pathway enrichment analysis 
of all DEGs and overlapping DEGs [40] was performed in 
the online DAVID Bioinformatics database 6.8. P-value 
< 0.05 was considered as significant differences for both 
GO analysis and KEGG pathway enrichment analysis. 
P-value, fold enrichment, and gene counts in each term 
were used to create a Bubble chart in R software (version 
3.4.210).

Results
Disrupted immune response, energy supply, and oxidative 
stress, as well as reduced protein degradation in microglia
Human genetic studies pointed out a key role of micro-
glia in the pathogenesis of AD [13]. To identify the poten-
tial pathogenic genes and cellular processes in microglia, 
we integrated analyzed the DEGs in 3 studies. We 

observed 5 common DEGs, and only 2 genes showed the 
concordant change in microglial cells (Fig.1A and B, and 
Table 1). Concordant up-regulated PTPRG and MYO1E, 
and discordant SPP1, VSIG4, and RNF149 are involved 
in inflammation [41–45]. The further investigation of 
these common genes in multil-omics signaling pathways 
knowledgebase showed that except RNF149, the other 
genes are also involved in the estrogen signaling path-
way in human tissue [46, 47]. These findings indicate that 
the dysregulated immune response and the involvement 
of the estrogen signaling pathway may be the common 
characteristic of microglia in AD.

There were another 61 overlapping DEGs among 3 
studies, including up-regulated APOE and APOC1 
(Fig.1A and B), the risk factors for developing AD [48, 
49], suggesting the importance of these DEGs in AD-
pathology progression. We then identified the important 
modules and hub genes among the total 66 overlapping 
DEGs. The top-ranked genes (up-regulated MT-ND1–4, 
MT-CO2, MT-CO3, MT-ATP6, and MT-CYB) in the PPI 
network were enriched in the mitochondrial module (8 
nodes and 28 edges) from both Grubman et al and Lau 
et al studies (Fig.1B and C). The changed sugar metabo-
lism and mitochondrial function have also been observed 
in a large-scale proteomic analysis of AD brain, espe-
cially in glial cells [50]. GO enrichment analysis showed 
that the genes-RPS19, RPS28, RPL35, RPS27A, RPLP1, 
and RPS6 that involved in the second module (8 nodes 
and 27 edges) were enriched in SRP-dependent cotrans-
lational protein targeting to membrane, mRNA catabolic 
process, translational initiation, and ribosomal processes 
(Fig.1B-D). While hub genes-UBC and RPS27A, which 
involved in protein ubiquitination to eliminate the toxic 
protein aggregation, including ribosomes, were down-
regulated in microglia (Fig.1B and C) [51–54]. Moreover, 
UBC and RPS27A were also involved in negative regula-
tion of apoptotic and transcription processes, TGF beta 
signaling pathway, inflammatory signaling pathways, 
and activation of MAPK activity in AD (Fig.1D). DIRC3, 
a lncRNA, was up-regulated, which may interact with 
peroxisome proliferator-activated receptors (PPARs) 
according to the multil-omics signaling pathways knowl-
edgebase (Fig.1B and C).

Microglial cells in AD were also enriched for 
genes involved in the regulation of neuron death, 

(See figure on next page.)
Fig. 1  Microglia. Overlapping differentially expressed genes (DEGs) and pathways in microglia from 3 studies. A Venn diagram showing 
overlapping DEGs detected in microglia. B List of overlapping DEGs at least in 2 studies. Heatmap colored by gene expression in each study (red: 
up-regulated, blue: down-regulated). C PPI network of overlapping DEGs. Significant modules are indicated in circle layout. Significance of hub 
genes is indicated by color; red to yellow means significance from high to low. D Top 20 significant gene ontology (GO) terms for overlapping DEGs. 
E Significant KEGG pathways of DEGs in microglia. Red circles show pathways generated using overlapping DEGs. In bubble charts, significance is 
indicated by color, and the gene number of DEGs is indicated by the size of a dot

http://string-db.org
https://www.signalingpathways.org/index.jsf
https://www.signalingpathways.org/index.jsf
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Fig. 1  (See legend on previous page.)
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lipid-related clearance, response to oxidative stress 
(such as up-regulated LRRK2, APOE, and SNCA), 
response to extracellular stimulus, microglia activa-
tion (such as down-regulated AIF1), unfolded protein 
response, protein folding in endoplasmic reticulum 
(ER), endocytosis, and calcium ion retention (such as 

HSP90B1 and CALR) (Fig.1B-D). The KEGG pathway 
enrichment analysis of the DEGs showed that ribo-
some, phagosome, antigen processing and presen-
tation, HIF-1 signaling pathway, estrogen signaling 
pathway, B cell receptor signaling pathway, PI3K-Akt 
signaling pathway, and MAPK signaling pathway 

Table 1  Common DEGs in 3 studies (AD versus Control)

Red color means concordant up-regulated genes and green color means concordant down-regulated genes in 3 studies
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were enriched in microglial cells (Fig.1E). Especially 
the ribosome and PI3K-Akt signaling pathway were 
enriched in at least 2 studies (Fig.1E).

Disturbed cellular homeostasis in astrocytes and deficit 
of neuronal support
Astrocytes support neuronal functions, including recy-
cling of neural transmitters, modulation of synaptic 
transmission, stimulation of synaptogenesis, regulation 
of ion concentration in the extracellular space, and main-
tenance of BBB. Here, we observed 20 common DEGs in 
3 studies, and 19 genes (11 up-regulated and 8 down-reg-
ulated) showed concerted changes in astrocytes (Fig.2A 
and B, and Table 1). These genes were enriched for glu-
tamate receptors (down-regulated GRIA2 and GRM3), 
glutamate secretion (up-regulated SLC38A2), thyroid 
hormone perturbation (down-regulated SLCO1C1 
and DIO2) [55, 56], extracellular matrix organization 
(ITGB8, ITGB4, and VCAN), circadian clock regulation 
(down-regulated CIRBP) [57], permeability of BBB (up-
regulated PLEKHA5) [58], and cell proliferation (up-
regulated RHPN1) [59], indicating the dysfunction of 
astrocytes and neurons in AD. While we also observed 
the altered PLXNB1, MRAS, CSRP1, AHNAK, SYNM, 
PREX2, RALGAPA2, CABLES1, and PLEC expression, 
which has been described in previous human AD studies 
(Fig.2B) [60–67].

Overlapping DEGs among 3 studies showed high 
concerted gene expression in astrocytes (Fig.2B). In 
overlapping DEGs constructed PPI network, the most 
significantly changed genes were enriched in mitochon-
drial module, as we observed in microglia. GO enrich-
ment showed that the hub genes (SLC6A1, SLC1A2, 
SLC1A3, NTRK2, GRIA2, GRM3, PLP1, SPARCL1, 
GPM6A, and NRXN1), which were mostly involved in 
the second module, were enriched for processes related 
to learning, glutamate secretion, signal transduction, 
chemical synaptic transmission, neuron cell-cell adhe-
sion, neurotransmitter secretion, synaptic assembly 
(Fig.2C and D). These alterations indicate the disrupted 
neuronal signal transduction in AD. In the third mod-
ule, genes-DNAJB1, HSP90AA1, HSPA1B, PTGES3, 
FKBP4, HSPA1A, HSPB1, and CST3, were enriched for 
negative regulation of inclusion body assembly, cellular 
response to heat, regulation of protein ubiquitination, 
protein refolding, unfolded protein, and negative regula-
tion of cell death (Fig.2C and D). In addition, some hub 
genes were enriched in extracellular matrix organiza-
tion (VCAN and GFAP), activation of insulin secretion 
and glutamate catabolic process (GLUL), and negative 
regulation of neuron differentiation (SOX2) (Fig.2C and 
D). To be noticed that APOE which involved in retinoid 
metabolic process, triglyceride homeostasis, and NMDA 

glutamate receptor clustering was down-regulated in 
astrocytes (Fig.2B and D).

Further KEGG pathway enrichment showed that the 
overlapping DEGs were mainly enriched for pathways, 
such as mineral absorption, cell adhesion molecules, 
glutamatergic synapse, GABAergic synapse, extracel-
lular matrix (ECM)-receptor interaction, and estrogen 
signaling pathway (Fig.2E). Moreover, overall DEGs in 
astrocytes were also involved in protein processing in ER, 
biosynthesis of unsaturated fatty acids, calcium signal-
ing pathway, phagosome, gap junction, axon guidance, 
MAPK signaling pathway, circadian rhythm, inositol 
phosphate metabolism, and regulation of actin cytoskel-
eton (Fig.2E).

Increased oxidative stress in oligodendrocytes
Oligodendrocytes dysfunction has been associated with 
neurodegenerative disease and neuroimaging studies 
showed that the myelin loss happened in the preclini-
cal phase of AD [68, 69]. Here, we observed 10 com-
mon DEGs in 3 studies (Fig.3A). Up-regulated LINGO1 
was involved in axonogenesis and signal transduction, 
while MID1IP1 and SLC38A2 were related to AD pathol-
ogy, which has been reported in previous studies [70, 
71]. Multil-omics signaling pathways knowledgebase 
showed that CCP110, KCNH8, CARNS1, LDLRAD4, 
and GPM6A might be involved in the cell cycle, immune 
response, and estrogen receptor pathway [42].

In overlapping DEGs constructed PPI network, the 
top-ranked module (9 nodes and 36 edges) was enriched 
for up-regulated mitochondria related-genes (MT-
ND1–4, MT-CO2, MT-CO3, MT-ATP6, MT-CYB, and 
NDUFS2) (Fig.3B and C). Genes in the second module 
(dysregulated RPS27, RPS35, RPS6, UBC, and RPLP1) 
and together with the hub genes (down-regulated S100B 
and CTNNA2) were enriched in SRP-dependent cotrans-
lational protein targeting to membrane, mRNA catabolic 
process, and regulation of apoptotic process (Fig.3B-D). 
Down-regulated S100B, CTNNA2, SNAP25, SLC1A2, 
CNTNAP2, and NRXN3 were involved in axonogen-
esis, glutamate secretion, long-term synaptic potentia-
tion, and adult behavior (Fig.3B-D). HSPA1A and MT3 
were involved in cellular response to oxidative stress 
and hypoxia. Besides, down-regulated DEGs were also 
enriched in glutamate receptor (GRID2), stabilizing the 
myelin sheath (MOBP), and promoting oligodendrocyte 
terminal differentiation (OPALIN) (Fig.3B-D). The up-
regulated PLP1 and ITPKB have been considered as risk 
factors of AD in previous studies [72, 73]. These altered 
hub genes and related biological processes indicate the 
increased cellular oxidative stress and injury of oligoden-
drocytes, which further affect neural transmission.
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Fig. 2  Astrocytes. Overlapping DEGs and pathways in astrocytes. A Venn diagram showing overlapping DEGs. B List of partial overlapping DEGs 
at least in 2 studies. C PPI network of partial overlapping DEGs. D Top 20 significant gene ontology (GO) terms for overlapping DEGs. E Significant 
KEGG pathways of DEGs. Red circles show pathways generated using overlapping DEGs
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Fig. 3  Oligodendrocytes. Overlapping DEGs and pathways in oligodendrocytes. A Venn diagram showing DEGs. B List of partial overlapping DEGs 
at least in 2 studies. C PPI network of partial overlapping DEGs. D Top 20 significant gene ontology (GO) terms for overlapping DEGs. E Significant 
KEGG pathways of DEGs. Red circles show pathways generated using overlapping DEGs
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Using the DEGs, we explored the KEGG pathway 
enrichment in oligodendrocytes, including ribosome, 
estrogen signaling pathway, protein processing in ER, 
oxidative phosphorylation, glutamatergic and dopamin-
ergic synapse, circadian entrainment, axon guidance, 
long-term potentiation, cAMP signaling pathway, AD, 
Parkinson’s disease, and Huntington’s disease (Fig.3E). 
It seems that these DEGs include the transcriptional 
changes of other neurodegenerative diseases.

Dysfunction of cellular metabolism and protein 
degradation in excitatory neurons
Synaptic dysfunction and neuronal loss are the main 
characteristics of AD. In excitatory neurons, we 
observed 6 common DEGs in 3 studies (Fig.4A). These 
overlapping DEGs were enriched in axonogenesis 
(up-regulated LINGO1), histone H4 acetylation (up-
regulated CHD5 and PER1) [74], and entrainment of 
circadian clock (PER1) (Fig.4B-D). TSPAN7, regula-
tion of spine maturation and AMPA receptor traffick-
ing, was down-regulated in excitatory neurons [75]. 
While SLC26A3 was enriched in regulation of mem-
brane potential, membrane hyperpolarization, oxalate 
transport, and sulfate transmembrane transport. Multil-
omics signaling pathways knowledgebase showed that 
the up-regulated DPP7 was involved in innate immune 
response (Fig.4B-D).

Moreover, in the PPI network of overlapping DEGs, the 
top-ranked genes (up-regulated MT-ND1–4, MT-ND4L, 
MT-CO2, MT-CO3, MT-ATP6, MT-CYB, and CYCS) 
were enriched in mitochondrial module (with 10 nodes 
and 45 edges) (Fig.4B-C). While the genes-NDUFA8, 
NDUFS5, and COX6C that related to mitochondrial elec-
tron transport chain were down-regulated (Fig.4B-C). 
These changes in mitochondria indicate the disorder of 
oxidative phosphorylation. Among the hub gene, down-
regulated SNAP25 has been considered as a potential 
biomarker in AD [76]. Up-regulated GRIN1, a gluta-
mate receptor, was enriched in the regulation of mem-
brane potential. Up-regulated PPFIA3 together with the 
genes (SYN1 and RAB3A) from the second module were 
enriched in neurotransmitter secretion. Down-regulated 
RAB3A and CCK were enriched in axonogenesis and 
regulation of synaptic vesicle fusion to presynaptic mem-
brane. RIMS1, associated with synaptic transmission, and 
LRRC4B, related to cell adhesion, were disturbed (Fig.4B-
D). Multil-omics signaling pathways knowledgebase 
showed that down-regulated NSF was related to inflam-
mation. Up-regulated SYN1, down-regulated RAB3A, 
RPH3A, SST, and CCK were closely associated with 
AD development [77–81] (Fig.4B-C). Together, these 
changed gene expressions indicate the deficit of synaptic 
function in excitatory neurons.

The KEGG pathway enrichment analysis showed that 
the overlapping DEGs were enriched in AD, Parkinson’s 
disease, Huntington’s disease, and endocytosis (Fig.4E), 
suggesting these DEGs may be the common gene set 
involved in neurodegenerative diseases. Overall DEGs 
were also involved in oxidative phosphorylation, synap-
tic vesicle cycle, MAPK signaling pathway, glutamatergic 
synapse, GnRH signaling pathway, ribosome, gap junc-
tion, long-term depression, lysosome, one carbon pool 
by folate, purine metabolism, long-term potentiation, 
proteasome, glycerophospholipid metabolism, endocrine 
and other factor-regulated calcium reabsorption, and 
neurotrophin signaling pathway (Fig.4E).

Mitochondrial dysfunction in inhibitory neurons
In inhibitory neurons, there were no common DEGs in 
3 studies (Fig.5A). The 35 overlapping DEGs among 3 
studies were used to construct the PPI network. The sig-
nificant module included up-regulated mitochondrial 
genes and down-regulated mitochondrial respiratory 
chain-related genes (NDUFA4, NDUFA12, NDUFS3, 
and COX4I1) (Fig.5B and C). These DEGs together with 
down-regulated ATPIF1, ATP5J, and MRPS16 indicate 
the mitochondrial dysfunction in inhibitory neurons. 
SOD1, which is involved in response to reactive oxygen 
species, was down-regulated (Fig.5B-D). In addition, the 
overlapping DEGs were also enriched in neurotransmit-
ter secretion, axonogenesis (up-regulated LINGO1), exo-
cytosis, NMDA receptor activity, MAPK cascade, and cell 
adhesion (Fig.5B-D). Overlapping DEGs were enriched in 
pathways including AD, Huntington’s disease, Parkinson’s 
disease, and long-term potentiation. Overall DEGs were 
also involved in Rap1 signaling pathway, cAMP signaling 
pathway, and estrogen signaling pathway (Fig.5E).

Increased energy metabolism and immune response 
in endothelial cells
Endothelial cells are a central element to form the BBB 
and regulate molecular transport into the brain. BBB 
impairments have been seen in the preclinical stages 
of the AD brains [82]. Here, only 2 studies classified 
the endothelial cells and we have 24 overlapping DEGs 
(Fig.6A). Except for MALAT1, the overlapping DEGs 
showed high concordant up-regulation in endothelial 
cells (Fig.6B). Interestingly, mitochondria and nutrient 
transporter related genes, such as glucose transporter-
SLC2A1, intracellular calcium and amino acid trans-
porter-SLC3A2, transporter activity regulator-SLCO4A1, 
and the physical barrier-CLDN5, were significantly 
increased, suggesting the increased uptake of nutrients 
and energy production in AD brain [83–85] (Fig.6B).

GO analysis showed that DEGs were also enriched in 
response to unfolded protein (HSP90AA1, SERPINH1, 



Page 10 of 18Wang and Li ﻿BMC Neurol          (2021) 21:381 

Fig. 4  Neurons (Excitatory). Overlapping DEGs and pathways in excitatory neurons. A Venn diagram showing DEGs. B List of partial overlapping 
DEGs at least in 2 studies. C PPI network of partial overlapping DEGs. D Significant gene ontology (GO) terms for overlapping DEGs. E Significant 
KEGG pathways of DEGs. Red circles show pathways generated using overlapping DEGs
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Fig. 5  Neurons (Inhibitory). Overlapping DEGs and pathways in inhibitory neurons. A Venn diagram showing DEGs. B List of overlapping DEGs 
between any 2 studies. C PPI network of overlapping DEGs. D Top 20 significant gene ontology (GO) terms for overlapping DEGs. E Significant KEGG 
pathways of DEGs. Red circles show pathways generated using overlapping DEGs
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Fig. 6  Endothelial cells. Overlapping DEGs and pathways in endothelial cells. A Venn diagram showing DEGs. B List of overlapping DEGs between 
2 studies. C PPI network of overlapping DEGs. D Significant gene ontology (GO) terms for overlapping DEGs. E Significant KEGG pathways of DEGs. 
Red circles show pathways generated using overlapping DEGs
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and HSPB1), movement of cell or subcellular component 
(HSPB1, MSN, and PALM), SRP-dependent cotransla-
tional protein targeting to membrane, mRNA catabo-
lism, nonsense-mediated, translational initiation, rRNA 
processing and translation (RPS28, RPS15A, and RPS19), 
maturation of SSU-rRNA, ribosomal small subunit pro-
cessing (RPS28 and RPS19), protein refolding, regulation 
of protein ubiquitination (HSP90AA1 and HSPA1A), 
negative regulation of endopeptidase activity (BST2, 
SERPINH1, and A2M), and positive regulation of gene 
expression (RGCC, MSN, and HSPA1A) (Fig.6C and D). 
Also, the overlapping DEGs were enriched in immune 
response (PTMA, HLA-E, and MALAT1) and ubiquitin-
protein ligase binding (HERC2) [86, 87]. These changes 
indicate the cellular stress and protein degradation in 
endothelial cells.

The common KEGG pathway between the 2 studies 
was antigen processing and presentation (Fig.6E). The 
overall DEGs were also involved in PI3K-Akt signaling 
pathway, mineral absorption, HIF-1 signaling pathway, 
MAPK signaling pathway, estrogen signaling pathway, ras 
signaling pathway, insulin resistance, adherens junction, 
axon guidance, rap1 signaling pathway, and apoptosis 
(Fig.6E).

Discussion
In recent decades, it has been reported that numerous 
risk factors, different cell types, and complex signaling 
pathways are involved in AD pathogenesis. However, 
there is currently no effective therapy to cure the dis-
ease. Here, we integrated analyzed the cell type-specific 
transcriptomic and functional changes to understand the 
common and distinct molecule changes and networks 
across different cell types in AD.

Common molecule and pathways changes in AD
Up-regulated LINGO1, a negative regulator of neu-
ronal processes, was the only differential gene observed 
in multiple cell types across all studies, which has been 
predicted to be a potential target of AD therapy [29, 
88]. Moreover, we found the coordinated up-regulation 
of mitochondrial genes across all cell types in the stud-
ies of Lau et al and Grubman et al. Increasing evidence 
indicates the mitochondrial disorder in AD brain [7, 
89–91]. Mitochondria, as the center of cellular metabo-
lism, not only provide enough energy supply to maintain 
the essential cellular processes but may cause mitochon-
drial-related oxidative damage. Mitochondrial dysfunc-
tion could impair astrocyte’s neuroprotective effect and 
synaptic activity [92]. Besides, altered energy metabolism 
also implicates mitochondrial dysfunction, which has 
been seen in microglia, astrocytes, and oligodendrocytes 

[5, 50]. Metabolic processes affect the immune response 
and oxidative stress and vice versa [93–96]; the unbal-
ance of this complex interplay aggravates the oxidative 
stress, dysfunction of cellular metabolism, and immune 
response as we have observed in AD brain, especially in 
microglia, oligodendrocytes, and endothelial cells. Over-
all, the mitochondrial transcriptome alterations are the 
most significant and consistent changes that cross all cell 
types, while the mitochondrial dysfunction has also been 
approved in a recent proteomic study in the human AD 
brain [90].

The overall transcriptomic changes in each cell type 
revealed more possible impaired pathways involved in 
AD-pathology. Common KEGG pathways enriched in 
different cell types were shown in Table 2. The dysregu-
lated MAPK signaling pathway has been observed in 
microglia, astrocytes, excitatory neurons, and endothelial 
cells. Inhibition of the p38 MAPK signaling pathway to 
treat AD has been suggested since decades ago [97, 98]. 
The antigen processing and presentation, HIF-1 sign-
aling pathway, and PI3K-Akt signaling pathway were 
enriched in microglia and Endothelial cells. These path-
ways together with mitochondrial and estrogen signaling 
pathways form a complex network and play an exten-
sive and important role in AD pathology [99]. Phago-
some was enriched in microglia and astrocytes, but the 

Table 2  Common KEGG pathways in different cell types of AD 
brain

Mic: Microglia; Astro: Astrocytes; Oligo: Oligodendrocytes; Neuron (Ex): 
Excitatory neurons; Neuron (In): Inhibitory neurons; Endo: Endothelial cells

Pathways Cell types

Estrogen signaling pathway Mic, Astro, Oligo, Neuron (In), Endo

MAPK signaling pathway Mic, Astro, Neuron (Ex), Endo

Ribosome Mic, Oligo, Neuron (Ex)

Glutamatergic synapse Astro, Oligo, Neuron (Ex)

Axon guidance Astro, Oligo, Endo

Oxidative phosphorylation Oligo, Neuron (Ex), Neuron (In)

Long-term potentiation Oligo, Neuron (Ex), Neuron (In)

Alzheimer’s disease Oligo, Neuron (Ex), Neuron (In)

Parkinson’s disease Oligo, Neuron (Ex), Neuron (In)

Huntington’s disease Oligo, Neuron (Ex), Neuron (In)

Phagosome Mic, Astro

HIF-1 signaling pathway Mic, Endo

PI3K-Akt signaling pathway Mic, Endo

Antigen processing and presenta‑
tion

Mic, Endo

Mineral absorption Astro, Endo

cAMP signaling pathway Oligo, Neuron (In)

Protein processing in ER Astro, Oligo

Gap junction Astro, Neuron (Ex)

Rap1 signaling pathway Neuron (In), Endo
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phagocytosis of astrocytes could be compensation for 
microglial dysfunction [100]. The estrogen signaling 
pathway seems to be the most common pathway that is 
disrupted in AD.

Distinct molecule and pathways changes in AD
Except for the DEGs that cross different cell types, we 
also identified the cell type-specific common genes 
and hub genes in 3 studies and explored their related 
biological processes and pathways that involve in AD-
pathology. Besides the immunometabolism and oxida-
tive stress-related genes, the ribosomal genes, reduced 
polyubiquitin-related genes-UBC and RPS27A, and 
genetic risk genes-APOE and APOC1 have also been 
seen in microglia. The most possible impaired path-
ways in microglia were the ribosome and PI3K-Akt 
signaling pathways. Ribosome dysfunction has been 
regarded as an early event of AD, which may be caused 
by oxidative damage [101]. Reduced PI3K-Akt signal-
ing pathway has been reported in postmortem AD 
brain and is closely related to microglia inflammation 
[102, 103]. These pathways further indicate the micro-
glial oxidation and inflammation in AD. Surprisingly, 
the endothelial cells were enriched for genes related 
to immune response and protein ubiquitination and 
were also involved in antigen processing and presenta-
tion. It has been seen the amyloid deposition around 
cerebral vessels in the preclinical stage of AD, which 
could impair the BBB integrity and further lead to T 
cell infiltration and activation in the brain [25, 28, 50, 
104, 105]. Thus, the microglia and endothelial cells are 
the main roles that contributed to the inflammation in 
AD brain.

While in astrocytes, the most significant transcriptional 
changes were associated with neuronal signal transduc-
tion and extracellular matrix organization. The main 
impaired pathways were glutamatergic and GABAergic 
synapses, cell adhesion molecules, ECM-receptor inter-
action, and mineral absorption in astrocytes. Extracel-
lular matrix promotes the formation of neural networks 
[106]. Therefore, the astrocytes lost the function to sup-
port neuronal activity and maintain brain homeostasis 
in AD, which has been seen in oligodendrocytes as well 
[27, 28, 107]. Moreover, the estrogen signaling pathway 
was impaired in both astrocytes and oligodendrocytes. 
Reduced expression of estrogen receptors has been 
reported in hippocampal neurons of AD patients [108]. 
Restore the estrogen-related signaling could be an effec-
tive therapy for the treatment of AD [99]. To be noticed, 
the transcriptomic alterations in oligodendrocytes, excit-
atory neurons, and inhibitory neurons could be not spe-
cific to AD, but partially overlap with gene sets related to 
neurodegenerative diseases, such as Parkinson’s disease 

(PD) and Huntington’s disease (HD). Aberrant myelina-
tion and alteration in oligodendrocytes have been identi-
fied as common pathophysiological features of AD, PD, 
and HD [109–112]. Additionally, it’s well known that 
progressive deficit of structure or dysfunction of neu-
rons and neuronal loss are the main characteristics of 
neurodegeneration.

We also identified the dysregulated pathways in spe-
cific cell types across studies, for instance, ribosome and 
PI3K-Akt signaling pathway in microglia, cell adhesion 
molecules, glutamatergic synapse, ECM-receptor inter-
action, and estrogen signaling pathway in astrocytes, 
estrogen signaling pathway in oligodendrocytes, endocy-
tosis in excitatory neurons, oxidative phosphorylation in 
inhibitory neurons, and antigen processing and presenta-
tion in endothelial cells.

Conclusion
In summary, except for the consensus alteration of mito-
chondrial genes, there are no DEGs that can cross all cell 
types. Our comprehensive study provides the precise cel-
lular changes, points out the complexity of the transcrip-
tional network in AD pathology, and further highlights 
the value of cell type-specific transcriptomic analysis. 
The identified pathogenic genes and functional pathways 
in AD brain may provide a helpful resource for future 
investigations and serve as therapeutic targets and bio-
markers for the disease.
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