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Severe coronavirus disease 2019 (COVID-19) increases the risk of myocardial injury that contributes to
mortality. This study used multiparameter immunofluorescence to extensively examine heart autopsy
tissue of 7 patients who died of COVID-19 compared to 12 control specimens, with or without car-
diovascular disease. Consistent with prior reports, no evidence of viral infection or lymphocytic infil-
tration indicative of myocarditis was found. However, frequent and extensive thrombosis was observed
in large and small vessels in the hearts of the COVID-19 cohort, findings that were infrequent in
controls. The endothelial lining of thrombosed vessels typically lacked evidence of cytokine-mediated
endothelial activation, assessed as nuclear expression of transcription factors p65 (RelA), pSTAT1, or
pSTAT3, or evidence of inflammatory activation assessed by expression of intracellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tissue factor, or von Willebrand
factor (VWF). Intimal EC lining was also generally preserved with little evidence of cell death or
desquamation. In contrast, there were frequent markers of neutrophil activation within myocardial
thrombi in patients with COVID-19, including neutrophil-platelet aggregates, neutrophil-rich clusters
within macrothrombi, and evidence of neutrophil extracellular trap (NET) formation. These findings
point to alterations in circulating neutrophils rather than in the endothelium as contributors to the
increased thrombotic diathesis in the hearts of COVID-19 patients. (Am J Pathol 2022, 192: 112e120;
https://doi.org/10.1016/j.ajpath.2021.09.004)
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Hospitalized patients with severe acute respiratory syn-
drome coronavirus 2 (SARS CoV-2) infection have an
increased risk of developing myocardial injury, determined
by elevated cardiac troponin concentrations in the blood.1e4

Patients with prior cardiovascular disease or risk factors
such as myocardial infarction (MI) or hypertension are more
likely to develop cardiac injury. However, even individuals
without a past history of cardiovascular disease can develop
myocardial injury, increasing the risk for acute cardiac
complications such as heart failure or chronic car-
diomyopathy.5e10 Initial considerations of mechanisms
included direct viral infection of cardiac myocytes,
endothelial cells (ECs), or other cells; autoimmune
T cell-mediated injury resulting in myocarditis;
stigative Pathology. Published by Elsevier Inc. All rights reserved.
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COVID-19 Coronary Vascular Thrombosis
autoantibody-mediated injury through complement activa-
tion and/or antibody-dependent cellular cytotoxicity.11

However, numerous autopsy studies failed to detect viral
protein or RNA within the heart despite evidence of abun-
dant virus presence in the lungs of the patients.12 Post
mortem examination has also rarely revealed multifocal or
diffuse myocarditis along with complement and antibody
deposition.12e14 Rather, thrombosis of micro and macro
coronary vessels has most consistently been observed in the
hearts of individuals who succumbed to coronavirus disease
2019 (COVID-19).14e16 The underlying cause of this
thrombotic diathesis in the hearts of patients with severe
COVID-19 is not known, but has been attributed to either
alterations in blood composition and/or pathological
changes of the endothelial lining of the vasculature.17 This
study examined heart tissues from autopsies of seven pa-
tients with COVID-19 performed early in the pandemic
before anticoagulation was commonly administered, and
compared these specimens to twelve COVID-19-negative
controls, with or without heart disease, using multiparameter
fluorescence microscopy to analyze the composition of
thrombosed vessels. The current data show that although
alterations in endothelium occurred, they were uncommon,
and did not generally colocalize with sites of thrombosis.
However, activated circulating neutrophils were routinely
observed in the thrombi of patients with severe SARS-CoV-
2 disease.

Materials and Methods

COVID-19 Cohort Characteristics

The COVID-19 cohort consisted of 7 patients - 4 males and
3 females, who were positive for SARS CoV-2 infection by
RT-PCR with ages ranging from 50 to 94 (Table 1). All
patients had severe pneumonia. One patient had a sudden
cardiac arrest outside of hospital, two patients developed
sepsis, and one patient had recurrent acute leukemia with
thrombocytopenia. Length of hospitalization ranged from 2
to 13 days (Supplemental Table S1). The COVID-19
negative controls consisted of 12 patients - 8 males and 4
females, including 6 patients with pre-existing cardiac dis-
ease. Multiple sections from 2 randomly selected areas of
the left ventricle were examined for each patient and
control.

Immunofluorescence of FFPE Tissues

Formalin fixed, paraffin-embedded de-identified sections of
heart tissues were obtained from autopsies performed at
Brigham and Women’s Hospital and at Yale New Haven
Hospital under IRB-approved protocols. Slides were
deparaffinized by graded washes in xylene and ethanol.
Antigen retrieval was then performed in sodium citrate
buffer (Vector, H-3300) for 30 minutes. Sections were
incubated with blocking solution containing 1% BSA, 5%
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donkey serum in PBS for at least 1 hour at RT. Primary
antibodies reactive with the following antigens were added
overnight at 4�C: Cleaved Caspase 3 (1:300, Cell Signaling
Technology (CST) 5A1E), ICAM-1 (1:300, Novus Bi-
ologicals (NB) BBA17), myeloperoxidase (1:200, CST
E1E7I), CD45 (1:100 Abcam (ab) ab10558), CD42b (1:100,
Thermo Fisher (TF) 42C01; 1:150, TF PA5-109282), VE-
Cadherin (1:300, SantaCruz (sc) sc-6458), Fibrin (1:200,
Dako A0080), IgM AF647 (1:200 SouthernBiotech (SB)
2020-31), CD11b (1:100 TF M1/70), myeloperoxidase
AF647 (1:100, ab252131), CitH3 (1:100, ab5103), p65
(1:400, CST D14E12), pSTAT1 (1:100, CST 58D6),
pSTAT3 (1:100, CST D3A7), tissue factor (1:200, CST
E9M6T; 1:200 NBP2-61641), VWF (1:50, ab201336),
VCAM-1 (1:100, NB 6G9), E-selectin (1:100, TF PA5-
96091), SARS CoV-2 spike (1:200, GeneTex
GTX632604), SARS CoV-2 nucleocapsid (1:200, CST
HL344), and C4d (1:100, Quidel A213). Samples were
washed three times in PBS and then incubated with
appropriate AlexaFluor conjugated secondary antibodies
and Ulex Europaeus Agglutinin I e FITC/Rhodamine
(1:200, Vector RL-1061, 1062) in same blocking solution
for 1 hour at room temperature. All antibodies were vali-
dated using human tonsils or autopsy heart tissues with
myocarditis, sepsis, or myocardial infarction. Secondary-
only controls were used to ensure specificity of primary
antibody binding.
Cyclic IF of FFPE Tissue

To colocalize multiple fluorescent signals on the same field,
a cyclic IF method was employed that involved repeated
staining and imaging of the same tissue section with
quenching of the fluorescent signal between cycles and the
use of directly conjugated antibody.18 Briefly, coverslips
were placed on slides using PBS with 10% glycerol. After
imaging, coverslips were removed by placing slides in a
container of PBS for 30 minutes. Sections were then
bleached in PBS with 3% H2O2 and NaOH to quench
fluorescence. Slides were washed 3 times, then conjugated
antibodies were added overnight. Images were recorded at
each step and then brought into spatial alignment for
colocalization of staining using ImageJ software version
1.53c; Fiji version 2.1.0 (Fiji, https://fiji.sc, last accessed
August 23, 2021).19
Quantification of Immunofluorescent Signals

Random single and large (100þ) tiled images were taken at
20� or, when possible, the whole tissue imaged at 10�.
Fluorescence was normalized to vessel or tissue area. Ulex
and DAPI colocalization was used to determine regions of
interest (ROIs) of EC nuclei for quantification of pSTAT1,
pSTAT3, and p65 fluorescence. ImageJ was used to process
and measure fluorescence of tissue.
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Table 1 Patient Demographics and Clinical Information

COVID-19
patients (n Z 7)* Age Sex Cardiac history Medications Cause of death

Patient 1 94 F CAD Remdesivir Pneumonia
Patient 2 65 F CAD, DVT, NSTEMI Prednisone, Rivaroxaban Pneumonia w/DAD leading to ARDS
Patient 3 77 M None Pneumonia and pulmonary thrombosis

in setting of end stage renal disease
Patient 4 57 M None Pneumonia leading to cardiac arrest,

followed by shock
Patient 5 90 M CAD, stroke Pneumonia w/DAD
Patient 6 68 F CAD, MI Pneumonia in setting of CV disease and

recent MI
Patient 7 50 M None Bilnatumomab Pneumonia w/DAD in setting of B cell

ALL relapse
Controls (n Z 12)

Control 1 89 M CAD, stroke Atherosclerotic and hypertensive CV
disease

Control 2 47 M CAD, MI CHF
Control 3 79 M Atrial Flutter, CKD CHF
Control 4 58 F None Respiratory failure from pulmonary

adenocarcinoma
Control 5 58 M None GI hemorrhage and shock from cirrhosis
Control 6 46 F HOCM Metastatic breast cancer in setting of

HOCM-induced heart failure
Control 7 68 M None Pulmonary squamous cell carcinoma

leading to hemorrhage and
desanguination

Control 8 65 M CAD Interstitial lung disease complicated by
bronchopneumonia

Control 9 71 F None ILD leading to pneumonia
Control 10 62 F None Metastatic breast cancer
Control 11 68 M CAD Cirrhosis leading to esophageal varices

and bleeding
Control 12 53 M CAD GI bleeding from cirrhosis

*All patients with COVID-19 were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by RT-PCR.
F, female; M, male; ALL, acute lymphoblastic leukemia; ARDS, acute respiratory distress syndrome; CAD, coronary artery disease; CHF, congestive heart

failure; CKD, chronic kidney disease; DAD, diffuse alveolar damage; DVT, deep venous thrombosis; GI, gastrointestinal; HOCM, hypertrophic obstructive
cardiomyopathy; ILD, interstitial lung disease; MI, myocardial infarction; NSTEMI, non-ST elevation myocardial infarction.
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Statistics

Data are expressed as means � SEM. Statistical analyses
were performed using GraphPad Prism software version
8.4.3 (GraphPad Software, San Diego, CA). The U-test was
used to make statistical comparisons between two groups. A
P value of less than or equal to 0.05 was considered sta-
tistically significant.

Results

Thrombosis Is the Most Common Pathologic Finding in
Heart Autopsy Specimens of COVID-19 Cohort

Consistent with prior reports,12 extensive micro and
macrothrombi were observed in 6/7 of the COVID-19
cohort (Figure 1) and SARS-CoV-2 spike or nucleo-
capsid antigen indicative of active infection, evidence of
114
multifocal lymphocytic infiltrates indicative of myocar-
ditis, or complement deposition on endothelium indica-
tive of antibody-mediated vasculitis were not detected
(Supplemental Figure S1). The only patient without
evident thrombosis had a diagnosis of acute lymphocytic
leukemia with progressive thrombocytopenia. To quan-
tify the extent of thrombosis, slides of FFPE heart
samples were studied using antibodies reactive with
platelet protein CD42b and/or fibrinogen. Based on these
stains, patients with COVID-19 had a highly elevated
frequency of platelet-rich microthrombi per 20� field
(Figure 1A) and total number of macrothrombi involving
both intramyocardial arteries and veins (Figure 1B) in
tissues compared to the COVID-19 negative controls.
Several multinucleated giant cells that stained with
CD42b, consistent with megakaryocytes, were also
observed within the cardiac vasculature of three patients;
such cells were not seen in any controls (Figure 1C).
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Quantification of micro- and macrothrombosis in hearts of patients with COVID-19. A: The frequency of microthrombi per 20� field was quantified in
controls and patients with COVID-19. Representative images of microthrombi composed of platelets and/or fibrin. B: The total numbers of macrothrombi per tissue
section were counted by imaging whole tissue at 10� and dividing by tissue area. Representative images of macrothrombi composed of platelets and/or fibrin.
C: Image of a megakaryocyte present in heart tissue. CD42b was used to identify platelets; ICAM-1 for vessels. Data represent means � SEM. **P < 0.01,
***P < 0.001. Scale bars: 50 mm (A and B, left images, and C); 100 mm (A and B, right images).

COVID-19 Coronary Vascular Thrombosis
Despite the widespread evidence of thrombosis, no evi-
dence of myocyte death or acute inflammation typically
associated with myocardial infarction was observed.

ECs Show Infrequent Evidence of Injury or Activation
in Heart Tissues

To assess whether endothelial alterations occur in the
context of COVID-19-associated cardiac vascular throm-
bosis, the vessels of the heart were examined for signs of
endothelial cell (EC) injury or activation. EC injury by
apoptosis can promote thrombosis through release of
microparticles containing pro-coagulative tissue factor or
by EC sloughing that can expose platelet-activating
collagen.20,21 Cytokine-activated endothelium may also
become procoagulant; e.g., through synthesis of tissue
factor, or platelet adhesive by release of high molecular
weight von Willebrand factor.22,23 Evaluation of intimal
injury revealed only rare markers of cleavage/activation of
caspase 3 in endothelial cells in 1/7 patients (Figure 2A),
unrelated to sites of thrombosis. One patient showed both
rare foci of EC denudation with adherent platelets and
rare VE-Cadherinþ cell fragments colocalized
The American Journal of Pathology - ajp.amjpathol.org
with platelets (Figure 2, B and C). Another patient had
rare foci of tissue factor expression within the vascular
lumen but not colocalized with sites of thrombosis
(Figure 2D). VWF luminal staining indicated increased
percentage of vessels in three patients with COVID-19,
but not coincident with sites of thrombosis (Figure 2E).
The patient with COVID-19 with the highest level of
VWF expression, found in approximately 5% of vessels,
was patient 6, who had recently suffered a MI. The
sample with the second most frequent localization of
VWF was from the patient with ALL who showed no
signs of thrombosis.

Next, cytokine-activated signaling pathways in the ECs
were assessed by both nuclear p65 (Rel A) translocation and
STAT protein tyrosine phosphorylation. Nuclear p65, a
manifestation of IL-1 or TNF signaling, was limited and of
no greater frequency in ECs of patients with COVID-19
versus that in controls (Figure 2F). Endothelial pSTAT1
expression, indicative of IFN signaling, was absent in all but
one patient who exhibited expression on 0.6% of ECs and
none at sites of thrombosis (Figure 2G). Similarly, the
percentage of ECs with pSTAT3 expression, indicative of
responses to IL-6 family of cytokines, did not differ
115
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Figure 2 Endothelial cells (ECs) lining heart vasculature show minimal signs of injury or activation. AeC: Images show rare evidence of EC injury in
patients with COVID-19 with (A) cleaved caspase 3 (CC3) expression on a few ECs, (B) denuded and sloughed off ECs at a site of platelet aggregation, and (C)
circulating VE-Cadherinþ cell fragments bound to platelets (arrow). D: Tissue factor on vessel lumen and sites of thrombi was also rarely detected. E-I:
Quantification and representative images of EC activation markers. The percentage of vessels with lumenal VWF in control and COVID-19 patients (E). The
percentage of EC nuclei that showed (F) p65 nuclear localization (arrow), pSTAT1 (G), or pSTAT3 in patients and controls (H). I and J: ICAM-1 and VCAM-1
fluorescence intensity on vessels was calculated and normalized to area of tissue sampled. Data represent means � SEM. Scale bars: 35 mm (A and B); 50 mm
(C and D); 100 mm (EeJ).
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COVID-19 Coronary Vascular Thrombosis
significantly between patients with COVID-19 and controls,
with the notable exception of one patient with COVID-19
who showed elevated levels of pSTAT3 expression on
17.5% of ECs (Figure 2H). This patient had suffered a
cardiac arrest one day before death. Consistent with a
paucity of evidence for endothelial cell responses to cyto-
kines, there was no statistically significant increase in the
expression of ICAM-1 (Figure 2I), VCAM-1 (Figure 2J), or
E-selectin (Supplemental Figure S2) in patients compared to
controls. The one patient with COVID-19 that showed
increased VCAM-1 expression was the same patient
described above that suffered a recent cardiac arrest.
Supplemental Table S2 summarizes several of these histo-
logical findings.

Activated Intravascular Neutrophils Feature
Prominently in Thrombi in Hearts of COVID-19
Decedents

Thrombosis can also occur due to changes in the compo-
sition or activation of various components in the blood.
Figure 3 Neutrophils contribute to thrombosis in patients. A: The number of
controls. B and C: Patient tissue images of neutrophil-platelet aggregates and a
thrombi composed of more than 30% neutrophils were counted in entire tissue
neutrophil macrothrombi and neutrophil aggregates that are CitH3þ in circulatio
expression (arrows) in COVID-19 tissue. Myeloperoxidase (MPO) was used to i
formation. Data represent means � SEM. *P < 0.05. Scale bars: 50 mm (B, C, E,

The American Journal of Pathology - ajp.amjpathol.org
In contrast to the limited findings of endothelial alterations,
the composition of thrombi revealed frequent presence of
platelets associated with neutrophils (Figure 3, A and B)
and many of these neutrophils stained positive for Cit-
rullinated Histone 3 (CitH3), an early step in neutrophil
extracellular trap (NET) formation. Eventually, these neu-
trophils will undergo NETosis, the expulsion of NETs or
structures composed of chromatin, histones, and other in-
ternal neutrophil molecules that can bind pathogens or serve
as sites of thrombosis. Evidence of NET formation was
found in neutrophils at sties of thrombi in 4 of the 6 patients
with COVID-19 with thrombi. Some images suggest NETs
that appear to be directly associated with platelets
(Figure 3C). Neutrophil-rich macrothrombi composed of
30% or more neutrophils were also common in COVID-19
but not control specimens (Figure 3, D and E). CitH3þ
neutrophil-only aggregates also localized in vessels
(Figure 3F). Many of these neutrophils appeared to have
elevated expression of p65 (RelA), the significance of
which is uncertain, but, like NET formation, may reflect an
activated state (Figure 3G).
neutrophil-platelet aggregates per 20� field was quantified in patients and
neutrophil during NETosis, capturing platelets. D: Neutrophil rich macro-
at 10�. Values were normalized by tissue area. E and F: Images showing
n in COVID-19 heart tissue. G: Image shows neutrophils with increased p65
dentify neutrophils and Citrullinated histone H3 (CitH3) to identify NET
and F); 100 mm (G).
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Discussion

This study reports findings that agree with and extend the
results of prior autopsy series of hearts from patients
dying of COVID-19. It found thrombosis of micro and
macro coronary vessels with little evidence of overt car-
diac injury and an absence of direct infection, myocar-
ditis, or antibody and complement binding, as seen on
prior studies.12,14 It is not clear whether extensive
thrombosis in the absence of overt myocyte injury com-
promises cardiac function, but low levels of circulating
cardiac troponin concentrations correlate with morbidity
and mortality in severe COVID-19 infections, indicative
of low level and perhaps diffuse myocyte injury. To un-
derstand the likely causes of cardiac thrombosis, an
extensive multiparameter IF analysis of COVID-19 au-
topsy heart tissue was performed using advanced
morphologic methodology to discern the most likely
causes of the COVID-19 coronary thrombotic diathesis.
Despite the limited sample size and patient heterogeneity
that made drawing conclusions from individual patients
difficult, there was no consistent evidence that any of
the markers for EC activation tested, including ICAM-1,
VCAM-1 and p65 correlated with thrombosis,
and only rare and isolated evidence of vessel injury
or activation was seen. These data instead favor a
hypothesis that the thrombotic diathesis results primarily
from hypercoagulability of the blood caused by activated
neutrophils.

During COVID-19 infection, platelets and neutrophils
exhibit highly activated states with an increase in
P-selectin surface expression on the former and Factor
V, G-CSF, and IL-8 expression on the latter.24e26 Reports
have also documented increased numbers of circulating
neutrophil platelet aggregates27 and CitH3þ neutrophils
in the blood and at sites of thrombi in the lung.28

Additionally, Blasco et al29 recently reported a case se-
ries on patients with COVID-19 who died of MI
showing NETs within thrombi of the heart. The
current findings agree with and extend these reports and
suggest that neutrophils play a very prominent
role in thrombosis of the heart in these patients with
COVID-19.

Neutrophils may be activated to release NETs by
recognition or infection of virus or bacteria, activation by
cytokines, or interactions with platelets, complement and/
or antibodies.30 The current data in the heart favor a role of
cytokines and platelets in promoting NETs with the
finding of CitH3þ neutrophils in thrombi bound to plate-
lets in the absence of virus, antibody, or complement.
Minimal endothelial activation in the heart may be pre-
venting neutrophils from entering the heart parenchyma
unlike lungs of the same patient. Interestingly, the study
also found neutrophil aggregates, which may serve as an
additional thrombotic stimulus for platelet aggregation
leading to larger thrombi.
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Heparin therapy commonly administered to patients
with COVID-19 to block coagulation may also
prove to be beneficial in reducing NET-dependent
thrombus formation in patients. This negatively-charged
polymer can interact with positively-charged histones
released by NETs, rendering them unable to activate
platelets and potentiate thrombosis.31 Furthermore, hepa-
rin can activate DNAse I and bind P-selectin and
ICAM-1 to reduce the interaction and binding of
platelets and neutrophils to each other and to endothelial
cells.30,32

This study has several limitations. First, postmortem tis-
sue samples provide only insights toward the end of the
disease course and a final snapshot of possible mechanisms.
Earlier events may have a different pattern, but cardiac tis-
sue is not generally accessible for analysis before death.
Second, the nature of multidimensional cyclic IF restricts
the number of slides that can be examined, providing only
limited sampling that may miss other areas with pathologic
findings and is restricted to a small number of specimens.
Nevertheless, we believe we are the first to apply multipa-
rameter analyses, revealing the absence of vessel wall
changes at the actual sites of thrombosis. The current data
thus challenge the view that alterations in the vessel wall are
the primary cause of COVID-19 cardiac thrombosis, a
finding with implications for prophylaxis. Analysis of
additional samples will be required to validate this conclu-
sion. We also recognize that thrombosis in hearts, which do
not appear to be sites of viral infection, may be different
from the processes occurring in other sites, such as lung or
the gut, in which virus and abundant inflammation is
present.
In conclusion, the current multiparameter analysis of

cardiac vessel thrombosis points to activation of circulating
neutrophils as the most likely causal event. Alterations in
the vessel wall, although seen in some instances, are rela-
tively rare. In light of these findings, reducing neutrophil
responses could be an important target for therapeutic
intervention.
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