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Prevention strategies against sexual transmission of human immunodeficiency virus (HIV)

are essential to curb the rate of new infections. In the absence of a correlate of protection

against HIV infection, pre-clinical evaluation is fundamental to facilitate and accelerate

prioritization of prevention candidates and their formulations in a rapidly evolving

clinical landscape. Characterization of pharmacokinetic (PK) and pharmacodynamic (PD)

properties for candidate inhibitors is the main objective of pre-clinical evaluation. in vitro

and ex vivo systems for pharmacological assessment allow experimental flexibility and

adaptability at a relatively low cost without raising as significant ethical concerns as in vivo

models. Applications and limitations of pre-clinical PK/PD models and future alternatives

are reviewed in the context of HIV prevention.
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INTRODUCTION

The majority of HIV transmissions currently occur via the genital and the colorectal tracts.
Following infection of the initial mucosal founder population (Li et al., 2009), viral amplification is
essential for irreversible acquisition of infection and takes place in the first few days (1–3 days) after
viral exposure, giving a very short window of opportunity to prevent establishment of infection.
In the absence of a vaccine and acknowledging that condoms, male circumcision and behavioral
interventions appear insufficient to control the epidemic, the development of mucosal prevention
strategies remains an important global public health priority. A prevention method should be
safe, acceptable, affordable, and capable of inhibiting viral transmission at the mucosal portals of
entry. Effectiveness and adherence of prevention candidates can only be evaluated in clinical trials
(Heise et al., 2011); however, phase III clinical trials are expensive, time consuming and require
a large number of participants to determine efficacy (Douville et al., 2006; Nuttall et al., 2007).
Furthermore, with the introduction of FDA-approved prevention interventions, such as Truvada
for oral pre-exposure prophylaxis (PrEP) [Centers for Disease Control and Prevention (CDC),
2012], incidence of infection within communities will decrease, closing the window to perform
placebo-controlled trials and causing the trials to become even larger to test later-generation
products. Hence, pre-clinical models are increasingly important tools to reduce the risk of late
stage failure in clinical trials.

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00578
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00578&domain=pdf&date_stamp=2019-05-24
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cherrer1@imperial.ac.uk
https://doi.org/10.3389/fphar.2019.00578
https://www.frontiersin.org/articles/10.3389/fphar.2019.00578/full
http://loop.frontiersin.org/people/162452/overview


Herrera In vitro and ex vivo PK/PD Models

A single model capable of providing all the information
to prioritize the best-in-class candidate is not currently
available. Furthermore, the drug profile required to prevent
mucosal transmission has not been defined, nor has the best
pharmacologic measure of efficacy been defined for different
dosing routes of candidate inhibitor. Hence, the range of
in vivo, ex vivo, and in vitro assays is continuously being
expanded to assess parameters such as mechanism of action,
potency and selectivity, PK/PD, safety, immune response elicited,
stability, formulation, dosing and potential of acceptability,
which will facilitate scaling when defining dosing regimens
to be tested in humans. Dose-efficacy discrepancies between
animal studies and clinical trials have been described (Romano
et al., 2013) highlighting the gap in knowledge regarding the
concentration-effect relationship in different species andmucosal
compartments. This further emphasizes the need to develop
models that will allow PK/PD evaluation of candidate inhibitors
in the mucosal environment, recapitulate the factors potentially
affecting a direct correlation between PK and PD parameters and
facilitate appropriate comparisons between animal studies and
humans, increasing the predictive capacity of pre-clinical studies.

HIV-inhibitor candidates include antiretrovirals (ARVs) for
PrEP and post-exposure prophylaxis (PEP), broadly neutralizing
antibodies (bNAbs) delivered by passive immunization (Morris
and Mkhize, 2017) and enhancers of the innate mucosal barrier
functions (Herrera and Shattock, 2014; Lajoie et al., 2017).
The majority of ARVs currently considered for prophylaxis
are already used in highly active ARV treatment (HAART);
hence, a substantial amount of pharmacological data has
been accumulated for these compounds in biological fluids,
such as blood plasma and genital secretions (Cohen et al.,
2007; Dickinson et al., 2010). However, drug concentration
measurements in blood plasma are not representative of mucosal
concentrations (Lederman et al., 2004; Cohen et al., 2007;
Dumond et al., 2007, 2009; Brown et al., 2011; Trezza and
Kashuba, 2014) and mucosal tissues are histologically and
immunologically different from blood (Anton et al., 2000),
affecting the expected correlation between concentration and
efficacy at mucosal sites. In addition, drug accumulation is
specific to each mucosal compartment, with differences between
the intestinal and the female and male genital tracts (Cohen et al.,
2007; Patterson et al., 2011; Louissaint et al., 2013), partially due
to tissue-specific expression of drug transporters (Nicol et al.,
2014). This review will discuss in vitro and ex vivo PK and PD
models available and in development, their capacity to mimic
fundamental aspects of the mucosal environment, their value for
different candidates and dosing routes, their limitations and their
potential in predicting the outcome of clinical trials (Table 1).

PHARMACOLOGICAL PARAMETERS FOR
HIV PREVENTION STRATEGIES

PK describes the time course of drug concentration which is
affected by absorption, distribution, metabolism and elimination
and can be summarized as what the body does to the drug. PD
describes the resulting effect of a drug, its intensity, time course

and potential toxicity or responses to the drug, i.e., what the
drug does to the body. Pharmacological assays aim to define
PK and PD measures which include parameters such as Cmin
(minimum concentration achieved within a dosing interval);
Cmax (maximum concentration achieved within a dosing
interval); Ct (concentration at a certain time point post-dosing);
AUC (area under the curve for drug concentration during a
period of time); Tmax (time to achievemaximum concentration);
t1/2 (half-life; time required for concentration to decrease
50%); kel (elimination rate over time); MIC (minimal inhibitory
concentration); MEC (minimal effective concentration); T (time
the concentration remains over the MIC or MEC); IC50 (50%
inhibitory concentration); EC50 (50% effective concentration),
extent of viral replication at the last time point of the assay or
during a period of time (AUC of viral replication readout between
two time points); cytotoxicity and immunological toxicity. The
two main read-outs required to calculate these parameters
are drug concentration and level of infection after treatment
of the model with candidate inhibitors. Drug concentration
can be measured as cell-free drug (in culture supernatants, in
secretions or in plasma) or intracellularly (in cells or tissues)
and new analytical methods are constantly being developed
to measure the concentration of candidate inhibitors in these
different matrixes. Intracellular measurements are necessary for
inhibitors that require metabolization for activation such as some
reverse transcriptase inhibitors. Evaluation of viral replication is
specific for each pre-clinical model and can be done through
measurement of a reporter signal, of gag protein (p24 for HIV
and p27 for SIV) by ELISA, or of viral RNA/DNA by PCR or
qRT-PCR (Berry et al., 2011).

Assays that provide data to calculate PK/PD will be defined
by multiple factors including, among others, the candidate
inhibitor, the dosing route, the formulation and the anatomical
site of action. ARVs and modulators of mucosal immunity
can be formulated for oral or topical dosing, as injectables or
as implants; bNAbs can be delivered topically, intravenously
or intramuscularly for passive immunization. For mucosal
prevention, independently of the dosing route, concentrations
measured in the genital and colorectal tracts will need to be
sufficient to inhibit viral infection, and these concentrations will
be tissue-specific.

CELLULAR MODELS

Inhibitory potency of candidate HIV inhibitors is initially
screened in in vitro models such as cell lines susceptible to
HIV infection that allow calculation of PK parameters and
evaluation of cellular toxicity. Compounds or Abs are then tested
in ex vivo cellular models such as PBMCs, which in addition
to PK/PD parameters can provide toxicity and immunological
safety information.

Cell Lines
Multiple cell lines are routinely used to screen potential efficacy
of compounds and Abs including CD4+T cell lines and non-
lymphocytic cells that are transfected to express CD4 and CCR5
and/or CXCR4. Among the CD4− parental cell lines there are
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TABLE 1 | Applications of current in vitro and ex vivo models for development of HIV-prevention strategies.

Model Applications Stage in

development

pipeline

Advantages Disadvantages

Cell lines • PD (in vitro or in vivo

dosing)

• PK (drug cellular

transport)

• Safety (cellular toxicity)

Initial screening • Short experimental procedure (2–7 days)

• Sensitive assays

• Low cost

• Accessible to most laboratories

• Easy-to-use protocol

• High throughput

• Effect of biological fluids can be assessed

• Low physiological relevance

• Over-expression of CD4 and/or HIV co-

receptors

• Some cell lines are not budding competent

(inhibitors of viral maturation cannot be tested)

• Do not replicate donor-to-donor variation

• Cancerous origin

Primary cells • PD (ex vivo or in vivo

dosing)

• PK (drug cellular

transport)

• Safety (cellular toxicity,

cellular responses)

After initial screening in

cell lines

• Increased physiological relevance

• Express realistic levels of CD4 and HIV

co-receptors

• Secrete cytokines

• Accessible to most laboratories

• Mimic donor-to-donor variability

• Effect of biological fluids can be assessed

• Longer procedure (minimum 11 days)

• Low mucosal relevance

• Ethics approval required and, in some cases,

signed informed consent from donor

• Medium to high protocol complexity

• High cost in some cases

Cellular

co-cultures

• PD (ex vivo or in vivo

dosing)

• PK (drug cellular

transport)

• Safety (cellular toxicity,

cellular responses)

Following initial

screening in cell lines

and primary cells

• Mimic trans infection

• Effect of biological fluids can be assessed

• Longer procedure (minimum 11 days)

• Low throughput

• Ethics approval required

• Medium to high protocol complexity

Tissue

explants

• PD (ex vivo or in vivo

dosing)

• PK (drug cellular

transport)

• Safety (toxicity and

innate responses)

Before in vivo safety

and/or efficacy studies

• in vivo-like complexity and structure

• Mimic in vivo viral replication fitness

• Innate responses can be measured

• Migratory can be isolated in some models

• Mimic donor-to-donor variability

• Mucosal inflammation can be induced

• Good correlation with in vivo studies

• Effect of biological fluids can be assessed

• Versatile model

• Good data reproducibility through

protocol standardization

• Longer procedure (minimum 11 days)

• Progressive decay of structure with culture

• Ethics approval and signed informed consent

from donor required

• Fresh tissue preferable

• Cannot replace in vivo models yet

• Limited specimen size

• Low throughput

• Medium to high protocol complexity

human glioblastoma cells, U87MG, which stably express human
CD4 and CCR5 (U87 CD4+ CCR5+ cells) or CXCR4 (U87 CD4+

CXCR4+ cells) (Bjorndal et al., 1997); indicator cells derived from
human osteosarcoma cells, HOS, stably transfected with human
CD4, CCR5 and/or CXCR4 [GHOST (3) CCR5+, GHOST (3)
CXCR4+ and GHOST (3) CXCR4+ CCR5+ cells] and that
express green fluorescent protein (GFP) upon production of the
viral trans-activator of transcription (Tat) (Morner et al., 1999);
and human cervical epithelial carcinoma reporter cells, TZM-
bl, which are HeLa cells expressing CD4, CCR5, CXCR4 and
under control Tat, luciferase and β-galactosidase (Platt et al.,
1998, 2009; Derdeyn et al., 2000; Wei et al., 2002; Takeuchi
et al., 2008). This later cell line is susceptible to HIV-1, HIV-
2, simian immunodeficiency virus (SIV), and simian human
immunodeficiency virus (SHIV) and is nowadays one of the
main cell lines used to screen inhibitory activity of ARVs and
neutralization potency of Abs. TZM-bl cells are a single viral
cycle assay model that requires 2 days of culture before infectivity
is assessed by measurement of luciferase expression in cell
lysates as relative light units or by measurement of absorbance
with a β-galactosidase colorimetric assay. However, this cellular
model does not allow efficient viral budding (Carlson et al.,
2008) and therefore the activity of compounds that block viral

maturation such as protease inhibitors cannot be evaluated with
this assay (Stefanidou et al., 2012). Furthermore, TZM-bl cells
are HeLa cells that endogenously express CXCR4 but express
artificially high levels of CD4 and CCR5 (Polonis et al., 2008).
Another reporter HeLa cell line, Affinofile (Johnston et al., 2009),
resolves this issue by expressing variable levels of CD4 and CCR5
or CXCR4 based on the amount of selection antibiotic used
in culture.

Drug screening is often completed in this model with
evaluation of inhibitory potency in the presence of relevant
mucosal fluids. TZM-bl cells have been also used to evaluate
anti-viral activity in trials by incubating these cells with mucosal
secretions (Keller et al., 2011; Herold et al., 2016) obtained
from PrEP trial participants, or serum and plasma (Montefiori
et al., 2012) during vaccine trials. However, biological fluids can
decrease or enhance the level of infection measured in this model
(Ghosh et al., 2010b; Hughes et al., 2016) due to inhibitory,
toxic or enhancing factors in the fluid matrix such as innate
molecules, secreted metabolites or chemical compounds taken
by the donor. Therefore, dilution and/or filtration of the sample
is required to avoid cytotoxic effects and contamination of the
culture (Fletcher et al., 2009; Ghosh et al., 2010a; Harman et al.,
2012; Mukura et al., 2012; Romas et al., 2014; Jais et al., 2016).
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No effect has been observed on the susceptibility to infection
of TZM-bl cells by the presence of endotoxins in the biological
specimens nor with samples obtained at different stages of the
menstrual cycle or during pregnancy (Geonnotti et al., 2010; Patel
et al., 2014; Hughes et al., 2016); nevertheless, protocols have
been developed to avoid artifacts. The innate anti-HIV activity
of cationic factors present in cervical secretions can be prevented
by selective depletion of cations (Venkataraman et al., 2005).
When measuring Ab neutralization potency in serum or plasma,
the presence of other HIV-inhibitory factors can be determined
by pre-screening the activity of biological specimens in TZM-
bl cells against a chimeric HIV-1 virus containing the Env of
murine leukemia virus, which will not be recognized by anti-
HIV Abs (Sarzotti-Kelsoe et al., 2014a). TZM-bl cells have also
been further transfected to develop amodel for evaluation of HIV
innate responses (Trotard et al., 2016).

Numerous human CD4+T cell lines have been used to
determine inhibitory potency parameters. Among them, initial
models MT-2 (Harada et al., 1985; Haertle et al., 1988) and MT-
4 cells (Harada et al., 1985; Pauwels et al., 1987; Larder et al.,
1989) expressing HTLV-1 have been progressively replaced by
other T cell lines such as CEM-CCRF cells (Foley et al., 1965),
PM-1 cells (Lusso et al., 1995) and C8166 cells (Salahuddin et al.,
1983; Lee et al., 1984). CD4+CXCR4+ A3R5 cells have been
transfected with CCR5 as a sensitive T cell model for evaluation
of neutralization potency of Abs using luciferase reporter HIV-1
infectious molecular clones (Kim et al., 2003; Montefiori et al.,
2012; Sarzotti-Kelsoe et al., 2014b). Assays in CD4+T cells
require at least 7 days of culture, allowing multiple rounds of
viral replication, and infectivity is determined by measurement
of p24 antigen content in culture supernatants with enzyme-
linked immunosorbent assay (ELISA) or luciferase expression
when using reporter viral plasmids. CD4+T cell lines have also
been used to study the mechanism of drug cellular transport and
the implications of the PK profile of drug candidates for HIV
prevention (Taneva et al., 2015).

Safety of compounds is initially determined in cellular models
by assessing the level of potential cytotoxicity via measurement
of tetrazolium salt (MTT) cleavage into a blue-colored product
(formazan) in viable cells (Slater et al., 1963) or by similar assays
of cellular viability. Despite the lack of productive infection,
epithelial cell lines represent an important model to study
potential toxicity or disruption of epithelium integrity induced by
the drug (Dezzutti et al., 2004). To assess the impact of candidates
on epithelial permeability, epithelial cells can be cultured on the
apical chamber of trans-well systems to measure tight junctions.
Drug transporters on mucosal epithelium allow penetration of
ARVs in the epithelium to access the submucosal stroma where
the initial foci of infection is located (Hu et al., 2015). In colon
epithelium drug efflux is mainly mediated by P-glycoprotein
(Pgp), multi-drug resistance-associated protein (MRP) and
breast cancer resistance protein (BCRP) transporters; and drug
uptake is mediated by organic anion transporter OATP2B1 and
organic cation transporter OCT1 (Englund et al., 2006; Kis et al.,
2010; Drozdzik et al., 2014; Nicol et al., 2014;Mukhopadhya et al.,
2016a). In female genital tract expression of efflux [ATP-binding
cassette (ABC), BCRP, MRP, and P-gp] and influx [equilibrative

nucleoside transporter (ENT), soluble carrier (SLC) and OCT]
transporters has been described (Gunawardana et al., 2013; Zhou
et al., 2013, 2014; Grammen et al., 2014; Nicol et al., 2014;
Hijazi et al., 2015). Hence, this model is also relevant for PK
studies to determine the impact of drug transporters in epithelial
cells on drug or Ab concentrations when crossing the mucosal
epithelial barrier (Konig et al., 2010; Kis et al., 2013; Hoque
et al., 2015; Taneva et al., 2015; Swedrowska et al., 2017), to
evaluate the potential effect of candidate inhibitors on drug
transporters (Reznicek et al., 2017) and to study the safety and
efficacy of formulations designed to deliver compounds across
the epithelium to the HIV target cells (Kapitza et al., 2007; Zidan
et al., 2013). Harvested supernatants from trans-well systems
can be used to measure drug concentrations and for PD assays
with CD4+ cells. Microscopy has been considered to evaluate
absorption/excretion and intracellular distribution of formulated
drug candidates (Mandal et al., 2015; Costanzo et al., 2016;
Holmstock et al., 2018). Available epithelial cell lines include
urogenital epithelial cells [e.g., ME-180 (Sykes et al., 1970), HT-
3 (Fogh et al., 1977) and HEC-1-A (Kuramoto, 1972)] and
colorectal epithelial cell lines [such as Caco-2 (Fogh et al., 1977)
and SW837 (Leibovitz et al., 1976)].

The main drawback of cell lines is their homogeneity, which
fails to reproduce the cellular diversity of mucosal tissues and to
replicate donor-to-donor variability. Another limitation is that
the majority have cancerous cell origins and therefore, do not
recapitulate a healthy mucosal environment. However, models
such as the TZM-bl assay provide a sensitive and cost-effective
tool for quickly assessing activity of candidate inhibitors.

Primary Cells
Primary cells such as lectin-activated peripheral blood
mononuclear cells (PBMCs) as well as cells derived from PBMCs,
including monocyte-derived macrophages and immature
dendritic cells (iDCs), provide more physiologically relevant
cellular models for anti-viral activity measurements. These ex
vivo models involve longer experiments (7 to 14 days) allowing
multiple viral replication cycles and therefore, tend to be used
after initial assessment in immortalized cell lines. Inhibitory
activity, concentration and safety of drugs and Abs have been
measured in activated PBMCs following ex vivo dosing or in
cells obtained from animal studies (Garcia-Lerma et al., 2011;
Dobard et al., 2012; Massud et al., 2013; Anderson et al., 2014)
and trial participants.

PBMCs provide information about the systemic compartment
but are not fully representative of mononuclear cells found
in mucosal tissues. Indeed, differences in PK parameters such
as Cmax and half-life have been observed between PBMCs
and mucosal mononuclear cells isolated from digested mucosal
tissues obtained after in vivo dosing of NHPs (Garcia-Lerma et al.,
2011; Dobard et al., 2012; Massud et al., 2013) and humans (Yang
et al., 2014; McGowan et al., 2015). Differences in expression of
drug transporter have also been described between circulating
and mucosal CD4+T cells (Kis et al., 2010; Mukhopadhya
et al., 2016b). Another limitation is that PBMCs exhibit anti-
HIV-1 activity in the presence of bacterial lipopolysaccharide
(LPS), which will therefore, artefactually enhance the inhibitory
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activity of biological specimens if they contain endotoxins
(Geonnotti et al., 2010). However, activated PBMCs express more
physiologically relevant levels of CD4 and HIV-coreceptors than
transfected cell lines such as TZM-bl cells (Polonis et al., 2008),
and secrete cytokines upon infection as mucosal tissues. This
model is a more stringent tool for PD evaluation than cell lines
with values of anti-viral activity closer to those observed in
mucosal tissues than those obtained with in vitro cellular models.
Hence, PBMCs represent an additional filter in the pre-clinical
pipeline of modest cost and are accessible to most laboratories.

Primary epithelial cells can also be isolated (Greenhead et al.,
2000) and cultured in trans-well systems as described above for
epithelial cell lines, to assess safety, concentration and activity of
candidate inhibitor after ex vivo dosing (Shen et al., 2018, 2019)
and safety of excipients used for mucosal dosing (Hu et al., 2016).
These cells can be purchased or isolated from primary tissue
which involves access to surgical specimens. Furthermore, these
cells are difficult to culture and require very specific protocols.
These limitations make this model costly and not as accessible as
epithelial cell lines.

Cellular Co-cultures
Another important model is based on co-cultures of different
cell types. This model can be set up with cell lines and/or
primary cells directly in contact to replicate the interaction
between DCs and CD4+T cells during the viral amplification
of the “founder population” and subsequent viral dissemination
to draining lymph nodes. These co-cultures have been used to
measure drug and Ab activity against trans infection between
primary mature DCs (mDCs) and TZM-bl cells or autologous
CD4+ T cells (Sagar et al., 2012) and between primary iDCs and
PM-1 cells (Hu et al., 2004; Herrera et al., 2016).

Co-cultures of epithelial cells with target cells in a dual-
chamber model mimicking trans-epithelial migration of drugs,
Abs and virus have been successfully used to assess safety and
allow studies of HIV transmission and efficacy of candidate
inhibitors. Epithelial cell lines have been co-cultured with target
CD4+ cell lines such as TZM-bl cells (Pasetto et al., 2014); or with
primary PBMCs (Dezzutti et al., 2004; Guedon et al., 2015) or
DC (Van Herrewege et al., 2007). Shen et al. have recently shown
with co-cultures of primary epithelial cells and fibroblasts from
the female genital tract in trans-well systems that the epithelial
barrier can accumulate reverse transcriptase inhibitors, tenofovir
and tenofovir alafenamide (TAF), and release them to susceptible
CD4+ cells for several days after dosing (Shen et al., 2018).

TISSUE EXPLANTS

The next phase in PK/PD evaluation often utilizes tissue models
such as ex vivo culture of mucosal tissue explants (Grivel
and Margolis, 2009). Explants are obtained as biopsies or as
surgically resected tissue which upon arrival at the laboratory
are dissected to remove the muscularis and cut into small
pieces. Several models have been developed for penile (Fischetti
et al., 2009), cervical, vaginal and colorectal tissues including
polarized (Collins et al., 2000; Abner et al., 2005; Cummins et al.,
2007) and non-polarized systems (Greenhead et al., 2000; Hu

et al., 2004; Fletcher et al., 2006; Grivel et al., 2007). In non-
polarized models, explants are submerged for ex vivo dosing with
candidate inhibitor and then with virus for ex vivo challenge.
After incubation and depending on the type of tissue, explants
are transferred either to new plates in submerged conditions
for culture of cervicovaginal and penile tissue, or onto gelatin
sponge rafts presoaked in media to help maintain the structure of
colorectal explants by culturing them at the air-media interface.
Non-polarized culture reduces the protective function of the
epithelial barrier by exposing target cells on the edges of the
explant directly to the virus, and therefore allows PD evaluation
in what could be considered the “worst-case scenario,” however it
also represents the “best-case scenario” of drug or Ab availability
to prevent infection of the target cell.

In polarized models the tissue epithelium is oriented upwards
on the apical chamber of a trans-well system and the edges are
sealed using agarose, MatrigelTM or surgical glue. These models
have been prioritized for evaluation of formulated inhibitors to
evaluate the ability of the formulation to deliver drugs or Abs
to the target cells across the epithelial barrier and to assess the
safety profile of the formulation toward the epithelium. Polarized
systems require larger tissue explants for an increased surface
exposure to the candidate inhibitor, for a correct orientation of
the epithelium and to avoid incorrect sealing of the explant edges.

The different mucosal portals of HIV entry have histological
and immunological specificities such as epithelium type,
abundance of activated HIV-target cells, drug transporter profile,
Ab isotype expression, and pH, among others (Fischetti et al.,
2009; Hladik and Hope, 2009; Shacklett, 2009; Hijazi et al.,
2015; Taneva et al., 2015; Cheeseman et al., 2016; Mukhopadhya
et al., 2016a). The known lower level of viral replication in
the female genital tract compared to the colorectum in vivo is
replicated in the tissue explant model with lower read out values
of infection in cervicovaginal explants after challenge with a
normalized viral input titer (Lapenta et al., 1999; Anton et al.,
2000; Poles et al., 2001; Fox et al., 2016). Furthermore, this
model recapitulates (Saba et al., 2013) changes in susceptibility
to HIV infection in the female genital tract during the menstrual
cycle (Rodriguez-Garcia et al., 2013; Thurman et al., 2016; Boily-
Larouche et al., 2019) and menopause (Thurman et al., 2017).
Gender or location of tissue excision have not been reported to
affect the susceptibility to infection of colorectal explants nor the
activity of candidate inhibitors (Anton et al., 2011); nevertheless,
lower levels of infection are observed in small intestine explants
compared to large intestine tissue (Elliott et al., 2018). The
predominant transmission of R5-tropic isolates compared with
X4-viruses during sexual intercourse (Salazar-Gonzalez et al.,
2009; Grivel et al., 2011) is also replicated in the explant model
(Herrera et al., 2009). These traits will affect PK and PD profile of
candidate inhibitors and therefore are important for the design
and evaluation of prevention strategies and their formulation
(Trezza and Kashuba, 2014). In fact, tissue drug levels are
not only dosing route-dependent but will be distinct for each
tissue and distinct from the systemic compartment (Lederman
et al., 2004; Cohen et al., 2007; Trezza and Kashuba, 2014),
thus affecting the expected correlation between concentration
and efficacy at mucosal sites. This can be reflected with the
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explant model. Greater concentrations of rilpivirine, a reverse
transcriptase inhibitor, are required to inhibit infection in ecto-
cervical explants than in colorectal tissue (Dezzutti et al., 2016).
The activity of maraviroc, a CCR5-binding entry inhibitor, could
only be observed in pre-activated ecto-cervical tissue explants;
however, activation of colorectal explants was not necessary
although limited inhibition was measured in this tissue. These
results reflect the heterogeneity in CCR5 conformation and/or
expression in the different mucosal tissues, which cannot be
assessed in TZM-bl cells, a model expressing high levels of CCR5
(Fletcher et al., 2016; Herrera et al., 2016). Interestingly, the
limited activity ofmaraviroc observed in tissue explants predicted
the lack of efficacy of this drug in oral PrEP NHP studies (Massud
et al., 2013) and clinical trials (Fox et al., 2016; Gulick et al., 2017;
McGowan et al., 2019) despite accumulation of the drug in the
mucosal compartments.

Viability of explants has been questioned. However, despite
progressive decay in structure, CD4/CD8 cell ratios remain
constant and viral replication is sustained (Fletcher et al., 2006).
Tissue explants can be kept in culture for more than 3 weeks
although for PK/PD evaluation, cultures are kept for 15 days;
except for evaluation of protease inhibitors targeting late stages
of the viral replication cycle, when explants are cultured for 21
days. During this period, cultures are fed at different time points
by harvesting part of the supernatant and adding fresh media. To
mimic pulse exposure to drug or Ab, after incubation explants
are washed to remove unbound inhibitor and virus and cultured
in media without compound; however, to evaluate sustained
release systems such as vaginal rings, implants or injectables, after
initial incubation and washes, culture media is supplemented
with candidate inhibitor during the entire period of culture
(Harman et al., 2012; Stefanidou et al., 2012; Fletcher et al., 2016;
Zhang et al., 2017).

In cervical and penile tissue models, cells emigrating from the
tissue have been described and these can be cultured separately
from the explant and in the presence of CD4+T cells, such as PM-
1 cells, to assess anti-viral activity of a drug against dissemination
by migratory cells (Hu et al., 2004; Fischetti et al., 2009).

To further model the PK/PD profile of a candidate inhibitor
in a mucosal compartment and during intercourse, mucosal
secretions can be added to the tissue explants. Addition of
semen or seminal fluid does not affect the activity of reverse
transcriptase inhibitors (Neurath et al., 2006; Fletcher et al., 2009;
Dezzutti et al., 2012b). Female genital tract secretions can be
obtained as cervicovaginal lavages, which dilute the secretion,
or as undiluted fluid with Weck-cel spears, vaginal aspirators
or with Instead Cups; however, sparse volumes tend to be
obtained. In addition, immune factors in secretions will vary
during the menstrual cycle (Birse et al., 2015), other pathologies
will modulate the level of inflammation (Roberts et al., 2012;
Kaul et al., 2015; Introini et al., 2017a,b; McKinnon et al., 2018),
microbial content will not be homogenous among women (Pyles
et al., 2014; Klatt et al., 2017; Bayigga et al., 2018; Taneva et al.,
2018) and hormonal contraception might increase susceptibility
to HIV(Morrison et al., 2015) affecting the PK/PD profile. Hence,
modeling the viscosity, pH and osmolarity of the female genital
tract secretions, synthetic vaginal fluid (Owen and Katz, 1999)

and synthetic cervical fluid (Burruano et al., 2002) have been used
in tissue assays as pre-clinical alternatives (Fletcher et al., 2009).

Safety of candidate inhibitors and their formulations can
also be pre-clinically evaluated in tissue explants. Clinical trials
testing the first generation of topical inhibitors revealed the
importance ofmucosal safety following enhancement of infection
(Honey, 2007; Adams and Kashuba, 2012). Cytotoxicity can
be easily measured in tissue explants by the MTT viability
assay. Immunological safety biomarkers have been defined for
mucosal compartments (Fichorova et al., 2004; Fields et al.,
2014). The explant model allows evaluation of mucosal responses
to candidate inhibitor exposure by measurement of cytokine
modulation (Beer et al., 2006; Gali et al., 2010; Zhang et al.,
2017). Pre-clinical safety evaluation has allowed optimization of
formulations for different mucosal compartments requiring, for
example, modification of the osmolarity of a vaginal gel for rectal
application (Rohan et al., 2010; Dezzutti et al., 2012a), which was
then found to be safe during clinical trial testing (Anton et al.,
2012; McGowan et al., 2013).

Ex vivo modeling of the mucosal compartment provides
efficacy, concentration, and safety data. Additionally, tissue
explants recapitulate the viral replication fitness of wild type
and resistant isolates observed in vivo in patients (Abraha et al.,
2009; Herrera et al., 2009) strengthening the predictive potential
of this model in the context of increasingly prevalent ARV-
resistance (Pennings, 2013; Snedecor et al., 2014). It is estimated
that in high-income countries, 10–20% of new infections are
caused by ARV-resistant isolates harboring mutations that confer
resistance to at least one of the three main types of ARV drugs
(Salomon et al., 2000; Briones et al., 2001; Duwe et al., 2001;
UK Collaborative Group on Monitoring the Transmission of
HIV Drug Resistance, 2001; Little et al., 2002; Chaix et al., 2003;
Mendoza et al., 2003; Weinstock et al., 2004).

Studies in NHPs delivered proof of principle that efficacy
of topical dosing with tenofovir against rectal challenge could
be replicated by ex vivo challenge of tissue resections obtained
from NHPs topically dosed in vivo (Cranage et al., 2008). In
fact, this approach of ex vivo challenge of mucosal biopsies is
increasingly being used as an endpoint of ex vivo efficacy of PrEP
(Anton et al., 2012; Harman et al., 2012; Richardson-Harman
et al., 2012, 2014; McGowan et al., 2015, 2019; Fox et al., 2016)
and vaccine trials (Herrera et al., 2014). This model can be
used with cervicovaginal samples frozen at the trial sites and
thawed at a centralized facility for ex vivo challenge (Gupta et al.,
2006; Lackman-Smith et al., 2008); however, it requires the use
of fresh tissue when assessing efficacy in the colorectal tract
(McGowan et al., 2012).

Despite the variety of explant models, it has been shown that
consistent results of anti-viral efficacy can be obtained among
different laboratories through protocol standardization for a
same model (Richardson-Harman et al., 2009).

The tissue explant model will need to be further developed
to assess the PK/PD profiles of new inhibitors and their
formulations designed to provide long term efficacy. This will
require the model to be adapted physically with protocols that
will mimic, for example, mucosal efficacy of injectables; and
define new biomarkers of safety and activity. New models should
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also be able to evaluate broad spectrum anti-viral drugs and
compounds designed to maintain mucosal health.

FUTURE MODELS

The development of engineered human tissues as a model to
study physiological functions and pathologies could lead to new
systems for safety and PK evaluation of candidate HIV-inhibitors
and ideally for efficacy studies. Initial models mimicking the
intestinal epithelium were based on the culture of isolated
intestinal crypts with human adult stem cells (Sato et al., 2009)
embedded in a matrix of MatrigelTM or silk (Chen et al., 2017).
Cultures derived from the small intestine are referred to as
enteroids and those from colon are known as colonoids; they
mimic a three-dimensional functional epithelial barrier capable
of eliciting innate immune responses (Chen et al., 2017). Another
option is the use of human inducible pluripotent stem cells
which differentiate and form spheroid structures that are cultured
on a matrix and are known as organoids (Spence et al., 2011;
Miura and Suzuki, 2018). However, organoids have fetal and
immature phenotypes and therefore, a certain degree of maturity
can be obtained during culture as shown with liver organoids
(Takebe et al., 2013). To increase the physiological relevance of
these models, fluidic devices have been incorporated into models
known as “organ-on-a-chip” or “microphysiological systems.”
Human gut-on-a-chip systems were developed originally using
Caco-2 cells (Kim et al., 2012). This represents a structurally
oversimplified model lacking immune cells and not achieving
fully mature adult phenotypes. However, the field is constantly
evolving and new models combining organoid and organ-on-
a-chip technologies provide primary gut chips (Kasendra et al.,
2018). The limited structural resemblance of these devices
with in vivo tissue could be resolved using three-dimensional
bioprinting techniques (Mittal et al., 2018). Other drawbacks
are the microfluidic and chip costs, the complexity of the
microengineering and the cytotoxicity induced by defective flow
rates. The greater complexity of the female genital tract compared
to the gut cannot be modeled with a unique chip but rather by
including multiple organs-on-a-chip in one microphysiological
system (Loskill et al., 2015; Edington et al., 2018) that can be used
to study the biology and pathogenesis of the female genital tract
(Young et al., 2017).

These and future models will need to fully recapitulate
the cellular diversity of mucosal tissues, the immune
responsiveness and the donor-to-donor variation to
provide pre-clinical PK and PD information on candidate
HIV inhibitors.

CONCLUSIONS

Pre-clinical assays for HIV prevention remain critical to
understanding the relative potential of new compounds and
combinations and for selecting the best candidates, their
formulation and dosing regimen. Furthermore, in an era
where HIV cure research has been prioritized, pre-clinical
models developed for prevention might be applicable for the
evaluation of cure strategies. However, all pre-clinical assays
have their limitations and their value in predicting clinical
efficacy has yet to be established. Hence, the process of product
prioritization needs to be based on a range of criteria that
include: in vitro drug potency, animal efficacy data, stage of
product development, cost of goods, existing safety data, and
ability to measure PK/PD parameters in clinical trials. New
PK/PD parameters or correlations might need to be defined
to pre-clinically predict the outcome of clinical trials. This will
require further development of existing models, which have not
significantly changed in the last decade, and introduction of
new models in the pre-clinical toolbox. Ultimately, validation
of in vitro and ex vivo models will require in vivo studies
in humans.
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