
METHODS
published: 01 May 2017

doi: 10.3389/fninf.2017.00032

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2017 | Volume 11 | Article 32

Edited by:

Richard A. Baldock,

University of Edinburgh, UK

Reviewed by:

Zhen Ricky Qiu,

University of Edinburgh, UK

Robert C. Cannon,

Textensor Limited, UK

*Correspondence:

Jorge L. Bernal-Rusiel

jorge.bernal@childrens.harvard.edu

Received: 03 January 2017

Accepted: 13 April 2017

Published: 01 May 2017

Citation:

Bernal-Rusiel JL, Rannou N,

Gollub RL, Pieper S, Murphy S,

Robertson R, Grant PE and Pienaar R

(2017) Reusable Client-Side

JavaScript Modules for Immersive

Web-Based Real-Time Collaborative

Neuroimage Visualization.

Front. Neuroinform. 11:32.

doi: 10.3389/fninf.2017.00032

Reusable Client-Side JavaScript
Modules for Immersive Web-Based
Real-Time Collaborative Neuroimage
Visualization
Jorge L. Bernal-Rusiel 1*, Nicolas Rannou 2, Randy L. Gollub 3, 4, 5, Steve Pieper 6, 7,

Shawn Murphy 5, 8, 9, Richard Robertson 5, 10, Patricia E. Grant 1, 5, 10 and Rudolph Pienaar 1, 5, 10

1 Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA, 2 Eunate

Technology S.L., Sopela, Spain, 3Department of Radiology, Massachusetts General Hospital, Boston, MA, USA,
4Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA, 5Harvard Medical School, Boston, MA,

USA, 6 Isomics Inc., Cambridge, MA, USA, 7 Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA,

USA, 8Department of Neurology, Massachusetts General Hospital, Boston, MA, USA, 9 Laboratory of Computer Science,

Massachusetts General Hospital, Boston, MA, USA, 10Department of Radiology, Boston Children’s Hospital, Boston, MA,

USA

In this paper we present a web-based software solution to the problem of implementing

real-time collaborative neuroimage visualization. In both clinical and research settings,

simple and powerful access to imaging technologies across multiple devices is becoming

increasingly useful. Prior technical solutions have used a server-side rendering and

push-to-client model wherein only the server has the full image dataset. We propose

a rich client solution in which each client has all the data and uses the Google Drive

Realtime API for state synchronization. We have developed a small set of reusable

client-side object-oriented JavaScript modules that make use of the XTK toolkit, a

popular open-source JavaScript library also developed by our team, for the in-browser

rendering and visualization of brain image volumes. Efficient realtime communication

among the remote instances is achieved by using just a small JSON object, comprising

a representation of the XTK image renderers’ state, as the Google Drive Realtime

collaborative data model. The developed open-source JavaScript modules have already

been instantiated in a web-app called MedView, a distributed collaborative neuroimage

visualization application that is delivered to the users over the web without requiring the

installation of any extra software or browser plugin. This responsive application allows

multiple physically distant physicians or researchers to cooperate in real time to reach a

diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities

of the presented technological solution.

Keywords: collaborative visualization, interactive visualization, real-time collaboration, neuroimaging, HTML5,

web services, telemedicine, Google Drive

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2017.00032
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00032&domain=pdf&date_stamp=2017-05-01
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jorge.bernal@childrens.harvard.edu
https://doi.org/10.3389/fninf.2017.00032
http://journal.frontiersin.org/article/10.3389/fninf.2017.00032/abstract
http://loop.frontiersin.org/people/399226/overview
http://loop.frontiersin.org/people/140031/overview
http://loop.frontiersin.org/people/419786/overview
http://loop.frontiersin.org/people/37037/overview
http://loop.frontiersin.org/people/44931/overview

Bernal-Rusiel et al. Web-Based Collaborative Neuroimaging Visualization

1. INTRODUCTION

Diagnosis in complex medical disorders as well as imaging
research can benefit from cooperative visualization and analysis
of the same image volume by more than one physician or
researcher at the same time in a session that shares control
and events between all parties. The viewing parties often may
not be located at the same physical location but are connected
via some data network and their geographical separation can
span different cities or even different countries. These location
constraints together with the need for real-time interactions on
the image data between participants calls for the development
of the so-called collaborative image visualization systems (CIVS).
In medical diagnosis, these types of systems form an important
sub-area of Telemedicine (Manssour and Dal Sasso Freitas,
2000). CIVS can be seen as a type of distributed software
system that attempts to provide simultaneous visualization of
shared image data and automatic synchronization of user-
data interactions among users working on physically remote
computational entities (desktop computers, mobile devices, etc).
This synchronization is difficult to achieve in real time as it
usually has to be carried out over the Internet without assuming
any specific network topology and latency or a predefined
number of connected users. Furthermore, user accessibility and
visualization synchronization are both affected by the fact that the
remote computational entities can have quite different hardware
architectures and operating system platforms. In addition CIVS
are expected to provide a user-friendly homogeneous-across-
platforms interface and to require minimal user technological
skills for their installation and usage.

Several attempts to implement CIVS have been reported
over the last two decades. Early solutions mainly ran on UNIX
platforms because of the built-in network and security features.
These remote visualization instances were interconnected
using middleware technologies for distributed systems such
as Common Object Request Broker Architecture (CORBA)
or Remote Method Invocation (RMI) (Anupam et al., 1994;
Forslund et al., 1996, 1998; Coleman et al., 1997). Cross-platform
solutions began to appear around the turn of the century
using java to implement the client-side software (Manssour and
Dal Sasso Freitas, 2000). However, these technologies lack the
desirable loose coupling between clients and servers and provide
an unnecessary complex application programming interface
(API) among other technical and cost issues (Gokhale et al., 2002;
Henning, 2006).

The shift to full web-based solutions has occurred somewhat
haphazardly since the early 2000s (Eckersley et al., 2003; Millan
and Yunda, 2014; Sherif et al., 2014; Wood et al., 2014)
and closely tracked the increasing rise and power of the web
browser as a middleware platform and the expressiveness of
the JavaScript programming language. Web-based solutions are
especially appealing as they do not require the installation of any
client-side software other than a standard web browser which
enhances accessibility and usability. But as with the previous
technologies in most cases collaboration only meant data sharing
with no realtime interactivity between participants. Alternatively,
when simultaneous visualization was required only a single user

(the collaboration owner) could have direct control over the
visualization parameters and the other users were limited to
passive viewing of results using various streaming technologies.
As such, real-time synchronization among physically remote
highly interactive clients over the wide Internet has not been
readily available.

Recently some web-based CIVS have been implemented that
attempt to achieve real-time synchronization by rendering the
image volumes on the server side and sending a representation
of the visualization to each collaborator’s web browser as a
series of 2D images or streaming video (mainly JPEG, PNG,
or MPEG formats) (Kaspar et al., 2010, 2013). However,
this server-side rendering technique is not suitable for the
so-called Fully-Shared-Control real-time CIVS in which all
the collaborators have control over the parameters associated
with a given interactive visualization (e.g., window leveling
of the currently rendered image volume slice) (Manssour
and Dal Sasso Freitas, 2000). The main reason for this is
that it requires continuously sending relatively heavy data
over the network after each single user-data interaction
that modifies the visualization parameters. This makes the
application not only highly sensitive to user-specific network
latency but doesn’t scale well when the number of concurrent
users increases. Therefore, a distributed client-side rendering
approach would be preferable for fast real-time all-users
interactivity.

New advances in core web application technologies such as
the modern web browsers’ universal support of ECMAScript
5 (and 6), CSS3 and HTML5 APIs have made it much more
feasible to implement efficient graphical image volume rendering
and visualization as well as real-time communication purely
in client-side JavaScript (Mwalongo et al., 2016). Indeed a few
powerful client-side JavaScript libraries that can perform in-
browser rendering and visualization of 3D neuroimage volumes
have already emerged and are freely available as open-source
projects (Sherif et al., 2015). In particular, in this paper we make
use of the popular XTK toolkit which was developed by our
team at the Fetal-Neonatal Neuroimaging and Developmental
Science Center, Boston Childrens Hospital1 and can be freely
downloaded from the web2 (Haehn et al., 2014).

Despite the ready availability of client-side JavaScript
rendering libraries we only know of a single attempt at
implementing a web-based real-time CIVS based on a client-
side rendering and visualization approach. The Slice:Drop3

application previously developed by our team provides a
solution based on the XTK toolkit and the Dropbox API
(Haehn, 2013). However, Slice:Drop was developed mostly as a
prototypical concept showcase and is less modular and difficult
to reuse in other applications. In addition, Slice:Drop uses third
party services provided by Dropbox and early implementations
required data to be publicly shared without any restrictions which
may lead to undesirable data leaking to non-intended Internet
users.

1http://fnndsc.babymri.org.
2http://goxtk.com.
3http://slicedrop.com.

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2017 | Volume 11 | Article 32

http://fnndsc.babymri.org
http://goxtk.com
http://slicedrop.com
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bernal-Rusiel et al. Web-Based Collaborative Neuroimaging Visualization

In this article we propose a new web-based technological
solution (in many ways a logical successor to Slice:Drop) to
the problem of implementing efficient real-time collaborative
neuroimage visualization. As with Slice:Drop, here we adopt a
client-side rendering and visualization approach based on the
XTK toolkit. We propose a portable viewing application that
can easily be embedded into larger systems, such as ChRIS [also
developed at Boston Children’s Hospital (Pienaar et al., 2015)].
Real-time synchronization and communication among remote
visualization instances is then managed through the Google
Drive Realtime API.We provide a small set of reusable client-side
object-oriented JavaScript modules named viewerjs4, fmjs5,
and gcjs6 that are freely accessible as open source software
from our Github organization repositories7. These JavaScript
modules have already been instantiated in the implementation of
a distributed collaborative neuroimage visualization application
calledMedView that is delivered to the users over the web without
requiring the installation of any extra software or browser plugin.
The source code of this application and a built and deployed
version are also hosted in our Github repositories. It allows
multiple physically distant physicians or researchers to cooperate
in real-time to reach a diagnosis or scientific conclusion.

2. MATERIALS AND METHODS

2.1. Scope
The MedView application described in this paper provides a
web-based viewer for common medical image formats. When
clients visit the MedView website8, the required functionality is
downloaded into, and executed by, the browser. Any medical
image data that is “dropped" into the browser (or navigated to
from the file picker dialog) stays in the local client context, i.e.,
no data is uploaded out to the web or to some remote website. All
data remains local—only the viewer source code in the form of
Javascript programming is fetched remotely.

In addition to image rendering, MedView provides for real-
time collaboration and sharing of a common image cursor
between all participants in a collaborative session.

2.2. Client-Side Rendering and
Visualization
From an application programming perspective, an application
like MedView is rather lightweight and most of the application
visualization logic and behavior is provided by the viewerjs.
This library is in turn reliant on several subcomponents—a low
level visualization component (XTK), a collaboration component
(gcjs), and a unified file management system (fmjs), see
Figure 1.

Currently, the popular open-source XTK toolkit is used by
viewerjs for low level graphic services. XTK is a fully client-
side JavaScript library, which means it runs entirely in the web

4https://github.com/FNNDSC/viewerjs.
5https://github.com/FNNDSC/fmjs.
6https://github.com/FNNDSC/gcjs.
7https://github.com/FNNDSC.
8https://fnndsc.github.io/medview.

browser without requiring any special back-end infrastructure.
It is built on top of the fast and well supported HTML5 Canvas
2D andWebGL 3D graphics’ APIs by encapsulating functionality
in an easy-to-use abstraction API for image visualization
applications. This API is well documented with an extensive
set of demos, lessons and practical code examples9. The library
supports the most common neuroimage data formats including
DICOM, NIFTI, MGH/MGZ, NRRD, VTK PolyData, Freesurfer
meshes, STL and TrackVis as well as label maps, color tables and
surface overlays (Haehn et al., 2014).

A successor to XTK called AMI10 is currently being developed.
AMI features a highly efficient visualization pipeline and is
built on top of the powerful threejs11 JavaScript library.
Subsequent versions of viewerjs will transition to AMI

for more powerful visualization operations. Importantly, the
final application (like MedView) ideally does not need to call
primitives at the rendering library directly.

The viewerjs library exposes a viewerjs.Viewer

class. This class provides methods for easily embedding a
neuroimage visualization object (VObj) within an HTML page.
The viewerjs.Viewer constructor only requires as an input
the Document Object Model (DOM) identifier of the HTML
element on which the resultant VObj’s HTML interface is
inserted. The following code shows the simplicity of the method
calls:

var view = new viewerjs.Viewer(divId);

view.init();

view.addData(imgFileArr);

The VObj can asynchronously load more than one neuroimage
volume specified by the imgFileArr variable passed to the
addDatamethod. The imgFileArr is an array of custom file
objects where each object entry has the following properties:

• url: String representing the file’s URL/local path (required)
• file: HTML5 File object (optional but necessary when the

files are sourced through a local file-picker or drop-zone)
• cloudId: String representing the file cloud identifier

(optional but necessary when the files are sourced from a cloud
storage service such as Google Drive)

Using the fmjs library, the VObj can load image data from
diverse sources such as a remote service using the provided
url, a local filesystem using the file property or the Google
Drive storage service using the cloudId property. More data
can be added to the viewer by repeatedly calling the addData
methodwhich creates a new thumbnail bar for each dataset (users
can also interactively add more data by dragging files/folders
onto the viewer—each drag/drop event will create a new floating
thumbnail bar).

Using viewerjs, MedView constructs a graphical user
interface (GUI) comprising the main functional components
as shown in Figure 2. It contains a tool bar at top with

9https://github.com/xtk/X.
10https://github.com/FNNDSC/AMI.
11https://threejs.org.

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2017 | Volume 11 | Article 32

https://github.com/FNNDSC/viewerjs
https://github.com/FNNDSC/fmjs
https://github.com/FNNDSC/gcjs
https://github.com/FNNDSC
https://fnndsc.github.io/medview
https://github.com/xtk/X
https://github.com/FNNDSC/AMI
https://threejs.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bernal-Rusiel et al. Web-Based Collaborative Neuroimaging Visualization

FIGURE 1 | The main logical components of Medview. The viewerjs library provides most of the services that an application such as MedView might require.

Multiple viewers can quickly be constructed on viewerjs (for example a FreeSurfer surface viewer, a tractography viewer, etc). Internally, viewerjs uses low level

graphical libraries (XTK and AMI), a real time collaboration library gcjs and a file management library fmjs. Note that the colors in the boxes are for ease of

illustration and similarly colored boxes are not functionally related.

action buttons (using toolbarjs12), a central neuroimage
visualization square (provided by rboxjs13) that contains
individual interactive visualizers, rendererjs14, and on
each side, two floating thumbnail bars (thbarjs15) with an
automatically generated snapshot image of the middle slice for
each neuroimage volume. Currently the visualization objects
rendererjs only provide cross-sectional slice rendering of
the 3D datasets. These just use two types of XTK’s objects that
are closely associated, the X.Volume that contains the 3D
volume data and the X.renderer2D that performs the actual
rendering and visualization.

Up to four thumbnail images can be dragged and dropped
from the thumbnail bar into the visualization square for
simultaneous visualization of their corresponding volumes.
This action also “removes" the volume from the thumbnail
bar—closing a volume view returns the volume to its
original thumbnail bar. The four-volume display limit is
not programmatically imposed, but reflects a design choice
to show multiple volumes without visually overwhelming the
display. Only those volumes being visualized in the visualization
square are kept in memory to reduce the possibility of out-of-
memory crashes. Therefore, every time a thumbnail is dropped
into the visualization square a new data loading is triggered
from either the local filesystem or a remote service according

12https://github.com/FNNDSC/toolbarjs.
13https://github.com/FNNDSC/rboxjs.
14https://github.com/FNNDSC/rendererjs.
15https://github.com/FNNDSC/thbarjs.

FIGURE 2 | The main logical components of Medview. At the top is a

toolbar in blue provided by toolbarjs, and on the left and right are floating

pink colored thumbnail bars containing the center image of a volume, provided

by thbarjs. In the center is a yellow rboxjs container that houses one or

more green rendererjs objects that provide image interactivity. An app

such as MedView assembles these building blocks as it sees fit.

to the location of the volume file. Once data is loaded locally
in memory the rendering performs very rapidly as there is no
network upload involved. For remote data, the speed of access
is unavoidably limited by the network latency. Finally a volume

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2017 | Volume 11 | Article 32

https://github.com/FNNDSC/toolbarjs
https://github.com/FNNDSC/rboxjs
https://github.com/FNNDSC/rendererjs
https://github.com/FNNDSC/thbarjs
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bernal-Rusiel et al. Web-Based Collaborative Neuroimaging Visualization

can then be unloaded from the visualization square by dragging
and dropping it back into the thumbnail bar. This modern
and simple GUI allows users to quickly explore several 3D
neuroimage volumes in a very intuitive manner.

2.3. Real-Time Synchronization
The client-side rendering approach adopted in MedView allows
for a very responsive desktop-application-like visualization
experience. Once a neuroimage volume has been loaded in
the visualization square the user can interact with the data
by manipulating the visualization through peripheral device
controls and immediately sees the results of that interaction (e.g.,
moving the mouse to point to a different image location or
rolling the mouse wheel to navigate across the volume slices by
cross-section). The goal of the real-time collaboration is then to
provide a way for simultaneous visualization of the same data by
several collaborators working on remote computational entities
and propagate the results of any user-data interaction to all the
collaborators in real time. This requires a mechanism for sharing
both the neuroimage data and the visualization state among
collaborators.

The data sharing mechanism we provide here is based on
two reusable JavaScript modules called fmjs and gcjs (see
Figure 1 for library organization). The fmjs module is a file
manager designed to provide a unified interface to common
file operations on abstract filesystems such as the HTML5
sandboxed filesystem (currently available only in Chrome) and
the Google Drive cloud storage service (GDrive). In particular,
the exposed fmjs.GDriveFileManager class implements
file uploading/downloading, file sharing and other operations
on GDrive by leveraging the GDrive Representational State
Transfer (REST) API16. The gcjs module on the other
hand, exposes the gcjs.GDriveCollab class that reuses the
fmjs.GDriveFileManager’s functionality and the GDrive
Realtime REST API17 to manage the real-time collaboration.

There are several advantages of choosing GDrive services
and APIs for this client-side distributed application. First, they
can be accessed directly from the client-side JavaScript code
without requiring any back-end infrastructure. Second, there
is no need for the heavy work of running our own data
storage and real-time synchronization servers but instead we
simply leverage the high availability and latency of the powerful
GDrive servers. Third, conflict resolution is automatically
handled when many collaborators are concurrently changing
the visualization parameters. Last but not least, an OAuth 2.0-
based18 mechanism for user authentication and authorization
management is provided that allows for controlled access to
collaborators’ private data and identity.

The real-time collaboration is actually implemented by
synchronizing the application data (visualization parameters)
among collaborators using the GDrive Realtime Collaborative
Data Model (RT-CDM) which is basically a hierarchy of
collaborative objects with built-in synchronization among

16https://developers.google.com/drive/v2/reference/.
17https://developers.google.com/google-apps/realtime/.
18https://developers.google.com/identity/protocols/OAuth2UserAgent.

collaborators. When any data is modified in the RT-CDM or new
application data is included they are automatically persisted and
shared with all the collaborators19. The gcjs.GDriveCollab
class provides methods to get and set the RT-CDM and five
event listeners that can be dynamically overwritten on its object
instances:

1. onConnect called by all connected instances just after a new
instance connects to the collaboration session

2. onDataFilesShared called on all connected instances
every time the collaboration owner has shared all the data files
in its GDrive with a new collaborator

3. onCollabObjChanged called on all connected instances
every time the RT-CDM is updated by any remote collaborator

4. onNewChatMessage called by all connected instances
everytime a new chat message is received from a remote
collaborator

5. onDisconnect called by all connected instances everytime
a remote collaborator disconnects

A gcjs.GDriveCollab instance can allow any client-side
JavasScript application the ability to participate in a real-time
collaboration session through these methods and custom event
listeners.

Indeed the viewerjs.Viewer constructor of the previous
section can accept a gcjs.GDriveCollab object as an
optional second parameter to enable the collaboration among
remote visualizations. The resultant VObj delegates the
synchronization of the data describing the visualization state on
that object. These data are mainly comprised of a small JavaScript
Object Notation (JSON) object with a few numeric and string
properties describing the state of the XTK’s X.Volume and
X.renderer2D objects currently instantiated in the VObj’s
visualization square. This information is available thanks to
the XTK API exposing the state of its graphics objects which
can easily be modified not only through device controls (e.g.,
mouse wheel) but also programmatically with the corresponding
automatic visualization update. Thus, by keeping the lightweight
JSON object describing the state of the graphics objects in
sync among remote instances the actual visualizations are also
automatically synchronized.

A collaboration session starts when one user clicks the button
“Start collaboration” in the VObj’s toolbar. A new modal window
pops up to let the user decide if she wants to start a new
collaboration session as the collaboration owner or instead join
an existing collaboration session. Either choice triggers Google’s
authorization flow so that the user can log into their Google
account and authorize the VObj to access its GDrive space.
After successful authorization a floating chat window with a
collaboration session identifier (id) shows up on top of the VObj’s
GUI. This id (similar to a chat room id) can then be sent to
other users by email or any other on-line messaging system so
they can use it to connect to the current collaboration session
through their local VObj. The actual neuroimage data files (all
the volumes corresponding to the thumbnail images in the
thumbnail bar) are uploaded to the collaboration owner’s GDrive.

19https://developers.google.com/google-apps/realtime/build-model.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2017 | Volume 11 | Article 32

https://developers.google.com/drive/v2/reference/
https://developers.google.com/google-apps/realtime/
https://developers.google.com/identity/protocols/OAuth2UserAgent
https://developers.google.com/google-apps/realtime/build-model
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bernal-Rusiel et al. Web-Based Collaborative Neuroimaging Visualization

However, if any neuroimage volume is comprised of many
Digital Imaging and Communications in Medicine (DICOM)
files then they are first concatenated into a small number of
compressed (zip) files before uploading to GDrive. This is done
mainly to reduce the number of required HTTP connections
and network bandwidth usage but it is also useful to reduce the
number of automatic notification emails received by the other
collaborators when these files are shared with them in GDrive.
Unlike Slice:Drop, the uploaded files are not publicly shared with
the whole Internet. They are only automatically shared with the
other authenticated collaborators on demand when they connect
to the collaboration session. At that point their VObj instance will
then automatically download a copy of the data files fromGDrive
for their local rendering and visualization.

2.4. Real-Time Implications
The real-time model described here does have some important
implications to consider. In order to allow for responsive client
behavior, each participating client needs a complete copy of the
image data to render locally. The delay in joining a collaborative
session is thus a strong function of network bandwidth between
the client and the GDrive servers. Relatively long delays may be
experienced on slow connections, especially if many (or large)
data sets are being shared.

Real-time collaboration is best intended for single image
(or volume image) cases and not really multiple image sets
concurrently. Moreover, despite the startup delay in sharing
multiple image sets, the viewing experience is limited by the
memory available to a browser. The operation of the technology
may be unworkable in cases where limited memory and/or
bandwidth environments exist.

2.5. Development and Build System
We adopted a modular software development strategy that
allows for separation of concerns, improves code reusability and
facilitates application development and maintenance.

The source files for each JavaScript module and its testing
code are kept separate from other modules’ source files by
hosting them on their own independent Github repositories.
Automatic fetching of file dependencies between modules
is carried out using Bower20 which is a popular package
manager that can recursively download dependency source
files from Github repositories and other sources. Some of
the external dependencies required by the developed modules
and automatically fetched through Bower include jQuery21 and
jQuery UI22 employed in the implementation of the interactive
GUI, dicomParser23 to extract meta information from DICOM
files and JSZip24 for file concatenation and compression. The
logical dependencies between modules are then solved using
RequireJS25, a commonly used JavaScript loader, also available
through Bower, that can asynchronously load into the browser

20http://bower.io/.
21https://jquery.com/.
22https://jqueryui.com/.
23https://github.com/chafey/dicomParser.
24https://stuk.github.io/jszip/.
25http://requirejs.org/.

any module required by the currently executing client-side code.
Finally, all the typical JavaScript development and building tasks
such as code hinting, testing, concatenation, minification and
generation of the production application files are automatically
managed by Grunt26 which is a widely used JavaScript task
runner based on the Node platform27.

As an integrative example theMedView app’s source code can
be downloaded to a local development machine by cloning its
Github repository28. The developer can then change the working
directory to the created local git repository and follow the detailed
instructions in the README file to build and test a local version
of the web application. The app’s source code basically showcases
the usage of the proposed JavaScript modules whose source codes
are in turn fetched within the bower components directory at the
root of the repository.

2.6. Comparison with Slice:Drop
MedView can be thought of as a logical successor to our previous
work, Slice:Drop (Haehn (2013)). Several key technological
differences exist between this work and Slice:Drop. Perhaps most
importantly from a software development perspective, Slice:Drop
was more of a prototype and less of a fully engineered/designed
application. Its internal structure was monolithic and not
modularized in terms of functionality, unlikeMedViewwhich has
a reusable modular library design. For example, in Slice:Drop the
data push and pull to the Dropbox servers (for collaboration) is
an inherent part of the code and not at all easily extractable for
use elsewhere, while in MedView all push/pull is modularized in
the reusable gcjs library which can effectively be used by any
application.

MedView also uses OAuth 2.0 for its user authentication and
authorization management which allows a fine grain of access
control to uploaded data. In Slice:Drop files uploaded to Dropbox
have no authorization control and are fully publicly accessible.

In terms of collaboration, MedView has an integrated chat
client, while in Slice:Drop the chat was an external application—
practically inMedView the chat experience feels more integrated
into the system. Most importantly, MedView offers a shared
cursor among collaborators in their viewers, which is not a
feature of Slice:Drop.

Finally, in MedView multiple image volumes can be shared
in a collaboration session, unlike in Slice:Drop wherein only one
image volume can be shared collaboratively.

3. RESULTS

The JavaScript modules implementing the proposed
technological solution have been instantiated in the development
of a distributed collaborative neuroimage visualization
application called MedView which basically showcases the
VObj usage and the way it can easily be embedded in any web
application.

26http://gruntjs.com/.
27https://nodejs.org/.
28https://github.com/FNNDSC/medview.

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2017 | Volume 11 | Article 32

http://bower.io/
https://jquery.com/
https://jqueryui.com/
https://github.com/chafey/dicomParser
https://stuk.github.io/jszip/
http://requirejs.org/
http://gruntjs.com/
https://nodejs.org/
https://github.com/FNNDSC/medview
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bernal-Rusiel et al. Web-Based Collaborative Neuroimaging Visualization

FIGURE 3 | Medview on a workstation. A screenshot of a session running on a Linux workstation in the Chrome Browser. The collaboration icon in the toolbar

(third from left) is active, and on the bottom left a minimized chat window provides visual indication that this session is currently linked to collaborators.

Medview is designed as a simple, robust, and multi-device
web-app. By simply pointing a browser at the MedView URL29

almost any device can view and interact with most medical
image formats. For example, on a Linux host session running
Google Chrome in Figure 3, the user opened the standard
graphical desktop filebrowser, and navigated to a directory
containing medical image files. The parent directory was simply
dragged and dropped into the main MedView window. The
thumbnail bar on left was generated. In this instance, the image
volumes were all NifTI data formats. The volumes were read
into the browser, the center slice in the acquisition direction
determined, and that slice was rendered in the thumbnail
representation. A second directory, itself containing nested sub-
directories of DICOM data was also dragged into the browser.
This created a new, second thumbnail bar (on right) and
again the center DICOM of each series uploaded is shown
as representative of that volume. Each action of dragging and
dropping from the host’s filesystem into the browser, triggers
the creation of a new thumbnail bar. The user can drag these
bars and position them on either the left or the right of the
screen.

Note that at time of writing only Google Chrome supports
recursive directory processing. In other browsers, such as
FireFox, Safari, and Microsoft Edge, actual volume files have to
be explicitly selected and dragged/dropped.

29http://fnndsc.github.io/medview.

Finally, Figure 4 shows a linked collaborative session as seen
from an Android tablet running FireFox. Due to the constrained
resolution, the main viewer windows are smaller and there
is some font interference (which will be addressed in future
updates).

The order of the thumbnails in each collaborative session
might be unique to that session itself, but the main render
displays are intimately linked for each participant. While not
explicitly shown, a shared pointer-cursor is also available that
appears on the same location on all linked images (with the
mouse over a specific image volume press the SHIFT key and
then move the mouse to the desired location). In this manner,
any collaborator can explicitly highlight an exact pixel on a given
image and have that information communicated between all
linked sessions.

4. DISCUSSION

We have presented a novel web-based software solution to the
problem of implementing efficient real-time collaborative
neuroimage visualization. A client-side rendering and
visualization approach based on the XTK toolkit for “low
level" graphical rendering in JavaScript and the fmjs and
gcjs libraries that provide for highly responsive real-time
collaboration. Once a neuroimage volume has been loaded in
the browser the results of subsequent user-data interactions are
seen by the local user instantaneously. Any linked collaborators

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2017 | Volume 11 | Article 32

http://fnndsc.github.io/medview
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bernal-Rusiel et al. Web-Based Collaborative Neuroimaging Visualization

FIGURE 4 | Medview on a tablet. A screenshot of a collaborative session, captured on an Android tablet running Firefox. Any changes to the visual state of this

session are immediately shared with linked collaborators, and vice-versa.

might experience a slight delay as the small real-time state object
is propagated across the network using the Google GDrive
RT-CDM. This conveys just enough information to describe the
current visualization state, effectively minimizing the amount
of data that needs to be serialized and distributed over the
network. This is in contrast with previous server-side rendering
solutions in which both local and remote users can experience
low-responsive visualization interactions due to the continuous
and heavy network traffic between the server and the connected
clients. In addition the server-side rendering approach doesn’t
scale well as the number of concurrent users increases as the
server can quickly become overwhelmed by the heavy data
processing and network usage (Kaspar et al., 2013).

The open-source object-oriented JavaScript modules are
highly reusable and can be easily integrated in existing or
new web-based applications like MedView. These types of
web-based distributed applications are very appealing as they
can be delivered to users over the web without requiring the
installation of any additional software or browser plug-ins.
This not only enhances accessibility and usability for the
end-users but automatically provides them with the latest
application updates without requiring any technological

skills or administrator-level access to their computing
devices.

Moreover, given the rise of mobile devices and technology,
as well as powerful mobile-versions of mainstream browsers,
tablets and smartphone devices can fully participate in this
technology without requiringmobile-specific versions of the apps
and libraries. Javascript in this case is a truly universal language
and technology.

Several limitations to the technology and solution presented in
this paper do exist. Firstly, this work is intended for research use
only—the security model and code do not purport to be ready for
clinical certification. Furthermore, though the solution presented
here is completely opensource, we do rely on Google services in
the background to provide the “plumbing" that enables the real-
time collaboration. This is deemed acceptable, however, due to
the ubiquity of Google services and the off-the-shelf leveraging of
existing, powerful solutions.

Given the intrinsic needs for cooperative work in the medical
and neuroimage research, clinical, and education fields, web-
based collaborative image visualization systems are becoming
more and more important and they can only reach their
full potential by including real-time interactive collaboration

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2017 | Volume 11 | Article 32

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bernal-Rusiel et al. Web-Based Collaborative Neuroimaging Visualization

features. The technological solution presented in this paper
provides a rapid and practical way of implementing those
requirements. Overall, this real-time interactive collaboration
over the Internet is quite feasible using the latest advances in
core web technologies and web-based distributed application
development (Flanagan, 2011; Richardson et al., 2013). Future
work in MedView will focus on improved mobile experience
and the development of new JavaScript modules to enable in-
app on-line video calls based on the WebRTC standard30, as
well as continual improvements in the core graphical rendering
components.

30http://www.webrtc.org.

AUTHOR CONTRIBUTIONS

JB: Main coding of MedView. NR: Coding of XTK
library. RG: Deployment of medview in clinical
context. SP: Design/UI. SM: Deployment of medview in
clinical context. RR: Design feedback. PG: UI/UIX. RP:
Architecture/lead.

ACKNOWLEDGMENTS

Part of the work was funded by NIH R01EB014947
“MI2B2 Enabled Pediatric Neuroradiological Decision
Support.”

REFERENCES

Anupam, V., Bajaj, C., Schikore, D., and Schikore, M. (1994). Distributed and
collaborative visualization. Computer 27, 37–43. doi: 10.1109/2.299409

Coleman, J. D., Klement, E., Savchenko, A., and Goettsch, A. (1997). “Teleinvivo:
a novel telemedical application for collaborative volume visualization,” in
Proceedings of the Fourth ACM International Conference on Multimedia,
(Boston, MA: Fetal-Neonate DevCenter), 445–446.

Eckersley, P., Egan, G. F., De Schutter, E., Yiyuan, T., Novak, M., Sebesta, V.,
et al. (2003). Neuroscience data and tool sharing. Neuroinformatics 1, 149–165.
doi: 10.1007/s12021-003-0002-1

Flanagan, D. (2011). JavaScript: The Definitive Guide: Activate Your Web Pages.
Sebastopol, CA: O’Reilly Media, Inc.

Forslund, D. W., George, J. E., Gavrilov, E. M., Staab, T., Weymouth, T. E., Kotha,
S., et al. (1998). “Telemed: development of a java/corba-based virtual electronic
medical record,” in Medical Technology Symposium, 1998. Proceedings. Pacific,
(IEEE), 16–19. doi: 10.1109/PACMED.1998.767876

Forslund, D. W., Phillips, R. L., Kilman, D. G., and Cook, J. L. (1996). “Telemed: a
working distributed virtual patient record system,” in Proceedings of the AMIA

Annual Fall Symposium (Washington, DC: American Medical Informatics
Association), 990.

Gokhale, A., Kumar, B., and Sahuguet, A. (2002). “Reinventing the wheel? corba
vs. web services,” in Proceedings of International World Wide Web Conference

(Honolulu, HI).
Haehn, D. (2013). “Slice: drop: collaborative medical imaging in the browser,” in

ACM SIGGRAPH 2013 Computer Animation Festival (Anaheim, CA: ACM).
Haehn, D., Rannou, N., Ahtam, B., Grant, E., and Pienaar, R. (2014).

“Neuroimaging in the browser using the x toolkit,” in Frontiers in

Neuroinformatics Conference Abstract: 5th INCF Congress of Neuroinformatics

(Munich).
Henning, M. (2006). The rise and fall of corba. Queue 4, 28–34.

doi: 10.1145/1142031.1142044
Kaspar, M., Parsad, N. M., and Silverstein, J. C. (2010). “Cowebviz: interactive

collaborative sharing of 3d stereoscopic visualization among browsers with no
added software,” in Proceedings of the 1st ACM International Health Informatics

Symposium (Arlington, VA: ACM), 809–816.
Kaspar, M., Parsad, N. M., and Silverstein, J. C. (2013). An optimized web-based

approach for collaborative stereoscopic medical visualization. J. Am. Med.

Inform. Assoc. 20, 535–543. doi: 10.1136/amiajnl-2012-001057
Manssour, I. H., and Dal Sasso Freitas, C. M. (2000). “Collaborative visualization

in medicine,” in WSCG ’2000: Conference proceeding: The 8th International

Conference in Central Europe on Computers Graphics, Visualization and

Interactive Digital Media ’2000 in cooperation with EUROGRAPHICS and IFIP

WG 5.10: University of West Bohemia (Plzen), 266–273.

Millan, J., and Yunda, L. (2014). An open-access web-basedmedical image atlas for
collaborative medical image sharing, processing, web semantic searching and
analysis with uses in medical training, research and second opinion of cases.
Nova 12, 143–150.

Mwalongo, F., Krone, M., Reina, G., and Ertl, T. (2016). State-of-the-art report in
web-based visualization. Comput. Graph. Forum 35, 553–575. doi: 10.1111/cgf.
12929

Pienaar, R., Rannou, N., Bernal, J., Hahn, D., and Grant, P. E. (2015). “ChRIS –
A web-based neuroimaging and informatics system for collecting, organizing,
processing, visualizing and sharing of medical data,” Conference proceedings:

Annual International Conference of the IEEE Engineering in Medicine and

Biology Society. IEEE Engineering in Medicine and Biology Society. Annual

Conference (Milan, IL).
Richardson, L., Amundsen, M., and Ruby, S. (2013). RESTful Web APIs.

Sebastopol, CA: O’Reilly Media, Inc.
Sherif, T., Kassis, N., Rousseau, M.-É., Adalat, R., and Evans, A. C.

(2015). Brainbrowser: distributed, web-based neurological data
visualization. Front. Neuroinform. 8:89. doi: 10.3389/fninf.2014.
00089

Sherif, T., Rioux, P., Rousseau, M.-E., Kassis, N., Beck, N., Adalat, R.,
et al. (2014). Cbrain: a web-based, distributed computing platform
for collaborative neuroimaging research. Front. Neuroinform. 8:54.
doi: 10.3389/fninf.2014.00054

Wood, D., King, M., Landis, D., Courtney, W., Wang, R., Kelly, R., et al.
(2014). Harnessing modern web application technology to create intuitive
and efficient data visualization and sharing tools. Front. Neuroinform. 8:71.
doi: 10.3389/fninf.2014.00071

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer ZRQ and handling Editor declared their shared affiliation, and
the handling Editor states that the process nevertheless met the standards of a fair
and objective review.

Copyright © 2017 Bernal-Rusiel, Rannou, Gollub, Pieper, Murphy, Robertson,

Grant and Pienaar. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2017 | Volume 11 | Article 32

http://www.webrtc.org
https://doi.org/10.1109/2.299409
https://doi.org/10.1007/s12021-003-0002-1
https://doi.org/10.1109/PACMED.1998.767876
https://doi.org/10.1145/1142031.1142044
https://doi.org/10.1136/amiajnl-2012-001057
https://doi.org/10.1111/cgf.12929
https://doi.org/10.3389/fninf.2014.00089
https://doi.org/10.3389/fninf.2014.00054
https://doi.org/10.3389/fninf.2014.00071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization
	1. Introduction
	2. Materials and Methods
	2.1. Scope
	2.2. Client-Side Rendering and Visualization
	2.3. Real-Time Synchronization
	2.4. Real-Time Implications
	2.5. Development and Build System
	2.6. Comparison with Slice:Drop

	3. Results
	4. Discussion
	Author Contributions
	Acknowledgments
	References

