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Abstract

Background: The spread of COVID-19 at the local level is significantly impacted by population mobility. The U.S. has had
extremely high per capita COVID-19 case and death rates. Efficient nonpharmaceutical interventions to control the spread of
COVID-19 depend on our understanding of the determinants of public mobility.

Objective: This study used publicly available Google data and machine learning to investigate population mobility across a
sample of US counties. Statistical analysis was used to examine the socioeconomic, demographic, and political determinants of
mobility and the corresponding patterns of per capita COVID-19 case and death rates.

Methods: Daily Google population mobility data for 1085 US counties from March 1 to December 31, 2020, were clustered
based on differences in mobility patterns using K-means clustering methods. Social mobility indicators (retail, grocery and
pharmacy, workplace, and residence) were compared across clusters. Statistical differences in socioeconomic, demographic, and
political variables between clusters were explored to identify determinants of mobility. Clusters were matched with daily per
capita COVID-19 cases and deaths.

Results: Our results grouped US counties into 4 Google mobility clusters. Clusters with more population mobility had a higher
percentage of the population aged 65 years and over, a greater population share of Whites with less than high school and college
education, a larger percentage of the population with less than a college education, a lower percentage of the population using
public transit to work, and a smaller share of voters who voted for Clinton during the 2016 presidential election. Furthermore,
clusters with greater population mobility experienced a sharp increase in per capita COVID-19 case and death rates from November
to December 2020.

Conclusions: Republican-leaning counties that are characterized by certain demographic characteristics had higher increases
in social mobility and ultimately experienced a more significant incidence of COVID-19 during the latter part of 2020.

(JMIR Infodemiology 2022;2(1):e31813) doi: 10.2196/31813
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Introduction

In March 2020, COVID-19 was acknowledged by the World
Health Organization (WHO) to be a global pandemic [1]. Since
then, governments worldwide have implemented a series of
lockdown measures intended to reduce the spread of the disease.
The efficacy of these measures, in the absence of a vaccine or
effective therapy, has varied across countries. Initial evidence
on lockdown measures implemented in China suggested that
reducing interpersonal physical contact or reducing the
movement of the population is an effective means to control
the spread of the virus [2]. These findings spurred national and
subnational policies restricting population mobility, including
social distancing (physical distancing between people who are
not from the same household) [3] and stay-at-home (SAH) or
shelter-in-place (SIP) orders, which required people to stay at
home except for essential activities [4,5].

In addition to the direct impacts of such policies, evaluating the
effects of demographic and socioeconomic factors on population
mobility is also important as there were non-pandemic-related
events that significantly impacted public movements in the U.S.
after the first wave of the pandemic. Specifically, the summer
of 2020 witnessed many demonstrations and public rallies in
the U.S. in response to a series of events, including the death
of George Floyd. Social distancing receded into the background
despite rising caseloads and deaths due to COVID-19. The initial
decline in public movement that occurred during the early
months of the pandemic was succeeded by rapid increases in
social mobility through much of the U.S. [6]. Increases in social
mobility also occurred as many jurisdictions modified their
SAH orders, allowed more businesses to reopen, and relaxed
rules on social distancing [7]. This rise in mobility has been
linked to higher COVID-19 cases in these regions [8]. Public
mobility may have also increased during fall 2020 because of
public rallies and social gatherings associated with the US
presidential election.

A growing amount of research has used mobility data from
social media platforms (Google, Twitter, and Facebook) and
mobile phone providers to understand changes in mobility
during the pandemic [9,10], the relationship between population
mobility and the spread of COVID-19 cases [8-18], and the
effects of nonpharmaceutical interventions (NPIs) on mobility
[5,19,20]. The consensus from these studies is that increased
mobility is associated with higher COVID-19 case counts. Badr
et al [15] used cell phone data from 25 counties provided by
Teralytics and found that reduced mobility patterns are
associated with reduced COVID-19 incidence rates. Using
mobile phone data from Safegraph, Gao et al [20] similarly
found that lower mobility (more time at home) is associated
with a reduced spread of COVID-19 across states. Glaeser et
al [19] also used Safegraph data and found reduced mobility to
be correlated with lower cases for some US cities. Using Google
data from different jurisdictions, other studies found a positive
correlation between mobility and COVID-19 case counts

[11,12,14,17]. These studies are, however, limited; they
investigated social mobility across a small number of US
counties during the early days of the pandemic. As such, they
were unable to capture socioeconomic, demographic, and
political determinants of mobility [21-25].

We evaluated the determinants and consequences of population
movements in 1089 US counties from the start of the pandemic
to December 2020. This study contributes to the literature by
using clustering analysis and other tools to evaluate the impacts
of different socioeconomic and demographic characteristics on
social mobility in a sample of US counties. We also investigated
the effects of such mobility decisions on daily per capita
COVID-19 cases and deaths. Social mobility was measured
through the use of Google mobility indicators at retail and
recreational venues, grocery and pharmacy stores, workplaces,
and residences. Robust statistical findings based on such analysis
would inform policymakers in crafting efficient and effective
NPIs that could curb the spread of COVID-19.

Our results demonstrate that clusters with higher mobility at
retail outlets, grocery and pharmacy stores, and workplaces and
a lower duration of stay at residences also have a higher
percentage of population aged 65 years and over, a larger
population share of Whites with less than high school and
college education, a higher percentage of the population with
less than a college education, a lower percentage of the
population using public transit to work, and a smaller share of
voters who voted for Clinton during the 2016 presidential
election relative to other clusters. The clusters with higher
mobility also experienced pronounced increases in per capita
COVID-19 daily case and death rates from November to
December 2020. These findings are consistent with other studies
that suggest that Trump-leaning counties experienced increases
in social mobility and less stringent policies after the first wave
of the pandemic, which was succeeded by higher levels of
disease severity during the latter months of 2020.

Methods

Data

COVID-19 Incidence Data
The daily numbers of confirmed cases and deaths due to
COVID-19 at the county level were downloaded from the Center
for Systems Science and Engineering (CSSE) at Johns Hopkins
University (JHU) [26]. For the 1089 counties in our sample, the
mean (SD) of confirmed cases and deaths (both per 100,000 of
population) were 1541.27 (1905.59) and 33.72 (44.78),
respectively. Figure 1 reveals the distribution of counties in our
sample. There is a significant concentration of counties in the
East, Northeast, and certain southern states. There are fewer
counties from the midwestern and southwestern parts of the
United States. This is because Google mobility data (discussed
later) are less available for counties with lower population
density. This is a limitation of our analysis.
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Figure 1. Geographic distribution of counties.

Population Mobility
Data on population mobility were obtained from Google’s
COVID-19 Community Mobility Reports. Google creates social
mobility data from users who have turned on the Location
History setting of Google accounts on their phones and have
agreed to share this information. Google mobility indicators are
with respect to population-level daily visits to grocery and
pharmacy stores, which include grocery markets, food
warehouses, farmers’markets, specialty food shops, drug stores,
and pharmacies; parks, which consist of local parks, national
parks, public beaches, marinas, dog parks, plazas, and public
gardens; transit stations, comprising subway, bus, and train
stations; retail stores and recreation outlets consisting of places
such as restaurants, cafes, shopping centers, theme parks,
museums, libraries, and movie theaters; and workplaces. The
Google mobility data also provide an index on the duration of
stay at residences. Google mobility indicators for transit hubs
and parks were omitted because of large numbers of missing
values for the counties included in this study.

A prepandemic baseline mobility value was determined using
the median mobility for each day of the week from January 3
to February 6, 2020 [27]. Subsequent mobility values were
normalized to baseline. Counties with missing values less than
or equal to 10% for each indicator were selected for the study.
Missing values were replaced by the average from 3 prior days.
The availability of Google data determined which counties we
used in our analysis. The final data set contained observations
for 1089 counties, which is roughly 35% of the total number of
counties (N=3142) in the United States. Daily values were
available for the first and second waves of the pandemic from
March 11 to December 31, 2020.

With the exception of the residential index, daily values for
each index were calculated relative to baseline, which was
defined as the median for the corresponding day of the week,
during the 5-week period from January 3 to February 6, 2020.
Hence, each daily value is the percentage change in the social
mobility category relative to its baseline, which shows how the
number of visits to different destinations in a day have changed
in percentage terms since the onset of the pandemic. The Google
residential index represents the duration of stay at an individual’s
residence relative to the 5-week baseline. The values in this
index are the percentage differences in time spent at home
relative to the baseline period.

County-Level Socioeconomic, Demographic, and
Political Data
The 2016 census data were collected by the Massachusetts
Institute of Technology (MIT) Election Data and Science Lab
[18]. These data were supplemented by county variables
collected by other studies [23,25]. To validate that our samples
were representative of all US counties, we compiled summary
statistics of socioeconomic and demographic variables between
our sample and all counties (Table 1). In summary, there did
not seem to be significant differences in most variables between
all counties and our sample. The exception is population, where
our sample mean was more than 2.5 times that of the mean for
all counties. In a similar vein, although all counties have 58%
of the population in rural areas, the corresponding statistic for
our sample was only approximately 31%. These discrepancies
can be explained by the fact that Google's social mobility
indicators are only available for counties with larger populations
that are more densely populated. This is consistent with the
visualization of counties in our sample from Figure 1.
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Table 1. Sample statistics of census variables for all counties and our sample based on daily values.

Our sampleAll countiesVariable

MaximumMinimumMean (SD)MaximumMinimumMean (SD)

Politics

66.422.6324.28 (7.22)76.321.9328.13 (8.44)Population voting for Trump in 2016 (%)

42.862.7317.18 (7.33)49.02014.07 (7.41)Population voting for Clinton in 2016 (%)

90.6347.3373.49 (5.14)95.0843.1474.86 (5.31)Registered voters as population (%)

Demographics

97.342.7873.57 (18.63)100.000.7677.36 (19.74)Whites (%)

76.550.099.96 (12.21)86.1908.96 (14.5)African Americans (%)

95.480.6811.03 (13.41)98.9608.99 (13.66)Hispanics (%)

52.230.407.12 (6.81)52.2304.62 (5.63)Foreign born (%)

56.0338.7650.62 (1.30)58.5021.5149.98 (2.33)Females (%)

61.6913.6439.24 (4.98)70.9811.8437.34 (5.44)Population aged 29 years and under (%)

53.116.9515.57 (3.93)53.113.8617.63 (4.44)Population aged 65 years and older (%)

41.342.0812.44 (5.26)51.481.2814.23 (6.54)Less than high school education (%)

90.8626.3473.98 (10.11)97.0219.7979.22 (9.14)Less than college education (%)

25.570.979.11 (3.92)41.76011.04 (5.33)Whites with less than high school education (%)

89.9615.3071.28 (11.58)95.929.1977.00 (10.36)Whites with less than college education (%)

Socioeconomics

125,672.0028,452.0053,798.50
(13905.9)

125,672.0018,972.0047,817.60
(12482.4)

Median household income (US $)

100.00031.733 (22.08)100.00058.48 (31.45)Rural population (%)

179,922.306.221397.32
(6127.90)

179,922.300.26582.71 (3761.83)Population density (number of people per square
mile)

1.6100.25 (0.166)10.5600.61 (0.94)Hospitals per 100,000 of population (number of
hospitals per 100,000 of population)

37.302.6013.35 (4.87)48.402.6015.16 (6.07)Poverty rate (%)

1.620.020.09 (0.06)1.620.010.09 (0.05)Population without health insurance (%)

0.2600.01 (0.02)0.2600 (0.01)Share of population using public transit for
commuting to work (%)

Clustering
Figure 2 summarizes our methodology for identifying different
clusters of counties using Google mobility indicators. Clustering
is an unsupervised learning technique that partitions a data set
into groups or clusters based on similarity measures. This study
leveraged partitioning-based algorithms, which divided the data
set into partitions, where each partition was a cluster. For each

county included in this study, data were clustered based on a
combination of the daily values of the 4 Google mobility
indicators. To identify the different clusters of counties, we
performed 2 steps [28]:

1. Compressing the multidimensional time series data to
extract the latent variables using deep neural networks

2. Using K-means clustering to identify the different clusters
of counties based on latent variables’ representations
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Figure 2. Methodology for identifying different clusters of counties using a variational autoencoder.

To compress the multidimensional time series, we implemented
the variational autoencoder (VAE) architecture based on long
short-term memory (LSTM) [29-31]. The principal concept of
this generative approach is to project high-dimensional data
into latent variables. Our model comprised 4 blocks [32]:

1. Encoder: Defined by the LSTM layers, the multidimensional
time series input (x) are fed into the LSTM.

2. Encoder to latent layer: Defined by a linear layer, which
identifies the mean and SDs of the last hidden layer of the
encoder. During the training process, the multigaussian
distributions are defined and reparametrized iteratively by
the mean and SDs derived from latent vectors.

3. Latent layer to decoder layer: The latent variables (z) are
sampled from the distribution and pass through a linear
layer to identify the decoder input.

4. Decoder: Defined by the LSTM layers, which uses latent
variables (z) to reconstruct the original data [33].

Identifying the true posterior distribution is intractable [33].
Therefore, to construct the original data, the probabilistic
encoder model was approximated by normal distribution
p(z|x)N(0,1) and used as a probability decoder [30,33]. Hence,
the reconstruction of input was defined by sampling from the
distribution of latent variables (z).

To evaluate the performance of the model, the loss function was
defined as follows:

• The divergence from the approximated distribution and the
true distribution

• The mean squared error loss calculated the difference
between original and reconstructed input data

• The total loss is defined as sum of 2 losses:

The model was trained in Python 3.6 using the Keras library
[34] with the Adam optimizer. The batch size and number of
the epochs were set to 10 and 100, respectively. The number of
nodes for encoder and decoder hidden layers was set to 500.
The dimensionality of latent variables was set to 3. We also
implemented the L1 and L2 regularizers to avoid overfitting.
To evaluate the performance of the model, the VAE total loss
was used to identify the reconstruction error between encoder
input and decoder output.

Once the model was trained and the encoder, decoder, and VAE
were constructed, the output of the encoder model was selected
as the representation of the multidimensional patterns of each
county. K-means clustering was used to identify the similar
segmentation of the counties. To identify the optimum number
of clusters as well as the homogeneity of data points within each
cluster, the elbow method [35] and the silhouette score [36]
were used.

Explaining the Socioeconomic Characteristics of
Similar Counties
To compare the socioeconomic characteristics of the counties
in each cluster, the 2016 MIT election data were used as input,
while the classes were the cluster labels. The data were divided
into training and testing sets with a 70:30 split, respectively.
The random forest classifier [37] with 10 k-fold
cross-validations was used to build the predictive models. The
area under the curve (AUC) of the model was calculated, and
the most important features associated with the cluster numbers
were defined as the parameters describing the characteristics of
counties in each cluster. Feature scores of different census
variables for the clusters were computed, which yielded an idea
of the relative importance of different socioeconomic and
demographic factors for explaining the different clusters. Figure
3 summarizes our approach.
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Figure 3. Framework to identify the socioeconomic characteristics of different clusters of counties using random forest feature importance.

Results

Clustering
This study leveraged a partitioning-based deep learning model
to cluster counties based on similarities in social mobility. For
each county included in this study, data were clustered based
on a combination of the daily values of the 4 Google mobility
indicators (retail, grocery and pharmacy, workplace, and

residence). The multidimensional time series of Google social
mobility indicators from 1089 counties was divided into training
and testing sets and fed into the VAE model. The result
demonstrated a loss of 0.08. The latent variables were extracted
as the output of the encoder. The K-means clustering algorithm
identified 4 social mobility clusters. The number of counties in
these clusters, which were termed as 0, 1, 2, and 3, were 215,
338, 473, and 59, respectively. Figure 4 gives the distortion
scores of the K-means clustering.

Figure 4. Distortion score elbow for K-means clustering.
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Google Social Mobility Trends
Across all clusters, visits to retail stores fell significantly after
the start of the pandemic until around mid-April, followed by
a steady increase and plateauing in early July (Figure 5). Visits
to retail outlets began to decline again in late September but
then began an upward trend starting on Thanksgiving weekend
until the end of December. Retail social mobility values were
the highest for cluster 0, followed by clusters 2 and 1, with
cluster 3 having the lowest social mobility. Grocery and

pharmacy mobility trends reflected those seen for retail social
movements but were less pronounced (Figure 6). Cluster 0 had
the highest values of grocery mobility, followed by clusters 2,
1, and 3. Workplace mobility showed an initial decline at the
start of the pandemic, followed by a steady increase from early
May onward (Figure 7). Spikes in mobility were observed during
the weekend, which did not significantly decline relative to
prepandemic observations. County clusters followed the same
order, with cluster 0 having the greatest mobility, followed by
clusters 2, 1, and 3.

Figure 5. Google retail mobility.

Figure 6. Google grocery and pharmacy mobility.
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Figure 7. Google workplace mobility.

Finally, residential mobility followed a reverse pattern relative
to the other indicators, with cluster 3 having the highest
mobility, followed by clusters 1, 2, and 0 (Figure 8). Residential
mobility was highest during the onset of the pandemic, followed
by a decreasing trend during spring and summer. From late
September onward, residential mobility began to increase, and
this trend continued until the end of the sample period. The

spikes in mobility captured the weekend effects. Our social
mobility data indicated differences in mobility between clusters,
with counties in cluster 0 having the highest retail, grocery, and
workplace mobility and the lowest residential mobility. In
contrast, counties in cluster 3 had the lowest social mobility
and the highest residential mobility.

Figure 8. Residential mobility.

Relationship Between Google Social Mobility
Indicators and County Characteristics
To determine whether county characteristics are correlated with
differences in social mobility between the clusters, we obtained
socioeconomic, demographic, and political data from each
county from 2016 census data [18]. These data included 2016
election returns, race, median income, total population,

percentage of rural areas, and education level of the population
for age and race. These data were supplemented by county
variables collected by other studies [23,25].

A random forest classifier was used to generate feature scores
of different socioeconomic and demographic characteristics of
the counties included in each cluster, across all 4 clusters (mean
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receiver operating characteristic [ROC] AUC 0.871). Table 2
contains the feature scores of all county-level variables.

The top 10 variables in terms of feature scores were percentage
of the population aged 65 years and over (0.41715), percentage
of females (0.08784), percentage of Whites (0.03869),
percentage of Whites with less than college education (0.03772),
percentage of Hispanics (0.03369), percentage of Whites with
less than high school education (0.03178), percentage of the
population using public transit (0.02967), county unemployment
rate (0.02759), proportion of voters for Clinton in 2016
(0.02737), and percentage of the population with less than high
school population (0.02719). Hence, although political
preference and population composition were important, it is
important to note the significance of 3 educational variables
among the top 10, with the percentage of the population with
less than college education being the 11th variable in terms of
feature score.

To explore the top 11 socioeconomic, demographic, and political
variables impacting social mobility further, we determined the
mean population percentage for each county-level variable

across clusters (Table 3). The table also contains results of
statistical tests of significance of sample means between clusters.
The Z test of sample means was performed to compare the
significance of different county-level variables for different
clusters. Results demonstrated several variable similarities for
clusters with the highest social mobility. The percentage of the
population aged 65 years and over, Whites, the percentage of
whites with less than high school and college education, and
the percentage of the overall population with less than college
education were higher in counties defined by clusters 0 and 2.
Tests of equality of sample proportions and means confirmed
that there was a statistically significant difference between
clusters 0 and 2 versus clusters 1 and 3 for these population
variables. In contrast, the percentage of Hispanics, percentage
of the population using public transit for work, and percentage
voting for Clinton in 2016 were lower in clusters 0 and 2 relative
to clusters 1 and 3. There was no consistent, significant
difference across clusters for the percentage of females,
population with less than high school education, and
unemployment rates.

Table 2. Feature scores of county-level variables.

ScoreFeature

0.41715Percentage aged 65 years and older

0.08784Percentage of females

0.03869Percentage of Whites

0.03772Percentage of Whites with less than college education

0.03369Percentage of Hispanics

0.03178Percentage of Whites with less than high school education

0.02967Percentage of population using public transit for commuting to work

0.02759Unemployment rate

0.02737Percentage voting for Clinton in 2016

0.02719Percentage with less than high school education

0.02429Percentage with less than college education

0.02385Hospitals per 100,000 of population

0.0221Percentage of rural population

0.02178Population density

0.02118Percentage of foreign born

0.02051Poverty rate

0.02003Percent without health insurance

0.01992Percentage voting for Trump in 2016

0.01911Median household income

0.01852Percentage aged under 29 years

0.01682Registered voters as a percentage of population

0.01319Percentage of African Americans

JMIR Infodemiology 2022 | vol. 2 | iss. 1 | e31813 | p. 9https://infodemiology.jmir.org/2022/1/e31813
(page number not for citation purposes)

Jalali et alJMIR INFODEMIOLOGY

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Differences in county-level variables across clusters.

P value of sample means between clustersSample mean (%)Variable

Clusters 2 and 3Clusters 1 and 2Clusters 0 and 3Clusters 0 and 1Cluster 3Cluster 2Cluster 1Cluster 0

<.01<.01<.01<.0113.0016.2014.2017.10Population aged 65 years
and older

.23.99.99.0150.4050.7050.7050.40Females

<.01<.01<.01<.0158.6077.1066.3081.50White

<.01<.01<.01<.0151.1075.2065.0078.20Whites with less than col-
lege education

<.01<.01<.01<.0119.808.2015.506.90Hispanics

<.01<.01<.01<.015.1010.107.1011.20Whites with less than high
school education

<.01<.01<.01<.013.700.301.200.30Population using public
transit for commuting to
work

<.01.06<.01.066.307.407.207.50Unemployment rate

<.01<.01<.01<.0127.2015.3020.1013.80Voting for Clinton in 2016

.17.01.02<.0111.5012.6011.7013.50Less than high school educa-
tion

<.01<.01<.01<.0158.5076.9069.2079.50Less than college education

Trends in Daily Cases/Deaths by Cluster
Given that policies restricting population mobility were
established to curb the spread of COVID-19, we sought to
determine whether county clusters with higher social mobility
indicators (clusters 0 and 2) reported elevated viral cases and
deaths. The daily number of confirmed cases and deaths due to
COVID-19 at the county level was obtained from the CSSE at
the JHU. We determined the median daily per capita cases
(Figure 9) and deaths (Figure 10) by cluster. During the first
months of the pandemic, per capita daily cases were quite

comparable across clusters (Figure 9). There was a visible
divergence that occurred at the beginning of October (onset of
the second pandemic wave), with daily cases rising sharply in
clusters 0, 1, and 2 relative to cluster 3. For the remainder of
the period examined, cluster 0 had the highest number of daily
cases, followed by clusters 2 and 1. Cluster 3 retained relatively
lower daily cases. Interestingly, clusters 0 and 2 had lower daily
deaths until the beginning of September (Figure 10). Daily
deaths in these clusters then increased rapidly, and by the
beginning of October, per capita deaths in clusters 0, 1, and 2
were higher than in cluster 3.

Figure 9. Daily cases per 100,000 residents.
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Figure 10. Daily deaths per 100,000 residents.

Discussion

Principal Findings
This study aimed to assess the effect of county-level
characteristics on population mobility and the consequences of
this mobility on the spread of COVID-19. To the best of our
knowledge, this is the first study that has used unsupervised
machine learning to understand differences in population
mobility across US counties during the first and second waves
of the pandemic and determine the relative importance of a wide
array of socioeconomic, demographic, and political variables
in defining different mobility-based clusters.

Our results demonstrate that of the 4 clusters defined by Google
social mobility indicators, the clusters with higher retail, grocery,
and work mobility (and lower residential mobility) had several
similar population characteristics. Specifically, counties with
greater social mobility also had a higher percentage of the
population aged 65 years and over, Whites with less than high
school and college education, and overall population with less
than college education. Counties in these 2 clusters also had a
lower share of the population that is Hispanic, the percentage
of the population using public transit to work, and the share of
voters who voted for Clinton during the 2016 presidential
election. Research does suggest that Whites with less than
college education constituted a significant voting block for
Trump during the 2016 election [38]. In line with this, the 2
clusters with the greatest social mobility also experienced higher
per capita COVID-19 case and death rates during most of
November and December 2020. These results are consistent
with Xie and Li [39], who also used county-level data during
the early days of the pandemic and found lower education levels
to be correlated with higher infection rates.

The significant increase in COVID-19 cases and deaths in
clusters 0 and 2 during November and December 2020 could
be a consequence of public rallies and general disregard for
social distancing and safety protocols by pro-Trump voters [40].

Although we cannot prove this, the majority of counties in these
clusters were Republican leaning during the 2016 presidential
election. Moreover, our finding of higher per capita daily
COVID-19 cases and deaths in such counties is consistent with
other studies. Desmet and Wacziarg [41] found that early on
during the pandemic, Republican counties actually experienced
lower COVID-19 cases and therefore had lax attitudes toward
mask wearing, social distancing, and lockdown measures.
However, as the pandemic spread to Trump-leaning counties,
population preferences for less stringent social distancing
policies had already been formed, making it difficult for
policymakers to implement stricter restrictions on social
mobility. As a result, this led to greater disease severity in
Trump-leaning counties. In a similar vein, Allcott et al [42]
found that areas with more Republicans engaged in less social
distancing, controlling for other factors, including public
policies. In summary, these findings corroborate our own results.
Social mobility in the aftermath of the first wave of the
pandemic was much higher in Republican counties, which
ultimately resulted in higher COVID-19 cases and associated
deaths relative to other counties that were Democrat leaning.

Social media is increasingly being used to capture population
movements and understand their corresponding impacts on
COVID-19 incidence. Social media–based data, including those
presented here, have some limitations. Specifically, there is the
possibility of sample selection bias if Google Maps users have
specific demographic characteristics and are not distributed
uniformly across the population. However, data from Statista
indicate that in the U.S., Google Maps had 154 million users in
April 2018 [43]. Further, published research has done a
comparison of Google mobility data against corresponding
cellular-generated information by other providers and has found
a close correspondence. Specifically, Szocska et al [44]
constructed a mobility index and an SAH/resting index based
on data on almost all phone subscribers in Hungary and found
a close correlation with corresponding Google mobility indices
at the national level. There are also a significant number of
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published studies that have used Google mobility data to capture
population movements for different countries and have found
them to be important in predicting movements in COVID-19
(Bryant and Elofsson [11], Askitas et al [45], and Stevens et al
[46]). For these reasons, we think there is a high likelihood that
Google mobility data do reflect population movements.
However, Google mobility data do not include information on
certain types of public movements, such as election rallies or
community gatherings.

Our research demonstrates the usefulness of publicly available
Google mobility data and unsupervised machine learning
methods in establishing relationships between county-level
characteristics, mobility decisions, and COVID-19 incidence.
These findings have important implications for policymakers
and public health officials in understanding the effects of NPIs,
as the efficacy of such measures on mobility is influenced by
underlying socioeconomic, demographic, and political ideology
characteristics. The use of Google data enables researchers to

assess the types of public movements that are most contributory
to COVID-19 spread.

The results of this study provide a unique lens on the potential
of machine learning to understand social mobility behaviors.
These findings are critical for public health organizations trying
to understand the levels of mobility in their counties, in addition
to providing insights into some of the underlying factors (ie,
social determinants of health) contributing to regional
differences in COVID-19 caseloads.

Conclusion
Our results emphasize a role for machine learning methods in
public health. Publicly available Google data, in conjunction
with census data, can be used to understand the socioeconomic,
demographic, and political determinants driving population
mobility choices across US counties. This knowledge can assist
policymakers in developing NPIs to restrict viral spread during
the COVID-19 pandemic.
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