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Abstract

In earlier work, we have developed and evaluated an alternative approach to the analysis of

GWAS data, based on a statistic called the PPLD. More recently, motivated by a GWAS for

genetic modifiers of the X-linked Mendelian disorder Duchenne Muscular Dystrophy (DMD),

we adapted the PPLD for application to time-to-event (TE) phenotypes. Because DMD itself

is relatively rare, this is a setting in which the very large sample sizes generally assembled

for GWAS are simply not attainable. For this reason, statistical methods specially adapted

for use in small data sets are required. Here we explore the behavior of the TE-PPLD via

simulations, comparing the TE-PPLD with Cox Proportional Hazards analysis in the context

of small to moderate sample sizes. Our results will help to inform our approach to the DMD

study going forward, and they illustrate several respects in which the TE-PPLD, and by

extension the original PPLD, offer advantages over regression-based approaches to GWAS

in this context.

Introduction

In previous work we have developed and evaluated a statistic called the Posterior Probability

of Linkage Disequilibrium (PPLD) as a measure of evidence for or against trait-SNP associa-

tion [1–3], and we have extended the PPLD to accommodate time-to-event (TE) data, yielding

the TE-PPLD [4]. In this paper we compare and contrast the TE-PPLD with the more familiar

regression-based approach to handling time-to-event phenotypes using the Cox Proportional

Hazards (CPH) model, via simulations and with a focus on small to moderate sample sizes.

Using simulations, rather than real data, allows us to compare and contrast the behavior of the

two statistics under conditions in which the true underlying genetic model is known, so that it

is possible to definitively distinguish correct from incorrect results.

This work was motivated by a search for genes that modify the Duchenne muscular dystro-

phy (DMD) phenotype. DMD is an X-linked recessive disorder affecting� 1 in 5,000 live male

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0257164 September 22, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Vieland VJ, Seok S-C (2021) The PPLD

has advantages over conventional regression

methods in application to moderately sized

genome-wide association studies. PLoS ONE

16(9): e0257164. https://doi.org/10.1371/journal.

pone.0257164

Editor: Ayse Ulgen, Girne American University -

Karmi Campus: Girne Amerikan Universitesi,

CYPRUS

Received: May 4, 2021

Accepted: August 24, 2021

Published: September 22, 2021

Copyright: © 2021 Vieland, Seok. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: This manuscript

presents only simulated data. All computer code

used in generating and analyzing the data is

available at https://sourceforge.net/projects/kelvin-

linkage-disequilibrium/files/.

Funding: This work was supported by National

Institutes of Health grant (NINDS) NS085238 to

VJV. The funder had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

https://orcid.org/0000-0002-3004-3840
https://doi.org/10.1371/journal.pone.0257164
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257164&domain=pdf&date_stamp=2021-09-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257164&domain=pdf&date_stamp=2021-09-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257164&domain=pdf&date_stamp=2021-09-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257164&domain=pdf&date_stamp=2021-09-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257164&domain=pdf&date_stamp=2021-09-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257164&domain=pdf&date_stamp=2021-09-22
https://doi.org/10.1371/journal.pone.0257164
https://doi.org/10.1371/journal.pone.0257164
http://creativecommons.org/licenses/by/4.0/
https://sourceforge.net/projects/kelvin-linkage-disequilibrium/files/
https://sourceforge.net/projects/kelvin-linkage-disequilibrium/files/


births [5, 6]. DMD involves progressive muscle tissue loss with replacement by fat and fibrotic

tissue, and is currently without a cure. Patients typically become reliant on wheelchairs by

early to mid-adolescence, but some maintain ambulation substantially longer, and age at loss

of ambulation (LOA) is an important clinical indicator of disease progression. A great deal is

known about the gene (DMD) that causes DMD, including the fact that modifier genes influ-

ence the rate of disease progression in a DMD mouse model [7, 8]; evidence for modifiers

exists in humans as well [9–12]. The discovery of modifier genes in humans has implications

both for therapeutics and for the design of DMD clinical trials. Thus far there have been two

published GWASs for LOA, based on sample sizes of 170 [11] and 253 [12] individuals,

respectively.

Using data from the United Dystrophinopathy Project, a multisite consortium [13–15], we

are engaged in a search for modifier genes under a GWAS design. The sample currently com-

prises� 400 DMD patients, with ongoing efforts to increase the sample size to� 800 DMD

patients. (These patients are conservatively selected to exclude mutations in DMD itself that

are known or suspected to affect disease course.) There is one binary covariate in the model:

steroid use prior to LOA, which is known to increase LOA by about 3 years on average. The

immediate motivation for the current work is to inform design decisions regarding the analysis

of our DMD data, while illustrating issues arising for GWAS in smaller data sets which could

be of relevance to other studies as well. The paper can also serve to illustrate key features of the

PPLD for GWAS investigators unfamiliar with the method.

The remainder of the paper is organized as follows. In Methods we present the simulation

methods and the data analytic methods used in what follows. In Results we begin by consider-

ing the distributions of the TE-PPLD and the CPH p-value under the null hypothesis H0 of

“no SNP-trait association,” under various conditions that can affect those distributions. We

then consider the behavior of both statistics under a variety of models under the alternative

hypothesis HA of “SNP-trait association.” Finally, we briefly contrast the PPLD’s use of Bayes-

ian sequential updating to confirm findings with the standard requirement of independent

replication, again with a particular focus on small sample sizes.

Finally, in Conclusions we perform an experiment in which we loosely mimic an entire

genome scan in an initial data set, following up at any findings in a separate data set. This sec-

tion illustrates the practical implications of many of the results of the preceding sections, and

can be read first, or even independently, for an overview of the effects the choice between CPH

and the TE-PPLD can have on GWAS results.

Methods

In this section we describe the simulation methods and models used to evaluate the behavior

of the different statistical analyses, and the statistical methods used to analyze the simulated

data.

Simulation methods

In order to mimic features of our DMD data set, our base model uses a sample size of N = 400

individuals, half of whom come from each of two covariate levels (y = 1, 2); for some purposes

we also consider sample sizes of N = 200 (similar to some potential “replication” data sets cur-

rently available for DMD) and N = 800 (our target sample size over the next few years), as

noted in context. We simulated only unrelated individuals. Details of the simulation methods

follow. All simulations were conducted in Matlab using built-in cdf and inverse cdf functions.

Individuals were randomly assigned a genotype for a 2-allele locus (with alleles 1, 2) as a

function of the Minor Allele Frequency (MAF). Unless otherwise noted, we set MAF = 0.5; for

PLOS ONE The PPLD has advantages in application to moderately sized genome-wide association studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0257164 September 22, 2021 2 / 22

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0257164


some comparisons we also vary MAF as noted in context. We generated genotypes under

Hardy Weinberg Equilibrium (HWE). (The impact on the PPLD of violations of HWE and the

impacts of population stratification have been investigated previously [1] and are not further

considered here.)

Under the null model H0 (no SNP-trait association; Model 1 in Table 1), event time te was

simulated via a random draw from a normal distribution Ny = 1(μ, σ) for individuals with y = 1,

and Ny = 2(μ+3, σ) for y = 2. Under the alternative model HA (SNP-trait association), we simu-

lated data under 7 different baseline Models 2–8 (Table 1), in which te was randomly drawn

from a mixture of normal (MoN) distributions in the form Ny = 1,k(μk, σk), for given genotype

k = 11, 12, 22 and y = 1, and in the form Ny = 2,k (μk+3, σk) for y = 2 (except for Model 8).

Model 2 creates a simple additive mixture model for age-at-event while maintaining compara-

ble �x and s.d. at the population level. The remaining models vary effect size by increasing the

genotypic variances (Model 3), introducing dominance (Models 4, 5), and by generating geno-

typic effects on variances as well as means (Model 6) or solely on variances (Model 7). Model 8

complicates the covariate effect. The models were chosen to illustrate a range of possible trait

distributions, and are by no means intended to exhaustively cover what we might find in a real

application. We simulated 1,000,000 replicates under Model 1, and 1,000 replicates per model

under Models 2–8.

For each generating model, an individual was simulated based on a random draw of te(xi)
from the corresponding age-at-event (AE) distribution and an independent random draw of

to(xi) from an age-at-observation (AO) distribution. If te(xi)< to(xi), the individual was consid-

ered uncensored with failure time tfail(xi) = te(xi); otherwise, the individual was considered

censored with censoring time tcens(xi) = to(xi). AO was simulated under a negative binomial

distribution with r = 10, p = 0.4 in order to roughly mimic the censoring distribution in the

real data. This yields a censoring rate� 40%.

For some purposes, as noted in context below, we varied the baseline models. In consider-

ing robustness to the form of the underlying survival distribution, we also generated data

(1,000,000 replicates per model under H0, and 1,000 replicates per model under HA) from

Weibull (WB), Birnbaum-Saunders (BS), and Gamma (GM) distributions. This was done in

each case by finding parameters of the distribution that matched the mean and standard

Table 1. Baseline simulation generating models.

Model μ11 (σ11) μ12 (σ12) μ22 (σ22)

1 0 (1) 0 (1) 0 (1)

2 –0.5 (1) 0 (1) 0.5 (1)

3 –0.5 (1.25) 0 (1.25) 0.5 (1.25)

4 –0.5 (1.25) 0.5 (1.25) 0.5 (1.25)

5 –0.5 (1.25) –0.5 (1.25) 0.5 (1.25)

6 –0.5 (0.5) 0 (1) 0.5 (1.5)

7 0 (0.5) 0 (1) 0 (1.5)

8 –0.5, 1.26 (1, 2) 0, 1.76 (1, 2) 0.5, 2.26 (1, 2)

Generating parameter values were chosen to mimic LOA in the real DMD data set for uncensored individuals with

no history of steroid use (�x� = 11.6, s.d. = 3.4). All normal distributions were left-truncated at 0 in order to preclude

non-positive age at event. Models are shown on the standard normal scale for the y = 1 group. For Models 1–7, 3

years are added to the y = 1 means for the y = 2 group, as described in the text. For Model 8, y = 2 affects the means

differently for the 3 genotypic groups in addition to affecting the variance; a comma separates the generating means

(s.d.s) for y = 1, y = 2, respectively. These are the same generating models considered in [4].

https://doi.org/10.1371/journal.pone.0257164.t001
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deviation of the corresponding baseline model as shown in Table 1, and using these parame-

ters as the generating values. We also considered covariate x genotype interactions; those mod-

els are described in context below.

Data analysis methods

In this section we give a brief overview of the TE-PPLD; for additional details see [4]. All

TE-PPLD calculations were done in the software package KELVIN [16]. We also describe the

CPH analyses used in what follows, and we summarize some key differences between the

TE-PPLD and CPH, which are relevant when comparing and contrasting results between the

two methods. When referring to general features of KELVIN’s association statistic, we use

“PPLD;” when discussing features that are (or may be) specific to the use of the PPLD with

time-to-event data, we say “TE-PPLD.”

The PPLD is based on the Bayes ratio (BR), defined as

BR ¼
Z

LRðγÞ f ðγÞ dγ

where LR is a likelihood ratio representing “trait-marker association” in the numerator and

“no association” in the denominator [17], and the single integral stands in for multiple integra-

tion over the vector γ = μ11,μ12,μ22,σ11,σ12,σ22, the means and standard deviations of three nor-

mal distributions, one for each of the three SNP genotypes [18]. Note that the user does not

specify a mode of inheritance, since this parameterization encompasses recessive, additive and

dominant models. For present purposes additional parameters of the likelihood are fixed as

follows: recombination fraction θ = 0; standardized linkage disequilibrium (LD) parameter D0

= 1 (see [17]); admixture parameter α = 1 (see [19]); disease minor allele frequency (MAF) =

SNP MAF. These simplifications allow us to model genotypic effects of the SNP itself (whether

direct effects or indirect through LD) on either μ or σ or both. (KELVIN can also be run in

“means only” mode, which fixes the genotypic variances equal to one another, in case the user

prefers to detect effects on means only, or as a check to see the extent to which effects on vari-

ances are driving the signal at any given SNP.) The underlying likelihood is based on the

Elston-Stewart pedigree peeling algorithm [20] so that it can accommodate unrelated individ-

uals as well as mixtures of pedigree structures. (This feature is helpful in our DMD study,

because the dataset includes some pedigrees; however, we do not further consider it here.) The

BR is proportional to a likelihood for the marker data conditioned on the trait data, and for

reasons having to do with ascertainment corrections [16, 21] it is integrated as a unit, rather

than separately in the numerator and denominator like a Bayes factor [22], using highly accu-

rate non-stochastic numerical methods [23].

Let π be the probability that a randomly selected SNP is within detectable LD distance of a

trait locus. The PPLD is a simple rescaling of the BR onto the (0,..,1) interval: PPLD ¼ pBR
pBRþð1� pÞ.

Thus PPLD < π indicates (some degree of) evidence in favor of H0, while PPLD > π indicates

(some degree of) evidence in favor of HA; this remains true regardless of the value chosen for

π. We set π = 0.0004, based in part on empirical calculations [1]. By design, and in stark con-

trast with p-values, P[(PPLD > π) | H0]! 0 as N!1. In accumulating evidence for or

against association across data sets, Bayesian sequential updating can be used by first multiply-

ing the BRs across data sets and then applying the PPLD transformation to the resulting

updated BR.

One limitation of KELVIN is that its models do not currently include any direct mechanisms

for handling covariates. Our general approach to covariates is to preprocess the phenotype by

performing regression analysis to make the covariate adjustments, and then to use the
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regression residuals as the input phenotype for subsequent analysis. In the context of linear

regression, these residuals maintain the scale of the primary phenotype, and can be interpreted

as estimates of how unusual is an individual’s phenotype given the individual’s covariate status.

In the context of survival analysis, however, standard forms of residual (Martingale or devi-

ance) do not maintain scale and do not have this “ordinary” interpretation [4]. For this reason,

we developed a new Ordinary Time-to-Event (OTE) residual, so-called because it maintains

scaling vis a vis the primary phenotype and the interpretation of an ordinary linear regression

residual, as a measure of how unusual the individual’s phenotype is given covariates. The OTE

residuals then replace the underlying primary phenotype as input to TE-PPLD analysis.

In order to estimate OTE residuals for TE-PPLD analysis in what follows we use the proce-

dures described and evaluated in [4]. For each simulated data set, the estimated survival curve

ŜyðtÞ, as a function of age t, is obtained via maximum likelihood estimation of a pair of

2-parameter Weibull distributions, one for each level of y, based on time-at-event for uncen-

sored individuals and censoring time for censored individuals. OTE residuals for each individ-

ual are then calculated using the formula in [4].

PPLDs are reported to 2 decimal places for values� 0.01 but to 4 decimal places for

values< 0.01, in order to display whether very small values are greater than or less than the

prior probability π = 0.0004, indicating evidence for or against association, respectively. In

general we display results in terms of the TE-PPLD itself. However, because of the very low

prior probability the PPLD scale is highly compressed at the low end. Thus for visualization

purposes, particularly in considering the null distribution, we sometimes display log10BR

instead.

CPH regression was performed using the built-in function of the Survival package in R

[24]. Regression analyses included the covariate y as well as genotypes as predictors; in consid-

ering models with covariate x genotype interactions we also include a y x genotype interaction

term, as noted in context. Unless otherwise noted, we performed CPH analysis coding the

genotypes to reflect the correct (generating) mode of inheritance (recessive, additive or domi-

nant); under H0 we assumed an additive model. CPH results are reported as P = –log10(p-

value) for the genotypic coefficient unless otherwise noted, annotated as CPH-P.

Before proceeding to compare CPH with the PPLD, it is worth noting that the two

approaches are in several respects incommensurate. The CPH p-value represents the probabil-

ity of the data, or data more extreme, assuming H0, under the conditions imposed by the

regression model; the TE-PPLD represents the posterior probability of HA, given the actual

data only, under the assumptions described above. The p-value is not a measure of evidence

strength [25], rather, it is considered significant when it crosses some preselected threshold. In

GWAS contexts this threshold is conventionally set to 5x10−8, or P� –log10(5x10−8) = 7.3, in

order to adjust for multiple tests on a study-wide basis; in what follows we also consider a less

stringent threshold of P� 5.

By contrast, the BR is designed as a LR-based evidence measure [26–29]. As a result, the

PPLD provides an estimated rank-ordering of SNPs in terms of strength of evidence for or

against trait-SNP association. Its calculation is not in itself a decision-making procedure, that

is, there is no cutoff above which we declare significance; and, because it is not an error proba-

bility, it is not subject to multiple testing corrections. In practice, one prioritizes SNPs for fol-

low up by sorting from largest to smallest PPLD and working down the list. This leaves open

the question of how large a PPLD warrants follow up. With experience we have developed cer-

tain heuristics for prioritizing SNPs for further attention in situations similar to our DMD

study, with PPLDs� 10% being of interest for follow up, and PPLDs� 40% being of particular

interest for follow up.
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In what follows, these heuristics are evaluated and found to work quite well. They are, how-

ever, context-dependent, much like the principle that it is fine to leave the house without a

jacket whenever the temperature exceeds 70˚F. This is a reasonable norm, but one which

might be modified, if, say, one’s primary interest were in showing off a new jacket. In the statis-

tical context, one needs to develop a sense of “how big is big enough” (similarly to “how hot is

hot enough?”–a question that has no single answer outside of a specific context of application),

and this will depend upon several factors, including the costs and benefits of following up on

false positive findings or failing to follow up on true positive findings. Sample size also plays a

role (see below), and it may be helpful to use custom-tailored simulations to develop heuristics

for any particular application. Interpreting the PPLD may therefore seem to be more onerous

than relying upon a fixed threshold for the empirical p-value. However, as we demonstrate

below, there are very practical advantages to the shift in paradigm.

Note too that the distinctive behavior of the PPLD under H0 as a function of sample size

means that, even if we were to treat the PPLD as a standard test statistic, as we do below, the

significance level associated with any given PPLD threshold for declaring evidence against H0

decreases as the sample size increases. Thus, by contrast with CPH-P, there is no fixed signifi-

cance level associated with any given value of the PPLD; rather, the associated error probabili-

ties are a function of sample size and would need to be established separately for different

sample sizes, via custom simulations. That said, in applications of the PPLD it is not necessary

to establish the significance level associated with a particular result. Researchers have become

accustomed to considering the empirical Type 1 error rate as the measure of evidence against

H0. However, as is well known, this practice ignores the Type II error rate (or power) and also

the prior probability of H0. Hence even a small p-value can be associated with a high posterior

probability that H0 is actually true under some circumstances. Since what we really want to

know is the posterior probability of H0 (and/or of HA), the PPLD, which is a direct estimate of

the posterior probability of association, is therefore a more informative statistic than the p-

value alone, and its interpretation need not be reduced to an associated significance level.

Results

In what follows we evaluate the behavior of the TE-PPLD and CPH in application to GWAS

analysis in the context of our intended genetic application, using simulated data. We have cho-

sen the topics for the subsections to highlight some salient differences between the 2 methods

in the GWAS setting, as well as to assist us in making practical decisions regarding how best to

approach the analysis and interpret the results of our DMD study, or studies like the DMD

study, with a focus on achievable sample sizes for relatively rare disorders. Except where specif-

ically noted, we consider sample size N = 400.

Behavior of TE-PPLD and CPH regression under the null hypothesis

In this section we contrast the behavior of the TE-PPLD and CPH-P under the null hypothesis

H0 of no association (Table 1, Model 1). Specifically, we consider: fundamental differences in

their sampling distributions; effects of the form of the true underlying survival function S; and

the effects of varying MAF.

Baseline behavior under H0: “no association”. Fig 1 shows scatter plots of the the

TE-PPLD compared with CPH-P as a function of sample size N, under H0. As can be seen,

when there is no association the distribution of TE-PPLD moves leftward as the sample size

increases, making large scores less and less likely. The distribution of the CPH-P is essentially

constant as a function of sample size, as theoretically expected. In addition, the replicates with

larger TE-PPLDs are not always the same as the replicates with larger CPH-Ps. As previously
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noted, the mathematical frameworks underlying calculation of CPH-P and the TE-PPLD are

different, and this leads to different results not only in terms of the scales of the two statistics,

but also in terms of rank-ordering.

Effects of changing the underlying time-to-event distributions under H0. In the previ-

ous section the generating distribution for time-to-event was normally distributed, as

described above. Here we use 3 additional generating models: WB, BS and GM (see Methods).

Fig 2 compares the sampling distributions of each statistic across the different generating mod-

els. In this view, both log10BR (and therefore the TE-PPLD) and CPH-P appear to be relatively

robust to the underlying form of S, although in both cases some pairs of generating distribu-

tions appear to differ at the upper end of the (respective) scales.

Below we will show some power calculations, and this would in principle require adjusting

the significance thresholds under the different generating distributions were there an effect on

the upper tail of the distribution. Adopting a significance threshold of P� 5 returns 32 repli-

cates above the threshold under the original MoN generating condition. (We use the lower sig-

nificance threshold of 5 here because at this sample size there are no replicates with

CPH-P� 7.3 under any of these generating conditions; see also below.) Table 2 shows the sig-

nificance thresholds corresponding to the top 32 replicates under the other generating condi-

tions, along with what would be corresponding cutoffs (i.e., demarcating the top 32 scores) for

the TE-PPLD based on its null sampling distribution, were we to treat it as a test statistic in the

conventional way. For both CPH-P and the TE-PPLD, the variation in thresholds across gen-

erating distributions is small, and with 1,000,000 replicates, very small differences cannot be

Fig 1. Comparative behavior of CPH-P, TE-PPLD under H0 as a function of sample size N. Shown here are scatter plots of the CPH-P

and TE-PPLD distributions at three different sample sizes N, across 1,000,000 replicates generated independently for each N under H0: “no

SNP-trait association”.

https://doi.org/10.1371/journal.pone.0257164.g001
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estimated with high precision. Hence in what follows we utilize nominal Type 1 cutoffs with-

out adjustment.

Effects of lower MAFs. One issue of particular concern when using smaller sample sizes

for GWAS is the effect of low MAF on the distribution of the test statistic under the null

hypothesis. Regression analysis in general requires a sufficient number of individuals (say, at

least 10–15) in the subsets created by division based on covariates: here that would entail

requiring adequate numbers of individuals in each of the subgroups created by stratifying on

genotype and the covariate y (3 x 2 = 6 subgroups). In small data sets many SNPs may fail to

meet this bar; and the impact would be most pronounced under a recessive model. Here we

consider the impact of lowering the MAF while assuming recessive inheritance for CPH analy-

sis, and compare this with the corresponding impact on the TE-PPLD, for which the mode of

Fig 2. Comparative QQ plots for log10BR and CPH-P, respectively, as a function of generating form of S. Shown here are QQ plots for all possible pairs of generating

distributions for S (Mixture of Normals (MoN), Weibull (WB), Birnbaum-Saunders (BS), Gamma (GM), for N = 400, based on 1,000,000 replicates per generating

condition.

https://doi.org/10.1371/journal.pone.0257164.g002

Table 2. Significance thresholds as a function of generating distribution.

MoN WB BS GM

CPH-P 5.0000 4.7567 4.7642 5.0293

TE-PPLD 0.0201 0.019 0.0202 0.0235

Estimated significance thresholds based on 1,000,000 replicates under H0, using CPH-P� 5 under the Mixture of

Normals (MoN) generating distribution, which demarcated the top 32 CPH-Ps, as a baseline. Thresholds

corresponding to the top 32 SNPs are also shown for Weibull (WB), Birnbaum Saunders (BS) and Gamma (BM)

generating distributions, as well as for the TE-PPLD.

https://doi.org/10.1371/journal.pone.0257164.t002
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inheritance is not specified (Fig 3). Note that with 400 individuals and a MAF = 10%, we only

expect to see 4 individuals on average homozygous for the rare allele, which means only 2 on

average in each covariate subgroup.

As the MAF decreases, the distribution of CPH-P becomes increasingly inflated, showing

increasing (erroneous) larger P in favor of association. By contrast, for positive values (corre-

sponding to TE-PPLD > π), there does not appear to be any inflationary effect on log10BR, at

least until the MAF is quite small, and even then our interpretation of the results would not be

materially affected: for instance, on the PPLD scale, the highest TE-PPLD is 0.96 for

MAF = 0.1 and 0.64 for MAF = 0.5; in both cases, these would be clear cut “false-positive”

results using our usual heuristics. The more notable effect on the TE-PPLD distribution is the

progressive depression of log10BR for negative values as the MAF decreases, indicating increas-

ingly larger (correct) evidence against association.

Fig 3. Effects of decreasing minor allele frequency under H0. Shown here are QQ plots comparing sampling distributions (N = 400) under H0 for minor allele frequency

(MAF) = 0.4, 0.3, 0.2, 0.1 compared to the corresponding behavior with MAF = 0.5, for CPH-P and log10BR.

https://doi.org/10.1371/journal.pone.0257164.g003
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Another way to look at this is by noting the threshold that demarcates the top 32 scores, as

a function of MAF, corresponding to a CPH-P cutoff of 5 with MAF = 0.50 (Table 3). As can

be seen, substantially higher thresholds are needed to control the CPH-P Type 1 error rate at

even moderate MAF. By contrast, while some increase in the corresponding TE-PPLD thresh-

olds is seen, even at MAF = 0.1 the threshold remains well below our least stringent heuristic

cutoff of 0.10.

The built-in R routine for CPH returns NaN (“not a number”) under the recessive model

when there are 0 individuals homozygous for the rare allele. Under the MAF = 0.1 condition,

CPH returned a NaN for 18,242 SNPs. We confirmed that there is also little to no systematic

bias against the null hypothesis when the TE-PPLD is applied to those replicates that were

dropped by CPH (mean PPLD = 0.0003 < π (s.d. = 0.0019; max PPLD = 0.17)).

Of course, power to detect association will also be very low for SNPs with very low MAF,

because there will be insufficient variability in genotypes to detect anything. It is common to

drop SNPs with MAF below some threshold (say, 1–3%), with the threshold set higher for

smaller data sets. Thus there are separate reasons for ignoring low MAF SNPs in the course of

a genome scan. For CPH, one could additionally forego analysis under a recessive model in

order to avoid this problem; even at MAF = 0.10, there were 951 SNPs with CPH-P� 5 under

the recessive model, but there were only 59 such SNPs under the additive model (and the addi-

tive results included the 18,242 SNPs dropped from the recessive analysis; note that this may

also represent some inflation of scores under the additive model at low MAF, since we would

expect to see on average 10 SNPs with CPH-P� 5). But this of course risks missing a true

recessive association, which has been suggested for some DMD modifier loci [30]. The

TE-PPLD, which does not incur the same upward bias under the null in small samples that

plagues CPH under these conditions, does not force this choice.

Behavior of TE-PPLD and CPH regression under the alternative hypothesis

In this section we explore the behavior of TE-PPLD and CPH-P under generating models in

which there is an association between SNP genotypes and the time-to-event phenotype. We

first show baseline comparisons for Models 2–8 (Table 1); we then explore robustness to differ-

ent forms of generating distributions; and we consider an additional set of generating models

involving epistasis, as described in that section. Finally, we consider challenges to independent

replication as a gold standard for GWAS when only small to moderate sample sizes are

attainable.

Baseline results under the alternative hypothesis HA: “SNP-trait association”. Table 4

shows TE-PPLD and CPH-P results for the baseline alternative models (Models 2–8 in

Table 1). Expected TE-PPLDs and CPH-Ps each vary as a function of generating conditions,

with increasing means as sample size increases, as one would expect. Note that Model 7

involves effects on variances only; we would not expect CPH to detect association under this

model. These baseline models were originally chosen in [4] to vary the mode of inheritance

and the expected TE-PPLD while maintaining some reasonable ability to detect association at

Table 3. Significance thresholds as a function of MAF.

MAF = 0.5 MAF = 0.4 MAF = 0.3 MAF = 0.2 MAF = 0.1

CPH-P 4.7905 5.1730 5.6307 6.2065 7.9427

TE-PPLD 0.0201 0.0264 0.0249 0.0393 0.0452

Estimated significance thresholds based on 1,000,000 replicates under H0, using additive CPH-P� 5 under the Mixture of Normals generating distribution as a baseline

(Table 2). Here CPH-P is computed under the recessive model.

https://doi.org/10.1371/journal.pone.0257164.t003
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N = 400. In Table 4 these appear to be fairly strong effect sizes, in the sense that by N = 800

both methods are on average able to clearly detect association. However, recall that here we

have used a generating MAF of 0.50; with lower MAFs average scores would be lower for both

methods, in most cases appreciably so (see below). Note too that CPH analysis is run here

under the generating mode of inheritance, which is generally unknown in applications to real

data. This overestimates the performance of CPH relative to the common practice of relying

on the additive model. For example, under the additive model, the results for Models 4, 5

(N = 400) would be just 5.34 (2.07) and 5.16 (2.05), respectively.

One salient feature of Table 4 is the large standard deviations across the 1,000 replicates per

generating condition. Even though the generating model in each case represents a straight-for-

ward genetic association model, and not, for example, a complex mixture of loci with different

effects, nevertheless, both the TE-PPLD and CPH-P can vary widely from replicate to replicate

in samples of this size; under mixture models standard deviations would be even larger. Fig 4

illustrates the extent of variability for each statistic on its own and in comparison with one

another. We return to some implications of this level of variability below.

Effects of changing the underlying time-to-event distributions under HA. Table 5 illus-

trates that under the alternative hypothesis the TE-PPLD is highly robust to the form of the

underlying time-to-event distribution, across the range of distributions considered here. Thus

neither the PPLD’s native “mixture of normals” assumption for a quantitative trait nor the use

of the WB distribution for estimation of residuals complicates the interpretation of TE-PPLDs

even when the underlying distribution violates these assumptions. By contrast, for some gener-

ating models the average CPH-P can drop considerably under some generating distributions.

Another way to look at this is from the point of view of conventional power calculations

(Table 6). Here we used nominal thresholds of P� 5 for all CPH analysis, with corresponding

thresholds for the TE-PPLD, as described above. As can be seen, the power of the TE-PPLD is

affected very little by the underlying time-to-event distribution, across the range of generating

distributions considered here. By contrast, CPH-P can suffer a loss of power, in many cases, a

quite substantial loss, depending on the form of the underlying distribution.

Genotype x covariate interactions. In studying the effects of modifier genes in the con-

text of DMD, we are interested in the possibility that modifiers of the DMD phenotype might

work by affecting response to treatment with steroids. The PPLD’s procedure for adjusting the

residuals for covariate effects is done by “preprocessing” the data once, independently of geno-

type; by contrast, in a regression framework the covariate adjustment would be done separately

Table 4. Summary of sampling distributions of TE-PPLD, CPH-P, respectively, for the baseline models under HA.

TE-PPLD CPH-P

Model N = 200 N = 400 N = 800 N = 200 N = 400 N = 800

2 0.11 (0.23) 0.60 (0.41) 0.99 (0.05) 4.28 (1.81) 7.64 (2.48) 14.33 (3.35)

3 0.03 (0.12) 0.22 (0.33) 0.82 (0.32) 2.99 (1.48) 5.37 (1.99) 9.95 (2.89)

4 0.15 (0.28) 0.68 (0.39) 0.99 (0.05) 4.63 (2.10) 8.59 (2.97) 16.08 (4.10)

5 0.13 (0.27) 0.64 (0.40) 0.99 (0.07) 3.61 (1.45) 6.57 (1.88) 12.37 (2.71)

6 0.32 (0.38) 0.98 (0.08) 1.00 (0.00) 5.37 (1.88) 10.39 (2.69) 20.00 (3.80)

7 0.11 (0.22) 0.83 (0.29) 1.00 (0.00) 0.72 (0.68) 0.95 (0.80) 1.51 (1.06)

8 0.02 (0.09) 0.14 (0.28) 0.67 (0.39) 2.67 (1.37) 4.68 (1.92) 8.51 (2.50)

Shown here are the mean (standard deviation) of the sampling distribution, across 1,000 replicates per Model and sample size, of each statistic under each of the

alternative models 2–8 from Table 1. For CPH y and genotype are included in the model as covariates; CPH analyses are run under the generating mode of inheritance

(recessive, additive or dominant) per Table 1.

https://doi.org/10.1371/journal.pone.0257164.t004
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for each SNP. In [4] we speculated that, as a result, the TE-PPLD might not be well powered to

detect genotype x covariate interactions.

To investigate further, we simulated data under a variety of models involving covariate x

genotype interactions as shown in Table 7. We note that the particular type of interaction we

are considering here is a form of classical epistasis, in which the effect of genotype on time-to-

event may be masked by the absence of steroid exposure. Mathematically, this is only indirectly

related to interaction in the usual statistical sense [31–33]. It is, however, precisely the form of

interaction of biological interest for the DMD study. In anticipation of the following section,

where variable rates of covariate classification become important in the context of replication

of findings, instead of simply setting Ny = 1 = Ny = 2 = 0.5, here we randomly draw the propor-

tion α of individuals with y = 2 within each replicate from a N(0.7, 0.1) distribution.

For the TE-PPLD, data were analyzed in two ways: (i) with each replicate (N = 400)

“pooled,” that is, considered as a single data set; or (ii) dividing each replicate by covariate

Fig 4. Comparative sampling variability of CPH-P and TE-PPLD under HA. Shown here are scatter plots for Models 2–8 from Table 1, with1,000 replicates per model

(N = 400).

https://doi.org/10.1371/journal.pone.0257164.g004
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status and analyzing each of the two resulting data sets separately. For comparative purposes,

we also analyzed the data under CPH, both without and with a covariate x genotype interac-

tion term included in the model. Table 8 summarizes results. For the TE-PPLD, it is clear that

in the presence of epistasis “pooled” analysis is much less effective than separate analysis in the

y = 2 group, which is to be expected since the pooled group is a mixture of individuals, only

some of whom represent any (detectable) genotypic effect. Also note that the TE-PPLD does

an excellent job of distinguishing evidence for association from evidence against association,

as reflected in the fact that for models Epi 1–4, in which there is no genotypic effect in the y = 1

group, TE-PPLD(y = 2) > TE-PPLD(pooled). For Epi 5–6, where there is some genotypic

effect in the y = 1 group, TE-PPLD(y = 2)< TE-PPLD(pooled), but still TE-PPLD(y = 2) is

considerably larger than TE-PPLD(y = 1); of course differences in sub-sample sizes also com-

plicate interpretation in this case. Thus by comparing the pooled results with the subset results

we are able to infer whether or not there is evidence of interaction, at least for Epi 1–4. This

works precisely because the TE-PPLD, by contrast with CPH-P, is able to indicate evidence for

H0. Note, however, that here we are considering any difference in the scores as some evidence

of interaction, without specifying how large a difference should be considered decisive. (See

also Conclusions, below.) Interestingly, under CPH analysis it seems preferable to not include

the interaction term whether there is epistasis or not. Moreover, the interaction coefficient p-

value is not a reliable indicator of whether or not epistasis exists.

Thus our earlier speculation in [4] that the TE-PPLD might not be useful for detecting

covariate x genotype interactions appears to have been misplaced. For a binary covariate such

interactions can apparently be detected by dividing the data set into two groups based on the

covariate, then analyzing data with all of the data “pooled” (using y-adjusted residuals) and

again separately in the two subsets; for the DMD application, where the interest is in a possible

Table 5. Robustness to true underlying time-to-event distribution under HA.

Model MoN WB BS GM

TE-PPLD

2 0.60 (0.41) 0.60 (0.41) 0.56 (0.41) 0.64 (0.40)

3 0.22 (0.33) 0.24 (0.34) 0.21 (0.33) 0.18 (0.30)

4 0.68 (0.39) 0.69 (0.39) 0.71 (0.38) 0.59 (0.42)

5 0.64 (0.40) 0.63 (0.40) 0.59 (0.40) 0.47 (0.41)

6 0.98 (0.08) 0.98 (0.10) 0.96 (0.15) 0.93 (0.19)

7 0.83 (0.29) 0.81 (0.31) 1.00 (0.03) 0.92 (0.20)

8 0.14 (0.28) 0.23 (0.34) 0.61 (0.40) 0.25 (0.35)

CPH-P

2 7.64 (2.48) 7.91 (2.55) 5.34 (2.11) 6.74 (2.35)

3 5.37 (1.99) 5.50 (2.05) 3.78 (1.72) 4.26 (1.84)

4 8.59 (2.97) 8.54 (2.84) 6.04 (2.70) 6.63 (2.78)

5 6.57 (1.88) 6.56 (1.86) 4.59 (1.57) 4.90 (1.59)

6 10.39 (2.69) 10.43 (2.62) 6.28 (2.15) 9.13 (2.61)

7 0.95 (0.80) 0.94 (0.83) 0.48 (0.47) 0.74 (0.67)

8 4.68 (1.92) 5.04 (1.88) 5.87 (2.20) 4.38 (1.73)

Shown here are the mean (standard deviation) across 1,000 replicated generated under HA (Models 2–8 from

Table 1; N = 400). Results for the Mixture of Normals (MoN) distribution are repeated from Table 4 for comparison

purposes; also shown are results for data generated under Weibull (WB), Birnbaum-Saunders (BS) and Gamma

(GM) distributions. CPH regression included y and genotypes as covariates, and were run assuming the generating

mode of inheritance (recessive, additive, dominant) for each model, as displayed in Table 1.

https://doi.org/10.1371/journal.pone.0257164.t005
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effect of steroid exposure (which would correspond to y = 2), this procedure would be applied

only to the y = 2 group. SNPs with large TE-PPLDs in which TE-PPLD(pooled) > TE-PPLD

(y = 2) would then be indicative of association in the absence of an epistatic interaction, while

SNPs with TE-PPLD(y = 2) > TE-PPLD(pooled), or even in some cases TE-PPLD(y = 2)>

TE-PPLD(y = 1), would indicate an association involving interaction. In Conclusions we

revisit this approach in the context of a full genome scan.

Independent replication vs. sequential updating based on small samples. As noted

above, all of the generating conditions show strikingly high levels of variability across replicates

in samples of the sizes considered here. This alone would suggest that clear-cut independent

replication of a true signal might be unlikely, particularly when there might be only a few inde-

pendent studies to use for comparison, each of which would also have a modest number of

subjects, perhaps fewer than the initial study. To illustrate some of the issues involved in trying

to replicate any DMD findings, we consider a situation we are likely to face, with access only to

smaller replication samples for the time being.

In considering independent replication criteria based on p-values, there are many choices

one could make regarding significance thresholds for the replication data set, and no clear

answer as to which choice is correct. Here we use the NHGRI-EBI GWAS (https://www.ebi.ac.

uk/gwas/) replication criteria: an association finding is considered to be replicated if either

(Criterion 1) both of 2 studies gives P� 5, or (Criterion 2) pooling the 2 data sets (or “mega-

analysis”) gives P� 5.

Table 6. Comparative power of TE-PPLD and CPH-P analyses as a function of underlying survival distribution.

TE-PPLD CPH-P

Model MoN WB BS GM MoN WB BS GM

2 86.1 87.7 85.2 89.5 85.9 88.4 52.9 76.0

3 52.1 54.9 51.0 46.6 52.5 58.2 22.2 32.0

4 89.5 91.2 91.3 85.6 89.2 89.3 60.4 69.6

5 88.3 88.7 87.5 80.2 79.5 79.4 37.4 44.5

6 100.0 99.8 99.6 99.1 98.8 99.2 70.5 95.5

7 98.1 96.9 100.0 99.6 0.1 0.0 0.0 0.0

8 36.0 51.2 87.1 56.1 37.9 47.7 62.5 34.2

Shown here is the estimated power to exceed a nominal CPH-P threshold of P � 5, or the corresponding TE-PPLD threshold, when the underlying form of the

generating model is Mixture of Normals (MoN), Weibull (WB), Birnbaum-Saunders (BS) or Gamma (GM).

https://doi.org/10.1371/journal.pone.0257164.t006

Table 7. Generating models involving covariate x genotype interactions (epistasis).

y = 1 y = 2

Model μ11 (σ11) μ12 (σ12) μ22 (σ22) μ11 (σ11) μ12 (σ12) μ22 (σ22)

Epi 1 0 (1) 0 (1) 0 (1) –0.5 (1) 0.0 (1) 0.5 (1)

Epi 2 0 (1) 0 (1) 0 (1) –0.5 (1) 0.5 (1) 0.5 (1)

Epi 3 0 (1) 0 (1) 0 (1) –0.5 (1) –0.5 (1) 0.5 (1)

Epi 4 0 (1) 0 (1) 0 (1) 0 (2) 0 (1) 0 (1)

Epi 5 –0.5 (1) 0 (1) 0 (1) –0.75 (1) 0 (1) 0 (1)

Epi 6 –0.5 (1) 0 (1) 0 (1) –0.5 (1.5) 0 (1) 0 (1)

Epi 7 –0.5 (1) 0 (1) 0 (1) –0.75 (1.5) 0 (1) 0 (1)

Models are shown on the standard normal scale. For each replicate, the proportion α of individuals with y = 2 is drawn from a N(0.7, 0.1) distribution; for all models, a

value of y = 2 also adds 3 years on average to the mean time-of-event relative to y = 1, regardless of genotype.

https://doi.org/10.1371/journal.pone.0257164.t007
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For purposes of illustration, we consider the additive Model Epi 1 (Table 7), and an initial

data set of size NInit = 400. Among the 1,000 replicates generated for Table 7 under this model,

there were 190 with additive CPH-P� 5. We selected 2 replicates to serve, respectively, as ini-

tial Candidate SNPs (CandSNP): one with CPH-P over the threshold of 5 (CandSNP#1CPH-P =

5.70), and another with CPH-P meeting conventional genome-wide significance

(CandSNP#2CPH-P = 7.3). Note that the proportion of individuals with y = 2 was α = 65.8% in

the CandSNP#1CPH data set and 80.0% for CandSNP#2CPH. The higher value of α for the

CandSNP#2 data set is an artifact of selecting the SNP based on a more stringent significance

criterion, under conditions of variable α. We then attempted to replicate these signals in 1,000

independent replication data sets (RepSets) of size N = 200 under HA (Model Epi 1), and in

another 1,000 RepSets under H0 (Model 1, Table 1). Note that although the CandSNPs were

drawn from a model involving a true association, here were are interested in our ability to rep-
licate a finding: in this context it does not matter whether the initial finding is a true positive

or a false positive; all that matters is the magnitude of the initial CPH-P, along with whether

the RepSet itself comes from HA or H0.

Just 3.7% of RepSets satisfied Criterion 1 under HA (0% satisfied Criterion 1 under H0).

That is, the probability of achieving statistical significance based on any given RepSet is negli-

gible for this model at this sample size. Of course, with a larger RepSets this probability would

increase; however, the large standard deviations, combined with the “winner’s curse” effect on

αmight still make clear-cut independent replication problematic.

Hence the only real possibility of satisfying the replication criterion under these circum-

stances comes from pooling the initial and replication data sets. Table 9 shows the percent of

RepDS for which the pooled CPH-P exceeded replication Criterion 2. As can be seen, when

the RepDS is generated under HA, our power to replicate the CandSNP is high under this Cri-

terion for both CandSNPs #1 and #2. However, there is also a high false positive replication

rate when following up with data generated under H0. Moreover, the larger the initial signal

we are attempting to replicate, the more unreliable is Criterion 2, because the more the data set

in which the SNP was originally detected will dominate the pooled analysis, regardless of

whether the replication data set itself supports association or fails to support association.

Again, results would be different if the replication data set were larger than the initial one. Our

Table 8. TE-PPLD and CPH-P results under epistasis models Epi 1 –Epi 7 from Table 7.

TE-PPLD CPH-P

Model Pooled y = 1 y = 2 Genotype Genotype (g.t.) Genotype (interaction)

Epi 1 0.08 (0.22) 0.0001 (0.0002) 0.21 (0.33) 3.4 (1.9) 0.5 (0.6) 2.1 (1.4)

Epi 2 0.30 (0.40) 0.0001 (0.0002) 0.62 (0.42) 4.9 (2.8) 0.6 (0.8) 3.0 (1.7)

Epi 3 0.22 (0.36) 0.0002 (0.0022) 0.57 (0.41) 4.3 (1.9) 0.6 (0.8) 2.7 (1.6)

Epi 4 0.02 (0.10) 0.0001 (0.0006) 0.04 (0.15) 0.6 (0.6) 0.5 (0.5) 0.6 (0.6)

Epi 5 0.33 (0.39) 0.0046 (0.0407) 0.25 (0.36) 6.1 (2.4) 2.0 (1.7) 0.7 (0.7)

Epi 6 0.10 (0.27) 0.0020 (0.0112) 0.05 (0.17) 2.6 (1.7) 1.9 (1.5) 0.7 (0.7)

Epi 7 0.35 (0.40) 0.0039 (0.0359) 0.25 (0.37) 4.0 (2.2) 2.0 (1.5) 0.6 (0.6)

Shown here are the mean (standard deviation) across 1,000 replicates, for the TE-PPLD and CPH regression. TE-PPLD results are computed in 2 ways: either with data

“pooled” (N = 400) within each replicate, or with data subdivided based on y and analyzed separately in the 2 covariate groups. CPH analysis was run in 2 ways: without

a y x genotype interaction term in the model (CPH-P Genotype = –log10(p-value) for the genotypic coefficient); or with an interaction term in the model. In the latter

case we report both Genotype (g.t.), the value of P for the genotypic coefficient), and Genotype (interaction), the value of P for the interaction term. As above, CPH

analyses were run assuming the generating mode of inheritance (recessive, additive, dominant) per Table 7. Note that the TE-PPLD differs between the covariate groups

under models Epi 4 and Epi 6 due solely to covariate effects on variances.

https://doi.org/10.1371/journal.pone.0257164.t008
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point here is not to establish general power to replicate, but rather simply to illustrate some of

the challenges of relying on replication to separate true from false positive findings in this

setting.

For comparison, we selected separate replicates such that CandSNP#3TE-PPLD = 0.53, which

is large enough to satisfy our usual heuristics, and CandSNP#4TE-PPLD = 0.88. Table 9 com-

pares the pooled (N = 600) TE-PPLD with each of the initial CandSNP TE-PPLDs. What we

see is that most of the time when the RepDS is generated under HA, the pooled TE-PPLD is

larger than the initial CandSNP TE-PPLD, and the percentage of RepDSs with this feature is

not dependent on the stringency of the criterion for selection of the CandSNP in the first

place. Moreover, when the RepDS comes from H0, the pooled TE-PPLD is consistently <<

CandSNP TE-PPLD. Thus the TE-PPLD appears, at least based on this one set of generating

conditions, to be a better approach to replication than CPH-P when replication involves sim-

ple pooling of the initial and replication data sets.

However, it could be argued that the pooled result is not really what we want, because it is

driven to a large extent by the initial data set, which was selected specifically for the size of its

signal at the CandSNP. This would be true for either CPH-P or the TE-PPLD, despite the very

different implications in terms of sampling behavior under replication. When relying on p-val-

ues, this issue is hard to circumvent, because the only alternative is to use some version of Cri-

terion 1, and as we have seen, even requiring less than conventional genome-wide significance

can be very hard to achieve in a small follow-up data set. (One might consider some form of

meta-analysis, but this also fails for very much the same reasons that pooling the data fails

[34].)

In the PPLD framework, we do have an alternative, namely, to focus instead on the accumu-
lation of evidence strength as new data are accrued, via the mathematically rigorous technique

of Bayesian sequential updating (see Methods, above). The basic idea is quite simple: Because

the PPLD can detect evidence both for HA and also for H0 (which the p-value cannot), when a

follow-up data set supports “association” then on average we will have BR > 1 (or equivalently,

PPLD > π); whereas when the follow-up data set supports “no association” we will have

BR < 1 (i.e., PPLD < π). Sequential updating ensures that when the replication data set sup-

ports HA the PPLD increases upon consideration of the new data, while when the replication

data set supports H0, the PPLD decreases.

Table 9. Probability of successful replication based on “pooling” initial and follow-up data sets, when following

up on SNPs selected for moderate or high association signals.

CPH-Ppooled TE-PPLDpooled

CandSNP#1 CandSNP #2 TE-PPLDpooled >

TE-PPLD(CandSNP #3)

TE-PPLDpooled >

TE-PPLD(CandSNP #4)

HA H0 HA H0 HA H0 HA H0

86.8% 21.5% 97.3% 52.5% 75.2% 2.7% 74.2% 2.7%

CPH-Ppooled: Shown here are the proportion of pooled (N = 600) CPH-P exceeding the replication criterion of 5,

when the initial data set (N = 400) is pooled with each of 1,000 replication data sets of size N = 200 each, generated

under either HA (Model Epi 1 from Table 7) or H0 (Model 1 from Table 1). CandSNP#1 selected based on

CPH-P = 5.7 in the initial (N = 400) data set, CandSNP#2 selected based on CPH-P = 7.3. TE-PPLDpooled: Shown

here are the proportion of pooled (N = 600) TE-PPLDs exceeding the initial TE-PPLD, when the initial data set is

pooled with each of those same 1,000 replication data sets, generated under either HA (Model Epi 1) or H0 (Model 1).

CandSNP#3TE-PPLD selected based on TE-PPLD = 0.53 in the initial data set, CandSNP#4TE-PPLD selected based on

TE-PPLD = 0.88.

https://doi.org/10.1371/journal.pone.0257164.t009
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Applying sequential updating in the current experiment, we find that 34.2% of RepDSs

have TE-PPLD > π under HA, while 4% have TE-PPLD> π under H0. This tells us the proba-

bility (34.2%) that the sequentially updated TE-PPLD will correctly increase, relative to the ini-

tially selected CandSNP, regardless of the size of the initial TE-PPLD. While a 34% success rate

may seem quite low, it is arguably a more realistic assessment of the likelihood of agreement

between two datasets at any given associated SNP under the conditions simulated here.

Conclusions

In this paper we have evaluated the sampling behavior of the TE-PPLD in small to moderate

samples sizes, and compared this behavior with the sampling behavior of CPH p-values, using

simulations. We have noted a number of contrasts between the the TE-PPLD and CPH-P.

Some of what we have found will be specific to time-to-event data, but most findings will apply

to any application of the PPLD in the GWAS setting with small to moderate sample sizes.

We selected the sample sizes and topics covered here based on design questions facing a

GWAS-based search for genetic modifiers of DMD, in order to inform our approach to ana-

lyzing and interpreting our own DMD data; and we have selected generating models to illus-

trate key points. We do not claim to have been exhaustive either in covering all possible topics

or in covering all possible underlying genetic models. Nevertheless, the results presented above

suggest several ways in which the TE-PPLD is a better choice than CPH in our setting.

In this final section we synthesize the implications of what we have found by loosely mim-

icking what might happen in a real GWAS for DMD modifiers. We assume 1,000,014 indepen-

dent SNPs (no SNP-SNP linkage disequilibrium), 1,000,000 of which represent unassociated

SNPs, simulated under H0; and 14 of which represent associated SNPs, simulated under HA

and generated 1 each from the 14 HA generating models (Table 1, Models 2–8; Table 7 models

Epi 1–Epi 7). We generated a single initial data set (InitDS) of size N = 400, and we followed

up on selected SNPs in a single replication data set (RepSet) of N = 200. These simulations

vary in 2 regards from those in the previous sections: (i) we generated y from a N(0.7, 0.1) dis-

tribution, as described above, for all SNPs, separately in the InitDS and the RepSet; (ii) we used

the MAF distribution from our actual DMD data set (Illumina Infinium Omni2.5Exome-8

v1.4, omitting SNPs with MAF < 3%; mean MAF = 0.23, s.d. 0.14). The RepSet data were gen-

erated from the same Model and using the same MAF that gave rise to each CandSNP in turn.

Also here we consider a single replicate (at each sample size, N = 400, N = 200 respectively).

This last experiment, therefore, is subject to “luck of the draw,” just as any single real study

would be.

For CPH analysis we assumed additive inheritance for all SNPs. We also repeated the exper-

iment maximizing over the mode of inheritance at each SNP, but this approach resulted in far

lower true positive rates; see below. We applied 2 significance criteria for selecting initial

CandSNPs: either CPH-P� 5.0, or CPH-P� 7.3. We then followed up on all CandSNPs in

the RepSet, again applying the NHGRI-EBI GWAS replication criteria as described above: a

CandSNP was considered to be replicated if CPH-P(RepSet)� 5 or if pooling the initial and

replication data sets yielded CPH-P� 5.

For the TE-PPLD we considered 3 thresholds for determining CandSNPs: 0.0430, which

corresponded in this data set to a CPH-P threshold of 5 under H0, and our usual heuristic

thresholds of 0.10, 0.40. (Note that the threshold of 0.0430 is larger than the corresponding

threshold of 0.0201 in Table 2. This is because Table 2 was generated with MAF = 0.5, while

the current simulation involves variable MAFs, and it is consistent with the slight and largely

inconsequential inflation of TE-PPLD scores under low MAFs as noted above.) We considered

a CandSNP to be confirmed by the RepSet if the sequentially updated TE-PPLD > original
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(N = 400) CandSNP TE-PPLD, or in other words, if the CandSNP yielded TE-PPLD > π in

the RepSet alone.

Table 10 summarizes the overall performance of the two methods. In the InitSet, using a

threshold of 7.3 for CPH-P, 2 SNPs cross the threshold, one of which represents HA, and this

was the CPH condition yielding the highest True Positive Rate (TPR) = 1/2 = 50%. The highest

TPR for the TE-PPLD was 60%, which occurred when using the heuristic threshold of 0.4, and

yielded 3 truly associated SNPs, compared to the 1 association correctly identified under CPH.

It is also interesting to note that in the initial genome scan, using CPH-P criterion of 5 and the

equivalent TE-PPLD, which yielded the same number of “false positive” signals by design, led

to the correct identification of twice as many true positives under TE-PPLD analysis compared

to CPH analysis. Note too that filtering out SNPs with MAF < 0.10 does not affect the number

of true positive findings; however, it does reduce the number of false positive findings with the

lower thresholds, from 29 to 23 for PPLD using 0.0430 (TRP = 14%), and from 29 to 17 for

CPH-P using 5 (TPR = 11%).

CPH-P successfully replicated both CandSNPs crossing the threshold of 5 in the initial data

set, including the 1 CandSNP that initially crossed the threshold of 7.3. However, replication

was also seen for 4 of the 29 H0 SNPs initially crossing the threshold of 5, though not for the

single H0 SNP initially crossing 7.3. Hence with the more stringent criterion for selecting

CandSNPs, the True Replication Rate (TRR) was 100%; however, only 1 truly associated SNP

was identified; at the lower threshold 2 truly associated SNPs were identified, but these made

up just 2/6 SNPs satisfying the replication criteria.

By contrast, the TE-PPLD found confirmatory evidence for 3/4 HA CandSNPs identified at

the lower threshold of 0.0430 SNPs, and at none of the H0 CandSNPs, for a True Confirmation

Rate (TCR) of 100%; using the thresholds of 0.10 or 0.40 for selection of the initial CandSNPs,

the TCRs were also 100% in both cases, with 3/3 HA SNPs confirmed and 0 H0 SNPs, at both

thresholds. This means that one true positive SNP, identified in the initial data set, was not

confirmed in the smaller, lower power follow-up data set. Hence failure to confirm, even in

the context of these relatively simple generating models, does not necessarily mean that the ini-

tial finding was a false positive. But overall, the TE-PPLD identified more truly associated

SNPs than did CPH-P, and with 0 false-positive confirmations using a threshold of 0.10 or

higher for selection of CandSNPs in the initial data set.

Note too that when maximizing over mode of inheritance (recessive, additive, dominant),

at a threshold of 5 CPH-P picked up one additional true positive finding (the recessive Model

4, which was missed by additive analysis) and 439 false positives, for TPR = 1%; when

Table 10. True Positive Rates (TPR) for initial genome scan (N = 400) and True Replication (Confirmation) Rates (N = 200), using various thresholds.

Initial Genome Scan (N = 400) Replication Data Set (N = 200)

Threshold # of True Positive SNPs # of False Positive SNPs TPR # of True Replications # of False Replications TRR

CPH-P 5 2 29 0.06 2 4 0.33

7.3 1 1 0.50 1 0 1.0

Threshold # of True Positive SNPs # of False Positive SNPs TPR # of True Confirmations # of False Confirmations TCR

TE-PPLD 0.0430 4 29 0.12 3 0 1.0

0.10 3 9 0.25 3 0 1.0

0.40 3 2 0.60 3 0 1.0

TPR = True Positive Rate, or the proportion of all SNPs exceeding the threshold that represent true association; TRR = True Replication Rate, or the proportion of all

SNPs with CPH-P meeting replication criteria that represent true association; TCR = True Confirmation Rate = the proportion of all SNPs with TE-PPLD > π in the

replication data set that represent true association. CPH-P calculated under an additive model.

https://doi.org/10.1371/journal.pone.0257164.t010
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dropping SNPs with MAF < 10% the TPR improved only slightly, to 2%. At the higher thresh-

old (7.3) the TPR was 4% and 10%, respectively, with and without the low MAF SNPs

included. Thus allowing for dominance in CPH analysis by maximizing over the mode of

inheritance appears to perform very poorly, in contrast to relying on a single analysis under

the additive model. As noted above, however, the additive model will tend to have reduced

power in the presence of dominance. The PPLD, which does not require specification of the

mode of inheritance, does not face this issue.

Also informative is a comparison of rank-ordering of the TE-PPLDs or CPH-Ps (additive)

(Table 11), of the 14 SNPs generated under HA among all 1,000,014 SNPs. In this particular

replicate, Model 5 yielded the top score for either method. The 2nd largest TE-PPLD was

obtained under Model 4 and ranked 3rd (that is, the 2nd highest TE-PPLD was from H0), while

the 2nd highest CPH-P was ranked 30th (Model 2). The 3rd highest TE-PPLD was from model

Epi 3 and ranked 5th; while the 3rd highest CPH-P was also from Epi 3 but ranked 62nd. Thus

even under these conditions, in which it was apparently quite difficult to detect signals at most

of the HA models, the “true” positives tended to cluster closer to the top of the TE-PPLD rank-

ings than the CPH-P rankings.

As a final experiment, we attempted to use stratification on y to detect covariate x genotype

epistasis using the TE-PPLD, per section 3.2.3 above, particularly hoping to detect Models Epi

1–4 (Table 7). We considered two ways of doing this: (i) Based on the initial N = 400 data set,

we rescanned the genome separately in the y = 2 group, accepting as evidence of epistasis any

SNP at which the y = 2 TE-PPLD crossed a threshold (0.0430, 0.10, or 0.40) and also for which

TE-PPLD(y = 2) > TE-PPLD(N = 400), that is, in which the subset-specific PPLD exceeded

the “pooled” (across y) PPLD; (ii) performing the separate y = 2 analysis only for those SNPs

crossing the given threshold in the initial “pooled” genome scan. Table 12 shows the results. In

both cases, the single true positive result occurred for Model Int 3. Rescanning the entire

genome in y = 2 did not detect any additional true positive signals, compared to following up

only on those SNPs already detected in the pooled analysis, which is somewhat surprising

given the results in Table 8; however, it did produce additional false positive signals, no doubt

due to the smaller sample size. (Recall that under H0, the PPLD is a less reliable indicator of

evidence in favor of H0 the smaller the sample size.) The highest true confirmation rate (0.50)

Table 11. Rank order of “true positive” SNPs among all 1,000,014 SNPs.

TE-PPLD CPH-P

Model 2 29 30

Model 3 94,032 6,381

Model 4 3 6,547

Model 5 1 1

Model 6 2,796 634

Model 7 16,653 223,516

Model 8 276,148 19,234

Epi 1 567,490 70,276

Epi 2 599,782 602,124

Epi 3 5 62

Epi 4 89,758 720,810

Epi 5 4,376 193,179

Epi 6 533,873 611,318

Epi 7 922,202 895,294

CPH assumed additive inheritance. See Tables 2 and 7 for generating models.

https://doi.org/10.1371/journal.pone.0257164.t011
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occurred when performing the separate y = 2 analysis only at SNPs crossing the 0.40 threshold

in the initial pooled analysis. It is also notable that we did not erroneously infer epistasis for

any of the non-epistatic HA models.

In summary. We have illustrated several advantages of the PPLD over regression analysis

in the context of GWAS with small to moderate sample sizes, both for identifying candidate

SNPs and for confirming them in follow-up data sets (Table 13). We considered a range of

models for genotypic effects on a time-to-event phenotype, and found that these tend to have

low to moderate power in the sample sizes considered here, particularly using a realistic minor

allele frequency distribution as would be found on a standard SNP array. In addition, these

models showed very high variability across replicates, leaving a large role for chance both in

terms of which truly associated SNPs can be detected in any given study and also in terms of

our ability to find the same SNPs in follow-up data sets.

While there is no way to know in advance what sorts of models underlie true modifier

effects in our DMD study, still, our results suggest overall that increasing sample sizes will be

important, not only for the reliable detection of modifier genes but also for identification sec-

ondary effects such as covariate x genotype interactions. At the same time, however, our results

Table 12. True Positive Rates (TPR) for detection of epistasis using the TE-PPLD in initial N = 400 data set, at various thresholds.

Rescan Genome in y = 2 Consider only SNPs crossing threshold in pooled (y = 1, y = 2) analysis

Threshold # of True Positive SNPs # of False Positive SNPs TPR # of True Positive SNPs # of False Positive SNPs TPR

0.0430 1 16 0.06 1 5 0.17

0.10 1 14 0.07 1 2 0.33

0.40 1 2 0.33 1 1 0.50

Note that “True Positive” and “False Positive” refer here to correctly or incorrectly inferring epistasis.

https://doi.org/10.1371/journal.pone.0257164.t012

Table 13. Summary comparisons between CPH-P and the PPLD.

CPH-P PPLD

Baseline Distributions

under H0

Type 1 error rate constant as a function of

N; can only achieve significance for HA,

not for H0

P[PPLD > π | H0]! 0 as N!1; can

find evidence for H0 as well as for HA

Sensitivity to MAF under

H0

Recessive analysis highly inflated at low

MAFs

Does not require specification of mode of

inheritance; virtually no inflation of scores

at low MAFs

Robustness to form of

underlying time-to-event

distribution

Robust under H0, but can suffer dramatic

losses in power under some HA

distributions

Highly robust under both H0 and HA

Detection of genotypic

effects on trait variances

Cannot detect effects on variances Can detect effects on variances

Inclusion of related

individuals

Cannot (directly) handle pedigrees Can handle arbitrary pedigree structures

along with unrelated individuals

Detection of (classical)

epistasis

Cannot detect epistasis Can detect epistasis

“Model-free” vs. “Model-

based”

Model-based: Maximizing over mode of

inheritance highly inflationary under H0;

additive analysis alone may lose power in

presence of dominance effects

Model-free: Agnostic regarding mode of

inheritance; need only be run once,

regardless of presence of dominance

effects

Replication vs.

Confirmation

Independent replication is a low power

and/or unreliable indicator of true

positives in small samples

Confirmation via sequential updating

outperforms replication via p-values

Overall Genome-wide

performance

Lower True Positive Rates, lower True

Replication Rates

Higher True Positive Rates, higher True

Confirmation Rates, and discovery of

more True Positive SNPs

https://doi.org/10.1371/journal.pone.0257164.t013
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support the overall reliability of TE-PPLD findings even in a data set of just N = 400; and they

strongly support our contention that it is not necessary to aim for sample sizes in the the thou-

sands or tens of thousands in order to reliably detect genes under the GWAS design, provided

one applies statistical methods that are well-adapted to inference in small data sets.
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