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Background: SCN1A is one of the most common epilepsy genes. About 80% of SCN1A

genemutations cause Dravet syndrome (DS), which is a severe and catastrophic epileptic

encephalopathy. More than 1,800 mutations have been identified in SCN1A. Although it

is known that SCN1A is the main cause of DS and genetic epilepsy with febrile seizures

plus (GEFS+), there is a dearth of information on the other related diseases caused by

mutations of SCN1A.

Objective: The aim of this study is to systematically review the literature associated with

SCN1A and other non-DS-related disorders.

Methods: We searched PubMed and SCOPUS for all the published cases related to

gene mutations of SCN1A until October 20, 2021. The results reported by each study

were summarized narratively.

Results: The PubMed and SCOPUS search yielded 2,889 items. A total of 453 studies

published between 2005 and 2020 met the final inclusion criteria. Overall, 303 studies

on DS, 93 on GEFS+, three on Doose syndrome, nine on the epilepsy of infancy with

migrating focal seizures (EIMFS), six on the West syndrome, two on the Lennox–Gastaut

syndrome (LGS), one on the Rett syndrome, seven on the nonsyndromic epileptic

encephalopathy (NEE), 19 on hemiplegia migraine, six on autism spectrum disorder

(ASD), two on nonepileptic SCN1A-related sudden deaths, and two on the arthrogryposis

multiplex congenital were included.

Conclusion: Aside fromDS, SCN1A also causes other epileptic encephalopathies, such

as GEFS+, Doose syndrome, EIMFS, West syndrome, LGS, Rett syndrome, and NEE.

In addition to epilepsy, hemiplegic migraine, ASD, sudden death, and arthrogryposis

multiplex congenital can also be caused by mutations of SCN1A.
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INTRODUCTION

Voltage-gated sodium channel (VGSC) channels play an
essential role in normal neurological function (1), especially
in the initiation and propagation of action potential. To date,
nine α subunits of sodium channels have been found and
confirmed (Nav1.1–Nav1.9). These channels are composed of
four homologous but distinct domains (DI–DIV), each of which
contains six transmembrane segments (S1–S6) (2) (Figures 2, 3).
SCN1A, a Nav1.1 α subunit composed of 26 coding exons
and located in the 85-kb gene region, is the most common
epileptic gene and the most common pathogenic gene in the
Dravet syndrome (DS), a catastrophic and intractable epileptic
encephalopathy (EE) (3). Phenotypes caused by de novo SCN1A
pathogenic variants are very variable, ranging from the severely
affected patients with DS tomuchmilder cases of genetic epilepsy
febrile seizures plus (GEFS+). In addition to gene mutations of
SCN1A that can cause DS, other genes include PCDH19, SCN2A,
SCN8A, SCN1B, GABRA1, GABRG2, GABRB3, STXBP1, HCN1,
CHD2, and KCNA2 can also cause DS or DS-like phenotypes
(4). They are also closely related to other epileptic diseases and
nonepileptic diseases (5–10).

METHODS

Literature Search
A systematic search was performed in PubMed and SCOPUS.
The most recent search was performed on October 20, 2021,
using the term “SCN1A” or “scn1a”.

Data Extraction
All the articles with mutations of SCN1A associated with a
particular disease were included in the criteria. We excluded
articles not written in English or Chinese, nonoriginal work that
has nothing to do with people, such as reviews, meta-analysis,
animals or cells, experimental articles not adding information
to the question posed in this review, and papers that could
not be retrieved via PubMed or SCOPUS. The records were
screened by JD and evaluated by XL with respect to the inclusion
and exclusion criteria. Disagreements were resolved through a
discussion between the two review authors (Figure 1).

RESULTS

After the elimination of duplicates (1,147 articles), the literature
search yielded 1,742 articles (Figure 1). After screening all the
abstracts, 1,215 records were excluded. Thus, 527 articles were
included in the full-text analysis. Of these, 74 full-text articles
were excluded. Articles were excluded based on the following
exclusion criteria: animal or cell studies (n = 331); review,
systematic review, and meta-analysis (n= 357); comment, letter,
editorial, and erratum (n= 97); reports not in English or Chinese
(n= 14); irrelevant exposure (n= 416); full text unavailable (n=
32); or epilepsy type unknown (n = 42). Finally, 453 studies met
the inclusion and did not meet the exclusion criteria (Figure 1).
It is well known that SCN1A is the main pathogenic cause of DS

FIGURE 1 | Flow diagram depicting search process and study selection.

*means that SUDEP often occurs in Dravet syndrome.

and GEFS+. Therefore, we only briefly describe SCN1A without
discussing its specific mutation sites in detail.

Summary of Findings
The SCN1A gene is not only associated with DS and GEFS+,
but can also cause other disorders, including epilepsy diseases
such as Doose syndrome, epilepsy of infancy with migrating
focal seizures (EIMFS), West syndrome, Lennox–Gastaut
syndrome (LGS), Rett syndrome, and nonsyndromic epileptic
encephalopathy (NEE), as well as nonepileptic diseases such as
hemiplegia migraine, autism spectrum disorder (ASD), sudden
death (sudden unexpected death in epilepsy [SUDEP] and
nonepileptic SCN1A-related sudden deaths), and arthrogryposis
multiplex congenita (AMC).

DISCUSSION AND NARRATIVE SYNTHESIS

Mutations in the voltage-gated sodium channel subunit gene
SCN1A are identified predominantly in patients with DS, also

Frontiers in Neurology | www.frontiersin.org 2 December 2021 | Volume 12 | Article 743726

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ding et al. SCN1A Mutation-Beyond Dravet Syndrome

known as severe myoclonic epilepsy of infancy (SMEI), and in
the families with GEFS+. However, SCN1A is less common in
epileptic and nonepileptic disorders other than DS and GEFS+.
Herein, we focus on these rare diseases with the exception of DS
and GEFS+.

Dravet Syndrome
Dravet syndrome is a refractory and catastrophic EE that is
mainly caused by haploinsufficiency due to a loss-of-function
mutation in the SCN1A gene (1, 11). About 80% of DS is caused
by mutations in the SCN1A gene. To date, more than 1,800
mutations have been identified in SCN1A (12, 13). Heat-induced
epilepsy, the most common type of epilepsy in DS, is often
caused by fever, vaccinations, and hot baths (14–16). With aging,
the incidence of heat-induced epilepsy decreases, turning into
the refractory epilepsy. Meanwhile, the cognitive dysfunction
continues to aggravate and stabilize. Photosensitive epilepsy can
also be observed in some patients with DS (17). In addition to
the epileptic seizures, DS and other comorbidities that can be
combined include ataxia, premature death, language, and motor
development delay, cognitive impairment, sleep disorders, ASD,
and SUDEP, which seriously affect the quality of life of the
patients and pose a heavy economic burden to the family and
society (18–23).

SCN1A-Associated Non-dravet Syndrome
Epilepsy
Genetic Epilepsy With Febrile Seizures Plus
Genetic epilepsy with febrile seizures plus, previously known as
generalized epilepsy with the febrile seizures plus (FS+), was

first discovered by Scheffer and Berkovic in an Australian family
in 1997 (24). Since it was found that the phenotype of focal
epilepsy can occur in the GEFS+ family, it was renamed genetic
epilepsy with FS+. GEFS+ is an EE with a milder phenotype
than DS; it is also related to the multiple gene mutations,
including SCN1A, SCN2A, SCN1B, GABRD, SCN9A, STX1B, and
Fgf13 (25, 26). We have previously found in animal models that
GABRG2 mutations can also cause GEFS+ (27). Various clinical
phenotypes can occur in the GEFS+ family, ranging from the
most common febrile seizures (FS) and FS+ to the severe EE
known as DS. In 2000, Escayg et al. first found mutations in the
SCN1A gene (Thr875Met and Arg1648His) in GEFS+ families
(28) (Figure 2, Table 1). Aside from DS, SCN1A gene mutations
are the most common pathogenic genes for GEFS+. In fact,
GEFS+ and DS are different manifestations of epilepsy caused
by SCN1Amutations.

Doose Syndrome
Doose syndrome, also known as epilepsy with myoclonic atonic
seizure (EMAS), was previously called myoclonic astatic epilepsy
(MAE), a rare childhood EE (55). First reported by Doose in
1970, the International League Against Epilepsy (ILAE) in 2010
changed its name to epilepsy with myoclonus-atonic seizures
based on the characteristics of epileptic seizures (56, 57). Usually,
Doose syndrome develops from seven months to 6 years, and
the peak age of onset is 2 to 4 years. Children usually have
normal mental and motor development before the onset. Most
children start with a generalized tonic–clonic seizure (GTCS).
The initial seizures can be very frequent, followed by a variety

FIGURE 2 | SCN1A mutations associated with epileptic encephalopathy. Each circular represents a patient’s variant of the SCN1A gene.
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TABLE 1 | Clinical data and mutation sites or chromosomal deletions in SCN1A-associated non-dravet syndrome epilepsy.

Study Toal case Diseases SCN1A mutation case Mutation

Ebach et al. (29) 20 Doose syndrome 3 Frame shift: L433fs×449; splice site variant

(VS18+5G>C); (40736C>A; R946S)

Harkin et al. (30) 188 Doose syndrome 2 p.R393C; p. G1480V

Dimova et al. (31) 2 Doose syndrome 1 c.3925C>T

Angioneet al. (32) 77 Doose syndrome 1 c.5104G>T/p. D1702Y

Hinokuma et al. (33) 29 Doose syndrome 1 2q24.3, 588.7-Kb deletion

Freilich et al. (34) 1 EIMFS 1 c.C5006C>A /p. A1669E

Carranza Rojo et al. (35) 15 EIMFS 1 p.R862G; de novo 11.06Mb deletion of

chromosome 2q24.2q31.1

Shein et al. (36) 1 EIMFS 1 NA

Zhang et al. (37) 253 EIMFS 1 c.659T>A/ p. Val220Asp

Lim et al. (38) 5 EIMFS 3 chromosome 2q24.3 deletion

Shang et al. (39) 9 EIMFS 2 c.659T>A/pV220A; c.677G>A/p. Thr226Met

Gokben et al. (40) 35 EIMFS 1 c.4907G> C/p. R1636P

Fang et al. (41) 5 EIMFS 1 c.5314G>A/p. A1772T

Wallace et al. (42) 23 West syndrome 1 c.5870A>G/ p. E1957G

Hattori et al. (43) 1 West syndrome 1 2q24.3q31.3

Krey et al. (44) 45 West syndrome 1 c.677C>T/p.Thr226met

Na et al. (45) 150 West syndrome 1 c.3785C>T /p. Ala1262Val

Henriksen et al. (46) 2 Rett syndrome 2 g.76169G > C, c.4284 + 1G > C; g.76130G

> T, c.4246G > T/ p. Asp1416Tyr

Harkin et al. (30) 188 LGS 1 p. R1636Q

Selmer et al. (47) 22 LGS 1 c.383+1A>G

Saitoh et al. (48) 87 NEE 3 p. V982L; p.M1977L; p. R1575C

Ohashi et al. (49)# 1 NEE 1 c.1264G>T/p. Val422Leu

Mercimek-Mahmutoglu et al. (50) 110 NEE 4 c.4762T>C/p. Cys1588Arg; c.1348C>T/p.

Gln450X; c337C>A/p. Pro113Thr;

c.5543G>A/p. Gln1815Lys

Kobayashi et al. (51) # 11 NEE 1 c.1264G>T/p. Val422Leu

Kwong et al. (52) 26 NEE 1 splice site variant (IVS24-1G > T)

Sadleir et al. (53) 9 NEE 8 p. Thr226Met;

Spagnoli et al. (54) 1 NEE 1 c.628 T > C/p. Ser228Pro

#This means that the two reported cases belong to the same case.

of generalized seizures, including myoclonic seizures, dystonic
seizures, myoclonic–dystonic seizures, and atypical absence; a
small number of children may have tonic seizures in the later
stages (55).

Doose syndrome is associated with mutations in a variety of
epilepsy genes, including SCN1A, SCN1B, CACNA1H, SLC2A1,
GABRG2, CHD2, SLC6A1, STX1B, GABRB3, SYNGAP1, and
WDR45 (33). In 2005, Ebach et al. reported three cases of
EMAS with SCN1A gene mutations (29). In 2007, Harkin et al.
found one case of Doose syndrome due to SCN1A mutation
in 188 patients with EE (30). Interestingly, Dimova et al. also
found a case of EMAS caused by SCN1A gene mutation in a
GEFS+ family. The patient started with a febrile seizure at the
age of three, after which subsequent multiple myoclonic and
myoclonic–astatic seizures appeared (31). Recently, Hinokuma
et al. found one microdeletion at 2q24.2 involving SCN1A in 29
patients with Doose syndrome (33) (Figure 2, Table 1). All of the
foregoing extends the phenotype of the SCN1A gene mutation to
Doose syndrome.

Epilepsy of Infancy With Migrating Focal Seizures
Epilepsy of infancy with migrating focal seizures, previously
known as infantile migratory partial epilepsy (MPSI) or infantile
malignant migratory partial seizure (MMPSI), is a rare and early-
onset developmental EE inherited in an autosomal dominant
pattern. It is characterized by onset within 6 months of birth
and mainly manifests in the form of frequent, migratory, and
varying types of focal seizures. Epileptic seizures are related
to the multifocal EEG discharge. Similar to DS, this disease is
often associated with severe cognitive impairment and motor
impairment. However, unlike DS, the most common causative
gene is KCNT1mutation.

Freilich et al. first identified the SCN1A mutation in a
female infant diagnosed with MPSI. The female infant, who was
delivered to term, developed epilepsy at 10 weeks after birth,
accompanied by progressive hemiplegia, apnea, and progression
of multifocal migratory partial epileptic seizures, leading to a
recurrence of epileptic status and death at 9 months (34). In
the same year, another case of SCN1A mutation was found
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in another patient with MPSI (35). In 2012, Shein et al.
reported a case of SCN1A mutation-induced MPSI with good
therapeutic effect assisted by hypothermia (36). In 2015, Lim
et al. reported three cases with SCN1A mutation (MPSI) (38).
In the same year, Zhang and colleagues found 46 cases of
genetic mutations in 253 children with unexplained epilepsy
and intellectual/developmental disabilities, of which only one
was an SCN1A mutation causing malignant migrating partial
seizures of infancy (37). In 2016, Shang et al. conducted genetic
testing on nine cases of EIMFs and found that two (22.2%)
carried an SCN1Amutation (39). Recently, Fang et al. also found
one SCN1A mutation patient in five patients with EIMFS (41)
(Figure 2,Table 1). SCN1A is currently considered to be the third
most common type of genetic variation in EIMFS (58).

West Syndrome
West syndrome, also known as infantile spasms (IS), is a
refractory classic EE characterized by repetitive epileptic spasms
(ES) and hypsarrhythmia (44). The etiology of the West
syndrome is complex and varied. Genetic studies of individuals
with unexplained IS have identified over 37 genes as pathogenic
(59). However, SCN1A was not reported in a recent review
of West syndrome, indicating its rarity in this disease (42,
59). Hattori et al. reported a case of partial epileptic seizures
at four months and a West syndrome infant at 8 months
with characteristic facial appearance, big toe abnormalities,
and developmental delay. Chromosome and gene sequencing
revealed the deletion of the SCN1A gene and 2q31.1 region
[arr 2q24.3q31.3 (166,303,447–180,982.972) × 1 (build19)] (43).
In 2003, Wallace et al. found one case of SCN1A mutation
in 23 patients with West syndrome (42). Ilona et al. found
only one SCN1A mutation in 45 patients clinically diagnosed
with West syndrome by genetic testing (44). Most recently, Na
et al. performed targeted gene panel sequencing for 150 early
onset DEE infants aged ≤3 months and only one patient with
SCN1A mutation was found. These findings indicate that the
phenotypic heterogeneity of SCN1A mutation has extended to
West syndrome (Figure 2, Table 1).

Lennox–Gastaut Syndrome
Lennox–Gastaut syndrome is a childhood EE whose main
clinical features include multiple types of drug-resistant seizures,
intellectual disability, and abnormal EEG with diffuse spines slow
complex wave or paroxysmal fast activity. The etiology of LGS is
also complex and varied; about 75% of cases have obvious causes
such as cortical malformations, posthypoxic ischemic results,
postmeningitis/encephalitis, or metabolic encephalopathy, while
about 25% are cryptogenic (60). LGS is associated with a
variety of genetic mutations, including ion channel genes
(SCN2A,KCNT1,GABRA1, SCN8A, andGABRB3), transcription
regulation genes (CHD2), neurocutaneous syndrome-related
genes (TSC1 and TSC2), metabolic genes (Alg13), and others
(45, 61, 62). However, SCN1A mutations rarely occur in LGS
(30, 47). Harkin et al. found an SCN1A mutation in one out of
188 epileptic encephalopathy patients diagnosed with LGS (30).
In 2009, Selmer and colleagues examined the SCN1A gene in 22
adult patients with LGS and found a mutation in one of them

(47) (Figure 2, Table 1). In summary, SCN1A is rare, but it can
still occur in LGS.

Rett Syndrome
Rett syndrome is a rare single-gene disease that is more
prevalent in females. RTT patients usually have an early
stagnation period of onset 6–18 months after birth, and then
enter a rapid regression period of development. The typical
phenotype includes intractable epileptic seizures and severe
mental retardation, particularly a rapid regression in language
and limited progress in the psychomotor development. They
may also be accompanied by the related complications such as
autism, hand stereotypes, and respiratory pattern disorders (63).
While more than 95% of patients carry de novo mutation(s)
in the methyl-CpG-binding protein 2 (MECP2) gene (classical
RTT), a small fraction of the patients (atypical RTT) may carry
genetic mutations in other genes, such as the cyclin-dependent
kinase-like 5 (CDKL5) and FOXG1 (64, 65).

The role of SCN1A dysfunction in RTT has also been
highlighted by a few cases (46). Henriksen and colleagues (46)
reported two patients with RTT caused by mutations in SCN1A.
The first case is a 19-year-old female who developed febrile
seizures at 5 months of age and subsequently developed afebrile
focal seizures and intractable generalized seizures, including
myotonic, tonic, and tonic–clonic. She also had several episodes
with convulsive status epilepticus. She manifested normal hand
functions and started to use a few words until she was 15 months
old, but after that, her development slowed down. She stopped
using her hands, her gait became broad and ataxic, and her speech
disappeared. Between 1 and 2 years of age, she developed autism.
At the age of 19, she still had dysmotility of hands and ataxia and
suffered from breath holding and teeth grinding. Her height was
only 141 cm. Her clinical signs and symptoms were consistent
with classic RTT. Genetic testing showed that she was negative for
MECP2, CDKL5, and FOXG1 genes, which are common to RTT,
but SCN1A mutations were found. The second case occurred in
a 32-year-old woman. She had her first febrile bilateral tonic–
clonic seizure when she was 7 months old. The seizures worsened
between the ages of one and two. Like the first patient, she
grew normally until 12 to 15 months of age, but later acquired
developmental disabilities and began to lose acquired skills. Her
hand functions gradually declined, her speech disappeared, and
she no longer seemed interested in her surroundings. She also
suffered from bruxism and hand-washing stereotypes. At age of
32, she could walk for a few meters with support but still had
ataxic and apraxic hand movements. She could not speak and
had slight scoliosis. Epilepsy was always present. She also met
the classic diagnostic criteria for RTT. Whole-exome sequencing
unveiled the variant in SCN1A (Figure 2, Table 1).

Nonsyndromic Epileptic Encephalopathy
Developmental and epileptic encephalopathies (DEEs), also
known as early onset epileptic encephalopathies, early infantile
epileptic encephalopathies (EIEEs), or early infantile-onset
developmental and epileptic encephalopathies (EIODEEs) (45,
51, 66), comprise a kind of refractory epileptic encephalopathy
that is mainly characterized by early-onset in neonates or
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infants, refractory epileptic seizures, and severe abnormal
electroencephalogram discharge, psychomotor retardation, or
regression. DEEs include early myoclonic encephalopathy
(EME), Otahara syndrome, EIMFS,West syndrome, and DS (57).
Nonsyndromic epileptic encephalopathy (NEE) can be referred
to as clinically diagnosed epileptic encephalopathy without the
inclusion of a specific syndrome or epileptic disorder (51).

In 2014 and 2016, Japanese scholars Ohashi and Kobayashi
et al. described a distinct SCN1A phenotype called early infantile
SCN1A encephalopathy, in which the patient had an apparent
movement disorder (49, 51). Sadleir et al. also reported eight
cases of SCN1A mutation with hyperkinetic movement disorder
in 2017 (53) (Figure 2, Table 1). This may become a new type
of epileptic encephalopathy shortly. Similarly, SCN1Amutations
are rarely found in other cases of NEE (48, 52, 54).

SCN1A-Associated Nonepileptic Disease
Hemiplegic Migraine
Hemiplegic migraine is the most common neurological disorder
that often presents with aura, which is associated with sensory
and motor disturbances (67). Familial (FHM) and sporadic
(SHM) hemiplegic migraines are severe subtypes of migraine
associated with transient hemiparesis (68). FHM, a rare
autosomal dominant genetic disorder, is a subtype of migraine
with aura (MA) (69). The common classification and pathogenic
genes are CACNAIA (FHM1), ATP1A2 (FHM2), and SCN1A
(FHM3) (70). Familial hemiplegic migraine type 3 (FHM3) is
seldom caused by mutations in SCN1A (71). Martin et al. first
identified the SCN1A mutation in 2005 in the three familial
migraine families (5). Subsequently, numerous SCN1Amutations

have been found in FMH3 and, currently, about 60 patients
carry SCN1Amutations (67, 72–85). In addition to FHM, SCN1A
mutations are also found in a very small number of sporadic
hemiplegic migraine patients (68, 86, 87) (Figure 3, Table 2).
Therefore, it is confirmed that SCN1A is one of the pathogenic
genes for hemiplegic migraine.

Autism Spectrum Disorder
Autism spectrum disorder is a complex psychiatric disorder
characterized by impaired communication and social skills, and
also restricted and repetitive behaviors (95). ASD can occur by
itself or as a complication of epilepsy such as DS (6, 88, 96).
DS caused by SCN1A gene mutation is associated with ASD
(22, 96–98). Li et al. evaluated 37 patients with DS, nine of
whom (24.3%) met autism criteria. They also found that people
with autism had more severe intellectual disabilities than people
without autism (97). Han et al. found an autism-like phenotype
in SCN1A-mutated DS model mice (99). Interestingly, low-dose
Clonazepam (a positive allosteric regulator of GABAAR) was
used to mitigate this symptom, suggesting that GABAgic neurons
may be directly related to ASD (99). Autism spectrum disorders
can last from childhood to adulthood and even throughout life.
Berkvens et al. conducted a follow-up on 13 patients with DS,
among whom eight (61.5%) were classified as having ASD (96).
Furthermore, ASD can occur in isolation from epilepsy. Weiss
et al. found five missense mutations in patients with autism (6).
Roak et al. also found one case of SCN1A missense mutation
(p.Pro1894Leu) in 20 patients with ASD, and this mutation may
be inherited from its parent (88). A recent study of 134 cases
of autism identified 16 variants and 12 genes with evidence
of pathogenicity, including three SCN1A mutations (91). In

FIGURE 3 | SCN1A mutations associated with non-epileptic disease. Each asterisk represents a patient’s variant of the SCN1A gene.
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TABLE 2 | Clinical data and mutation sites or chromosomal deletions in SCN1A-associated non-epileptic disease.

Study Toal case Diseases SCN1A mutation case Mutation Family

Dichgans et al. (5) 20 families FHM3 1 c.4465C>A/p. G1489L European family

Gargus et al. (74) 1 family FHM3 2 c.3521C>G/p. T1174S Mixed European, French

Canadian, Native American,

and Mexican ancestry

Vanmolkot et al. (76) 10 families FHM3 1 c.4946T>A/p. L1649Q Netherlands family

Vahedi et al. (77) 2 families FHM3 2 c.4495T>C/p. P1499L

c.4467G>C/p. G1489H

Swiss family and French

family

Castro et al. (78)# 1 family FHM3 1 p. L263V Portuguese family

Frosket al. (79) 1 family FHM3 1 c.3521C>G/p. T1174S Canada family

Zhang et al. (73) 1 family FHM3 1 c.5009T>G/p. L1670T Chinese Polish

Domitrz et al. (84) 60 patients FHM3 1 p.M1500V Polish Polish

Fan et al. (85) 1 family FHM3 3 p. Leu1624Pro Germany family

Weller et al. (83) 2 families FHM3 9 p. Ile1498Met; p. Phe1661Leu Spanish family

Barros et al. (80) 1 family FHM3 1 p. L263V Portuguese family

Schubert et al. (81) 2 families FHM3 2 c.4495T>C/p. F1499L Germany family

Khaiboullina et al. (67) 13 patients FHM3 3 c.787C > G/p. L263V

c.3521C>G/p. T1174S

c.4450C>A/p. Q148K

Tatars family in Russian

Shao et al. (71) 1 family FHM3 1 c.4495T>C Chinese family

Pelzer et al. (82) 208 patients FHM3 26 NA Netherlands family

Kowalska et al. (72) 170 patients FHM3 4 c.3199G>A/p. A1067T Poland family

Virus et al. (68) 39 patients SHM 1 p. R1928G /

Chastan et al. (86) 1 patient SHM 1 c.5321T >C/p. Phe1774Ser /

Dube et al. (87) 1 patient SHM 1 c.4855A>G; p. Met1619Val /

Weiss et al. (6) 117 ASD 5 p. R542Q; p. I1034T; p. F1038L;

p. A1067T; p. I1955T

/

O’Roak et al. (88) 20 ASD 1 p. P1894L /

Koshimizu et al. (89) 28 ASD 2 c.342_344delinsAGGAGTT;

c.4313T>A/p.M1438K

/

D’Gama et al. (7) 55 ASD 2 c.602+1G>A; c.4319C>T p.

A1440V

/

Alvarez-Mora et al. (90) 50 ASD 1 p. R604H /

Yin et al. (91) 134 ASD 2 c.4852 +1G > T; c.3269G > C

p.Ser1090Thr

/

Matt Halvorsen et al. (92) 9 Sudden Death 1 c.182T>C/p. Leu61Pro /

Brownstein et al. (9) 10 Sudden Death 2 c.2045G>T/ p.G682V;

c.3886T>A/p. L1296M and c.

3924A>T,

p. Glu1308Asp

/

Jaber et al. (93) 3 AMC 3 p. Leu893Phe; p. Ala989Thr; p.

Ile236Thr

/

Laquerriere et al. (94) 315 AMC 3 NA /

#The patient was complicated with intractable myoclonic epilepsy.

summary, SCN1A is closely related to ASD and has been
considered as an ASD candidate gene (6, 7, 11, 89, 90) (Figure 3,
Table 2).

Sudden Unexpected Death in Epilepsy and

Non-epileptic SCN1A-Related Sudden Deaths
Epilepsy-related deaths include seizures leading to asphyxia,
injury, drowning, the occurrence of epileptic status, suicide, and
SUDEP, which is a common cause of death in patients with
epilepsy (100). SUDEP is a sudden, accidental death of a person

with epilepsy, with or without witnesses, not from trauma or
drowning, and with or without epileptic seizures; an epilepsy
status must be ruled out and no structural or toxic cause of death
is found at autopsy (101, 102). SUDEP generally occurs in 1.2 per
1,000 people with epilepsy per year (101). The sodium channels
SCN1A, SCN1B, and SCN5A are considered as genes related to
SUDEP (8, 103–106). DS, which is mainly caused by the SCN1A
mutation gene, is the best model for studying the SCN1A gene
(107). The mortality rate in patients with DS is about 20%, with
SUDEP generally present in the deaths of children and adults
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with epileptic status (108). SUDEP occurs at a higher rate in DS
than in other childhood epilepsies, accounting for up to about
50–60% of mortality (109, 110).

Sudden death associated with SCN1Amutations has also been
reported in nonepileptic patients. In 2016, Halvorsen et al. (92)
found one SCN1Amutant aged 20.8months among nine children
with sudden disease who died of the unknown causes. The
child developed normally with a history of febrile convulsions
but, interestingly, her siblings were diagnosed with DS. In 2018,
Brownstein et al. (9) found an association between SCN1A
mutation and sudden death in younger infants. The first case
is a girl who died suddenly at the age of 2 months, with the
cause of death recorded as sudden infant death syndrome (SIDS).
Gene sequencing revealed an SCN1A mutation. Microscopic
examination of the hippocampus revealed focal bilamination
of the dentate gyrus. The other case occurred in a 7-week-
old female with two SCN1A mutations (92) (Figure 3, Table 2).
These results suggest that SCN1A mutations are not only closely
related to SUDEP but also associated with nonepileptic-related
sudden death.

The exact mechanism of SUDEP remains unclear. In
systemically knockout heterozygous SCN1A+/- mice, severe
arrhythmias were found to be characterized by prolonged PR
interval, increased heart rate variability, and even atrioventricular
block, suggesting that changes in the cardiac SCN1A may be
related to SUDEP (111). In another study, paroxysmal chronic
bradycardia and associated ventricular electrical dysfunction
were found in heterozygous SCN1A+/− mice; notably, atropine
and N-methyl scopolamine were effective in preventing sudden
death in mice (112). In addition, respiratory dysfunction was also
found in mouse models of DS, which may also be one of the
causes of SUDEP in SCN1Amutant mice (109).

Arthrogryposis Multiplex Congenita
Arthrogryposis multiplex congenita refers to an etiologically
heterogeneous condition that is characterized by the congenital
joint contractures in two or more body areas (113). AMC is
generally thought to be the downstream result of a reduction in
the fetal movements. AMC has an overall incidence of one in
3,000 to 5,000 (114).

Although over 320 genes have been implicated, exemplifying
the genetic heterogeneity of the condition (115), AMC is poorly
related to SCN1A, with only two reports documented (93, 94).
The first report described SCN1Amutations in three infants with
AMC from three different families (93). During the fetal period,
they are characterized by abnormal development of different
joints and a lack of fetal movements (in family 1, bilateral
flexion of both hands, hyperextension of knees, and reduced
swallowing; in family 2, arthrogryposis of the upper limbs
and microretrognathism; in family 3, bilateral camptodactyly,
hyperextension of knees, and hallux valgus of feet). It is
noteworthy that one of the infants (family 1) developed refractory
epilepsy 2 days after birth, while the other two patients both
died due to early termination of pregnancy. This suggests that
in addition to peripheral joint dysplasia, AMC patients may
also have abnormalities of the central nervous system, such as
epilepsy, which may be similar to DS. The other description was

FIGURE 4 | Outline of diseases associated with the SCN1A gene.

reported by Laquerriere et al., who sequenced 315 patients with
AMC and found 51 gene mutations in 166 (52.7%), including the
rare SCN1A (94) (Figure 3, Table 2).

CONCLUSION

SCN1A not only causes DS and GEFS+; other epileptic
encephalopathies, such as Doose syndrome, EIMFS, West
syndrome, LGS, RTT, and NEE, are also directly related to
SCN1A. In addition to epilepsy, FHM3, SHM, ASD, sudden
death, and AMC can also be caused by SCN1A mutations
(Figure 4). This review serves as a reminder to epilepsy specialists
that gene sequencing is only an adjunct method for diagnosing
DS. The diagnosis cannot only be made by gene sequencing but
must be individualized according to the clinical manifestations of
the patient to formulate a better management scheme.
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