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Abstract: The paper proposes a capacitance-sensor-array-based imaging system to detect water
leakage inside insulating slabs with porous cells, such as anechoic acoustic rubber tiles. The modeling
is conducted by using the finite element method to obtain the electrical potential distribution and
sensitivity map with the proposed capacitance sensor array. An experimental test setup, which is
composed of an eight-electrode capacitance sensor array and a commercialized capacitance bridge
instrument for measurement, is developed. Experiments regarding different leakage scenarios are
carried out by using the test setup. Preliminary results standing for different water leakage cases,
which are based on the experimental data obtained from the test setup, are presented and depicted
as images reconstructed by using different algorithms including the linear back projection (LBP),
the projected Landweber iteration, and the total variation regularization. These results demonstrate
that the proposed capacitance sensor array is feasible and has a great potential for imaging of water
leakage inside insulating slabs with porous cells. A cost-effective capacitance measurement circuit for
practical applications is also proposed and simulated.

Keywords: electrical capacitance array; water leakage imaging; sensitivity map; image reconstruction;
capacitance measurement circuit

1. Introduction

To enhance submarine stealth, most modern submarine hulls are covered with anechoic acoustic
rubber tiles. The anechoic acoustic rubber tiles usually have a structure with porous cells inside,
which are capable of absorbing active sonar signals from enemy vessels for detecting purposes,
meanwhile preventing acoustic noise from the submarine interior, which can be detected by passive
sonar, from being transmitted outside [1].

Anechoic acoustic rubber tiles are bonded with the submarine hull by using adhesive.
The debonding or detachment of rubber tiles from the steel hull may lead to water leakage into
the porous cells, which will absorb less acoustic signals passing through and degenerate the rubber
tiles’ acoustic performance. For this reason, one daily routine submarine maintenance task is to
inspect whether water has already leaked into the porous cells inside the anechoic acoustic rubber tiles,
particularly in the early stage of water permeating due to adhesive debonding.

A number of studies exploring the damping behavior and acoustic performance with acoustic tiles
by using numerical analyses and experiments [2–4] have been reported. However, fewer literatures on
the detection of water permeating into porous cells inside acoustic tiles can be found. On the other hand,
nondestructive test methods based on different sensing techniques including X-ray [5], microwave [6–9],
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and ultrasonic [10–13], have been developed for water content detection with different applications.
X-ray-based imaging method measures radiation attenuation due to the density differences of objects
inside and obtains the image of the structure to be examined, but the measurement system often has a
large occupation size, which is not convenient for large samples to be inspected. Microwave-based
method is sensitive to water content, but is easily susceptible to electromagnetic interference, particularly
while the sensors have to be used and exposed in open environments. Ultrasonic-based method may
have a problem with efficiency while used for the water content detection inside objects of huge size.
These aforementioned techniques are unsuitable or inconvenient for routine maintenance use for the in
situ detection of water leakage into porous cells inside anechoic acoustic rubber tiles. On the other hand,
the capacitance sensor, for its cost-effectiveness, simplicity, and nonintrusiveness property, has been
widely studied and used for different measurement applications related to permittivity changes [14–19].
Tsamis and Avaritsiotis introduced a planar capacitive sensor for monitoring water content in a
product line [20]. Ong et al. reported a method of using capacitance to monitor water content in
civil engineering materials [21]. Particularly, by using a multielectrode sensor, electrical capacitance
tomography (ECT) is imaging and visualizing dielectric changes of multiphase or multicomponent
processes with different permittivities [22–31]. The core of ECT is to arrange a number of electrodes
around the object and measure the variations of capacitances between different electrode pairs, and
then generate its cross-sectional image by using certain reconstruction algorithms. The variations of
capacitance between different electrode pairs are due to the change of permittivity inside the object to be
inspected. For different applications, different ECT sensors have been developed, for example, square
sensor [32], concentric-annulus sensor with inner and outer electrodes [33], miniature sensor [34],
planar sensor array [20], and so forth.

The water leakage into the porous cells of anechoic tiles will change the equivalent permittivity of
the medium inside, which may be detectable by appropriately arranging the capacitance electrode
array around. Based on this principle, we have proposed and conducted the preliminary modeling of
a capacitance array for water leakage detecting and imaging insulating slabs with porous cells inside
such as anechoic tiles, which has a great potential to be developed as a test facility for daily routine
inspection and maintenance purpose [35].

In this paper, we refine the modeling work to characterize the sensitivity distribution inside the
capacitance array proposed in [35] for the detection of water leakage inside the insulating slabs with
porous cells such as anechoic rubber tiles. In addition, a prototype experimental test setup that is
based on a commercialized capacitance measurement bridge instrument is developed. A series of
experiments are carried out by using the test setup and the corresponding experimental results are
presented. The paper is organized accordingly: Section 2 describes the basic principle of our proposed
capacitance sensor array for water leakage detecting and imaging inside insulating slabs with porous
cells and demonstrates the modeling of the electrical potential distribution and sensitivity map with
the sensor array. Section 3 introduces the development of the experiment test setup used in this study
and presents the preliminary experimental results. Section 4 discusses the difference between the
experimental results and the simulation data based results published before in [35], and demonstrates
the design of measurement circuit. Finally, the conclusions are drawn in Section 5.

2. Working Principle and Modeling of Electrical Capacitance Array

One challenge for the detection of water leakage inside insulating slabs, such as anechoic acoustic
tiles having a structure with porous cells, is that leakage usually starts and happens near the adhesive
layer for bonding, which is located between the metal wall layer and tile layer. Thus, the detection
system can only access and measure from the outside of the tiles. To fulfill this special requirement,
we have proposed a capacitance sensor by appropriate arrangement of an electrode array [35].

Figure 1 depicts the working principle of our proposed electrical capacitance array for water leakage
detection and imaging inside slabs with porous cells such as anechoic acoustic tiles. An eight-electrode
capacitance sensor array is located horizontally on the outside of the tile at first. Each electrode will
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form a capacitor with the metal hull used as the common electrode. The capacitance value between
each electrode of the capacitance sensor array and the common electrode depends on the permittivity
of material between them. While water leakage happens, the quantity of water permeating into porous
cells will lead to the equivalent permittivity change and affect the values of these capacitances, which
are measured by the electronic measurement hardware system. By rotating the sensor array 90◦ and
adjusting the orientation of the sensor array to the vertical direction, all capacitances between each
electrode and the common electrode are measured once again. After all possible capacitances from
horizontally and vertically placed sensor arrays are obtained, the permittivity distribution inside
the slab can be reconstructed by using certain mathematic methods and demonstrate whether water
leakage is occurring.
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Figure 1. Principle of proposed capacitance sensor array. (a) Front view, (b) top view of horizontally
placed capacitance array, (c) top view of vertically placed capacitance array.

In [35], we have modeled the electrical field and sensitivity distribution in a plexiglass slab with
coarse column holes inside. To fulfill the possible practical applications, a plexiglass slab with the
structure shown in Figure 2 is used to simulate an anechoic acoustic tile and the characterization of
related electrical capacitance sensor array is explored. The slab is a cubic of 170 by 170 by 50 mm,
which is the same size as in a previous work [35]. But compared with the previous modeling work
in [35], the number of column holes inside the slab to simulate porous cells increases significantly to 16
by 16. The diameter of the column is 8 mm, which is similar to the porous cell size reported in [35].
An eight-electrode array is taken as an example, in which the electrode width is 6 mm and the gap
between two adjacent electrodes is 2 mm.
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By applying a voltage on one electrode of the array sequentially and connecting other electrodes
and the common electrode to ground potential, the electrical potential distribution inside the plexiglass
slab shown in Figure 2, which is with fine column holes inside, can be obtained by solving the Laplace
equation using the finite element method described in [35]. This procedure is carried out in the
commercialized software COMSOLTM. Figure 3 depicts the electric potential distribution inside the
slab while the fourth electrode is activated when the central column hole right below the fourth
electrode has no water, and when it is full of water. The water quantity in the central column hole is
demonstrated in Figure 3 using a sectional cutaway view.
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Figure 3. Electric potential distribution while the fourth electrode is activated. (a) All column holes
have no water inside, (b) the central column hole is full of water.

Besides the electrical field, the sensitivity map inside the slab, which describes the relationship
between permittivity change and capacitance, is very helpful to characterize the penetration depth
of the sensor array. Furthermore, to obtain and illustrate the permittivity distribution inside the
slab, the image reconstruction with the proposed sensor array will be carried out after all possible
capacitances between each electrode and the common electrode are obtained. This is very similar to
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image reconstruction in electrical capacitance tomography, which has been widely studied in the past
two decades [25,30,36–43]. The sensitivity map also plays an important role in image reconstruction
with the capacitance sensor array. The sensitivity Ji j(σ) at σ(x, y, z) in imaging region, which is with
respect to the capacitance change between the ith electrode and the jth electrode, is calculated as [44,45]

Ji j(σ) = −

∫
σ(x,y,z) ∇φi(x, y, z) · ∇φ j(x, y, z)dxdydz

V2 (1)

where φi(x, y, z) and φ j(x, y, z) are the electric potential distribution when the ith and the jth electrode
are excited with voltage V and other electrodes are grounded, respectively.

Figures 4–6 depict the voxel mesh grid in the imaging area of the capacitance array and illustrate
the sensitivity distribution between the fourth electrode and the common electrode in x–y planes at
different z locations. In our study, the mesh grid is 170 × 170 × 50.Sensors 2019, 19, x FOR PEER REVIEW 5 of 17 
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Figure 6. Capacitance array sensitivity distribution in x–y plane at different z directional layers.

Compared with those reported in our previous study [35], it is found from Figures 4–6 that the
sensitivity map becomes more complex while the number of column holes inside the slab to simulate
porous cells increases. The sensitivity map shows a multipeak distribution. The high sensitivity peak
is located in the cross-region between the horizontal electrode and vertical electrode. Furthermore, the
sensor array is more sensitive to the permittivity changes in the column holes than the permittivity
changes in other regions. To evaluate quantitatively, maximum, mean, and standard deviation of the
sensitivity map at different z directional layers can also be found in Figure 6. To compare relatively
the homogeneity of the sensitivity map at different z directional layers, the coefficient of variation
(CV), defined as the ratio of the standard deviation to the mean, is also calculated and provided in
Figure 6. It is found from these quantitative criteria that the maximum sensitivity on the top layer near
the sensor array electrode is about 20 times that on the layer near the adhesive bonding. Meanwhile,
the coefficient of variation decreases significantly from the top layer near the sensor array electrode
to the layer near the adhesive bonding, that is, the sensitivity map near the adhesive bonding layer
is more homogeneous than that near the sensor array electrode, which means it is much harder to
distinguish the exact leakage location in the region near the adhesive bonding.

After the sensitivity map is obtained, image reconstruction algorithms widely used in
electrical capacitance tomography, such as the linear back projection (LBP) [25,38], the Landweber
iteration [37–39], and the total variation-based iteration [41–43], can be applied.

The related image reconstruction model can be written as [38]

λ = Sg (2)

where λ stands for the normalized capacitance vector, which is composed of all capacitances between
each small electrode of the sensor array and the common electrode. S is the sensitivity matrix, which
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is calculated according to Equation (1) and depicted in Figure 6. g is normalized permittivity vector,
which stands for the permittivity of each voxel and can be visualized as image intensity.

The expression of LBP is as [25,38]

ĝ =
STλ

STu
(3)

where ĝ stands for the reconstructed permittivity distribution.u is the vector with all elements being 1.
The projected Landweber iteration algorithm is described as [37–39]:

ĝk+1 = P[ĝk − αST(Sĝk − λ)] (4)

where P is the operator in Equation (5), which makes the solution projected to the range [0,1] after
each iteration.

P[ f (x)] =


0 if f (x) < 0

f (x) if 0 ≤ f (x) ≤ 1
1 if f (x) > 1

(5)

The total variation (TV)-based algorithm uses the gradient of permittivity distribution as
regularization function and can be described as [41–43]:

ĝ = arg min
1
2
‖Sg− λ‖22 + µ

∫
Ω

∣∣∣∇g
∣∣∣dΩ (6)

where Ω is the imaging region.

3. Results

To verify the feasibility of the proposed capacitance sensor array for water leakage detection and
imaging inside the slab, the related experiments are carried out. The experiment setup as depicted
in Figure 7 is composed of an eight-electrode capacitance sensor array, an AH-2550A high-precision
capacitance bridge manufactured by Andeen–HagerlingTM (Cleveland, OH, USA) for capacitance
measuring, and a LenovoTM T440 laptop computer for image reconstruction. The capacitance array
sensor is fabricated on a two-layer PCB, the layers being the electrode layer and the layer functioning
as shielding.
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Figure 7. The experimental setup.

Figure 8 depicts the plexiglass slab and capacitance sensor array used in the experiment. The size
of the slab is 170 × 170 × 50 mm. The diameter of the column hole is 8 mm. The size of the electrode
array is 90 × 90 mm. The width of the electrodes is 6 mm. The gap between two adjacent electrodes is
2 mm.
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Figure 8. Plexiglass slab and capacitance sensor array used in experiment. (a) Top view of plexiglass
slab, (b) top view of capacitance sensor array, (c) plexiglass slab covered with sensor array.

Table 1 lists capacitances between different electrode pairs while the four column holes in the
central part of the slab are full of water in different quantities, which are measured by using the
AH-2550A capacitance bridge. The table provides also the capacitances while all column holes have no
water inside and the capacitances while all column holes are 100% full of water. By comparing these
capacitances in Table 1, it is found that the capacitance between the fourth electrode and common
electrode, and the capacitance between the fifth electrode and common electrode, have a significant
change with the variation of water quantity inside the central four column holes, which is consistent
with the preset experiment.

Table 1. The measured capacitances between different electrode pairs while the central column hole is
full of different quantities of water.

Electrode
Pairs

Capacitance while All
Column Holes Have No

Water Inside (pF)

Capacitance while All
Column Holes Are Full

of Water (pF)

Capacitance while the
Central Four Column

Holes are 100% Full of
Water (pF)

Capacitance while the
Central Four Column
Holes are 50% Full of

Water (pF)

Capacitance while the
Central Four Column
Holes are 25% Full of
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Horizontal
Capacitance
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Vertical
Capacitance

E1-Common 0.336 0.351 4.315 4.361 0.357 0.373 0.369 0.381 0.346 0.359
E2-Common 0355 0.395 4.354 4.405 0.427 0.452 0.444 0.478 0.387 0.428
E3-Common 0.375 0.437 4.377 4.462 0.649 0.731 0.579 0.640 0.442 0.504
E4-Common 0.394 0.446 4.362 4.366 1.291 1.346 0.781 0.828 0.523 0.572
E5-Common 0.419 0.421 4.388 4.417 1.319 1.341 0.805 0.812 0.548 0.549
E6-Common 0.449 0.392 4.315 4.351 0.729 0.688 0.648 0.586 0.514 0.455
E7-Common 0.450 0.367 4.329 4.318 0.501 0.454 0.523 0.446 0.482 0.396
E8-Common 0.397 0.336 4.372 4.287 0.421 0.352 0.426 0.367 0.405 0.345

Figure 9 shows the images reconstructed from the measured capacitances data in Table 1 by using
the LBP, the Landweber iteration, and the total variation-based iteration. The phantom is illustrated
by using 2D top view and 3D cutaway view to make it easy to understand. It is found from these
reconstructed images that the total variation-based iteration is capable of providing a reasonable but
qualitative imaging of water leakage.

Table 2 lists capacitances between different electrode pairs while two groups of column holes
at two different places on one side of the slab are full of different quantities of water. Each group is
composed of four column holes. Figure 10 shows the reconstructed images using measured capacitance
data in Table 2.
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It is found from the results in both Figures 9 and 10 that reconstructed images give larger contrast
differences between the position of the water leakage and other areas without water leakage, which
demonstrates that the imaging results can clearly reflect the position where water leakage happens.
On the other hand, although the results in Figures 9 and 10 can reveal that different quantities of water
leakage give different reconstructed images, the differences between the images related to different
quantities of water leakage are not significant quantitatively. By comparing the reconstructed images
from different layers of the sensitivity map, it is found that discriminating between different quantities
of water leakage becomes harder and harder when the sensitivity map layer near the adhesive bonding
is used. In addition, the column holes that were 100% full of water generate higher contrast images by
adopting the 48th layer sensitivity map near the electrode array. This characterization can be explained
intuitively by using the sensitivity map distribution in Figures 4–6, which clearly shows that the closer
the position to the capacitance sensor array, the higher the related sensitivity.

Table 3 lists capacitances between different electrode pairs while the column holes at the top
left triangular region inside the sensor are full of different quantities of water. Figure 11 shows the
corresponding reconstructed images based on the measured capacitance data in Table 3 by using the
LBP, the Landweber iteration, and total variation-based iteration. The phantom is illustrated by using
2D top view and 3D perspective view to make it easy to understand. Obviously, the images give larger
contrast between the position of the water leakage and other areas without water leakage.
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Table 2. The measured capacitances between different electrode pairs while two groups of column holes at two different places on one side of the slab are full of
different quantities of water.

Electrode
Pairs

Capacitance While All
Column Holes Have No

Water Inside (pF)

Capacitance While All
Column Holes are Full of

Water (pF)

Capacitance While Two
Groups of Column Holes at

Two Different Places on
One Side of the Slab Are
100% Full of Water (pF)

Capacitance While Two
Groups of Column Holes at

Two Different Places on
One Side of the Slab are
50% Full of Water (pF)

Capacitance While Two
Groups of Column Holes at

Two Different Places on
One Side of the Slab are
25% Full of Water (pF)

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

E1-Common 0.336 0.351 4.315 4.361 0.612 0.387 0.585 0.320 0.545 0.321
E2-Common 0355 0.395 4.354 4.405 1.326 0.423 1.169 0.347 0.943 0.342
E3-Common 0.375 0.437 4.377 4.462 1.328 0.463 1.192 0.375 0.940 0.359
E4-Common 0.394 0.446 4.362 4.366 0.695 0.494 0.612 0.426 0.551 0.409
E5-Common 0.419 0.421 4.388 4.417 0.695 0.861 0.615 0.761 0.556 0.709
E6-Common 0.449 0.392 4.315 4.351 1.337 2.015 1.130 1.837 1.006 1.549
E7-Common 0.450 0.367 4.329 4.318 1.331 2.002 1.131 1.841 0.998 1.540
E8-Common 0.397 0.336 4.372 4.287 0.658 0.935 0.549 0.874 0.514 0.771

Table 3. The measured capacitances between different electrode pairs while one triangular region is full of different quantities of water.

Electrode
Pairs

Capacitance While All
Column Holes Have No

Water Inside (pF)

Capacitance While All
Column Holes are Full of

Water (pF)

Capacitance While Column
Holes in Top Left

Triangular Region are 100%
Full of Water (pF)

Capacitance While Column
Holes in Top Left

Triangular Region are 50%
Full of Water (pF)

Capacitance While Column
Holes in Top Left

Triangular Region Are 25%
Full of Water (pF)

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

Horizontal
Capacitance

Array

Vertical
Capacitance

Array

E1-Common 0.336 0.351 4.315 4.361 4.122 4.075 3.338 3.382 1.946 1.892
E2-Common 0355 0.395 4.354 4.405 3.822 3.731 3.059 2.991 1.764 1.708
E3-Common 0.375 0.437 4.377 4.462 3.408 3.380 2.742 2.705 1.527 1.502
E4-Common 0.394 0.446 4.362 4.366 3.012 2.966 2.364 2.372 1.296 1.292
E5-Common 0.419 0.421 4.388 4.417 2.659 2.453 2.002 2.044 1.083 1.031
E6-Common 0.449 0.392 4.315 4.351 2.209 2.099 1.665 1.675 0.885 0.819
E7-Common 0.450 0.367 4.329 4.318 1.680 1.584 1.249 1.216 0.693 0.599
E8-Common 0.397 0.336 4.372 4.287 1.246 1.162 0.888 0.848 0.549 0.426
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4. Discussion

It is worth pointing out that all results demonstrated in Section 3 are based on the measurement
data obtained from our developed prototype experimental setup, which is depicted in Figure 7 and
composed of an eight-electrode capacitance sensor array, an AH-2550A high-precision capacitance
bridge manufactured by Andeen–HagerlingTM for capacitance measuring, and a LenovoTM T440
laptop computer for image reconstruction. Compared to the preliminary results published in our
previous work in [35], which are based on simulation data, these experimental data-based results
in Section 3 demonstrate comprehensively that our proposed capacitance array provides qualitative
imaging of water leakage in the slab. Meanwhile, quantitative imaging for evaluation of different water
leakages, particularly in the region near the adhesive bonding, is still a challenge. For further study,
other image reconstruction techniques, such as the level set method that may provide high-quality
image reconstruction, should be developed for obtaining more quantitative results.

From the point view of practical application, a measurement hardware or circuit should be
designed to substitute for the commercialized capacitance bridge instrument used in our experiments.
For this purpose, the most important issue is that the big electrode, the hull of submarine functioning
as the common electrode of the proposed capacitance sensor array, should be considered being
grounded in practice. In other words, one electrode of the capacitance to be measured is always
connected to the ground. Referring to the measurement circuit proposed by Huang et al. for electrical
capacitance tomography [22,23], we designed a circuit, shown in Figure 12, to implement the capacitance
measurement of the proposed capacitance sensor array for water leakage detection.
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Figure 12. The capacitance measurement circuit for water leakage monitoring and detection.

In Figure 12, Cx is the capacitance to be measured, with one electrode grounded during the whole
measurement procedure. Cs is the stray capacitance connected in parallel to Cx. By controlling the
electronic switches S1, S2, S3, and S4 to be ’on’ and ’off’ in a proper sequence, Cx and Cs will be charged
first and then discharge through the detection amplifier and lead to an output that is dependent on Cx

and Cs. S1 and S3 are controlled by the signal P. When P is ’1′, S1 and S3 are switched to ’on’, and when
P is ’0′, S1 and S3 are switched to ’off’. The working states of S2 and S4 are opposite to S1 and S3, which
are controlled by P (i.e., the reverse of P). When P is ’1′, S2 and S4 are switched to ’on’, and when P is
’0′, S2 and S4 are switched to ’off’. The frequency of P is charging and discharge frequency. According
to [22], the output of the circuit (i.e., Vo1) is proportional to the charging and discharge frequency f ,
the voltage Vc and the feedback resistance R f , while the condition of f R f C f >> 1 is fulfilled. That is,

Vo1 = − f VcR f (Cx + Cs) (7)

In comparison to the original reported circuit in [22,23], it is worth noting that the stray capacitance
Cs in the circuit depicted in Figure 13 will have an effect on the output of the measurement circuit. It
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is very important that Cs should be as small as possible while doing the printed circuit board (PCB)
design in practice. For this purpose, a measurement circuit with differential output to suppress the
effect of Cs is proposed and depicted in Figure 13. While laying out the PCB, another channel with
the same structure as the measurement circuit depicted in Figure 12 will be duplicated, which is
supposed to measure only the stray capacitance Cs

′. To eliminate the effect of stray capacitance Cs,
the value of Cs

′ is theoretically kept as close as possible to the value of Cs by duplicating the layout of
measurement channel. With the continuation of charge and discharge, the output of the upper and
lower branches reaches a steady state. Figure 14 depicts the simulated output of the differential circuit
when Cs

′= 30 pF and Cs= 10 pF, Cx= 5 pF.
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Figure 14. Simulated output of the differential charging and discharging circuit in Figure 14.

Table 4 and Figure 15 depict the characteristics of output Vo with respect to the change of Cx, Cs,
and Cs

′. It is found that the output Vo demonstrates a perfect linear relationship with the capacitance
Cx to be measured. Furthermore, Figure 15 shows that choosing the value of Cs

′ as close as possible to
the value of Cs by duplicating the layout of measurement channel is effectively compensating the effect
of stray capacitance Cs.

Future implementation of the hardware related to the aforementioned scheme depicted in Figure 13
may be considered with FPGA-based techniques [46].



Sensors 2019, 19, 2514 16 of 18

Table 4. The output voltage Vo under different Cx and Cs.

Cx (pF)
Vo (V) under Different Cs and Fixed Cs’ = 30 pF

Cs = 30 fF Cs = 100 fF Cs = 500 fF Cs = 1 pF Cs = 10 pF Cs = 20 pF Cs = 30 pF

10 4.978 4.962 4.861 4.735 2.493 0 −2.495
5 6.223 6.23 6.106 5.982 3.742 1.246 −1.245

2.5 6.843 6.827 6.726 6.603 4.365 1.872 −0.623
1 7.215 7.197 7.099 6.975 4.735 2.245 −0.249

0.5 7.339 7.322 7.223 7.099 4.861 2.37 −0.124
0.25 7.399 7.382 7.285 7.159 4.925 2.431 −0.065
0.1 7.420 7.420 7.322 7.197 4.962 2.469 −0.029
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5. Conclusions

In this paper, an electrical capacitance array for detecting and imaging of water leakage inside
insulating slabs with porous cells is presented. The finite element method is used to characterize the
sensitivity distribution of the proposed capacitance sensor array. A test setup based on commercialized
capacitance bridge instrument is developed to carry out a series of test experiments. The linear
back projection, the projected Landweber iteration, and the total variation regularization are used to
reconstruct images from the experimental data obtained from the test setup, which are corresponding
to different water leakage cases. These preliminary experimental results demonstrate that the proposed
capacitance array is for providing qualitative contrast images standing for water leakage position and
relative quantity. Future studies will focus on the development of new image reconstruction algorithms
to obtain more quantitative results with high image quality. Another issue about the consistency of the
performance of the proposed method under the condition of saline water will also be explored.
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