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ABSTRACT

Objective: Cancer is a leading cause of death, but much of the diagnostic information is stored as unstructured

data in pathology reports. We aim to improve uncertainty estimates of machine learning-based pathology pars-

ers and evaluate performance in low data settings.

Materials and methods: Our data comes from the Urologic Outcomes Database at UCSF which includes 3232

annotated prostate cancer pathology reports from 2001 to 2018. We approach 17 separate information extrac-

tion tasks, involving a wide range of pathologic features. To handle the diverse range of fields, we required 2

statistical models, a document classification method for pathologic features with a small set of possible values

and a token extraction method for pathologic features with a large set of values. For each model, we used iso-

tonic calibration to improve the model’s estimates of its likelihood of being correct.

Results: Our best document classifier method, a convolutional neural network, achieves a weighted F1 score of

0.97 averaged over 12 fields and our best extraction method achieves an accuracy of 0.93 averaged over 5

fields. The performance saturates as a function of dataset size with as few as 128 data points. Furthermore,

while our document classifier methods have reliable uncertainty estimates, our extraction-based methods do

not, but after isotonic calibration, expected calibration error drops to below 0.03 for all extraction fields.

Conclusions: We find that when applying machine learning to pathology parsing, large datasets may not always

be needed, and that calibration methods can improve the reliability of uncertainty estimates.
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INTRODUCTION

An estimated 1.8 million Americans will be diagnosed with cancer

in 2020.1 In nearly all cases, diagnosis is made via tissue analysis,

described in detail in a pathology report, which is stored in most

electronic medical record systems as unstructured free text. Without

manual data abstraction, these important details are unavailable for

scalable and algorithmic approaches for case identification, risk

stratification, prognostication, treatment selection, clinical trial
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screening, and surveillance.2,3 Moreover, access to these data in

structured formats can drive algorithmic personalized treatment

strategies based on pathologic information. For nearly 50 years

investigators have worked to develop natural language processing

(NLP) algorithms to extract these details from pathology reports.4,5

However, only a limited number of categorical data elements are

typically extracted and model outputs often lack reliable uncertainty

estimates, limiting the clinical applicability of these systems, only

10% of which have been reported to be in real-world use.5

Parsing pathology reports has traditionally been approached us-

ing rule-based methods.6–10 However, designing rules is labor inten-

sive and requires deep involvement of clinical experts. The

complexity and conflicts between rules grow rapidly as the number

of rules increases, and as the underlying documents shift, rules

quickly become ineffective.11 NLP has been applied to pathology re-

port information extraction with promising results, using both clas-

sic NLP (boosting over a bag-of-n-grams representation of the

document) and deep learning approaches (convolutional, recurrent,

and hierarchical attention networks).6,12 While most work focuses

on classification tasks involving fields with a small number of labels

(such as histology or margin status), Li and Martinez13 investigate

categorical fields as well as numeric fields such as the tumor size and

the number of lymph nodes examined. Furthermore, many other in-

formation extraction tasks and methods have been applied to pa-

thology reports, such as Coden et al14 which creates a knowledge

representation model to represent cancer disease characteristics; Si

and Roberts15 which uses a frame-based representation to extract in-

formation from clinical narratives focusing on cancer diagnosis, can-

cer therapeutic procedure, and tumor description; Xu et al16 which

considers attribute detection as a sequence labeling problem; and

Oliwa et al17 uses NLP to classify gastrointestinal pathology reports

into internal and external reports and uses Named Entity Recogni-

tion to label accession number, location, date, and sub-labels.

Despite these developments, there has been comparatively little

effort in understanding 2 additional important criteria that are the

basis for reproducibility and real-world use. The first is evaluating

performance as a function of training data size, which informs prac-

titioners about how much data they may need to deploy similar sys-

tems. Creating an annotated corpus is costly and time-consuming,

and accurate assessment of necessary sample size can aid deploy-

ment.18–22 Second, accurate uncertainty estimates for the predicted

results are critical for clinical deployment, as different uses have

varying acceptability thresholds. Having accurate uncertainty esti-

mates means that for all cases where the model score outputs a prob-

ability p, it is correct p percent of the time. An example of a model

with inaccurate uncertainty estimates would be one that gives a pre-

dicted probability of correctness of 90% on all examples but is actu-

ally only correct 10% of the time. Accurate uncertainty estimates

are important for deployment, as lower certainty may be acceptable

if the results are used for initial screening with manual verification

to follow, but higher certainty is required for a clinical decision sup-

port system. Resources can be directed to verification for cases of

high uncertainty, supplanting the need for full manual abstraction.

The source code for this project will be made available under an

open source license to facilitate adoption of NLP tools in cancer pa-

thology.

OBJECTIVE

Our objective was to investigate 2 practical issues that arise when

deploying machine learning-based information extraction systems to

pathology reports, using prostate cancer as a test case. First, we eval-

uate the performance of models as a function of dataset size for

tasks that involve categorical values, such as histologic grade or

presence of lymphovascular invasion, as well as numeric values,

such as tumor size. Second, we describe an approach to model cali-

bration and calculation of uncertainty estimates for each prediction

and assessing the quality of the model’s uncertainty estimates. We

address these gaps in the literature to guide practitioners as they im-

plement these systems in real-world settings.

MATERIALS AND METHODS

Data sources
We used a corpus of 3232 free-text pathology reports for patients

that had undergone radical prostatectomy for prostate cancer at the

University of California, San Francisco (UCSF) from 2001 to 2018,

which were extracted from UCSF’s electronic health record (Epic

Systems, Verona, WI, United States). For each document, annota-

tions for 17 pathologic features, such as Gleason scores, margin sta-

tus, extracapsular extension, and seminal vesicle invasion were

extracted (Table 1) in the Urologic Outcomes Database, which is a

prospective database that contains clinical and demographic infor-

mation about patients treated for urologic cancer. Since 2001, data

have been manually abstracted by trained abstractors under an insti-

tutional review board (IRB) approved protocol. This study was sep-

arately approved by the IRB.

LAY SUMMARY
When a patient has a tumor removed, the details of the diagnosis are written in an unstructured free-text pathology report.

The unstructured nature of such reports renders this information unusable for automated methods that can recommend per-

sonalized treatments or facilitate clinical trial enrollment. To address this, natural language processing systems have been

created to extract information such as the tumor grade from these reports. However, due to the expertise required, annotat-

ing reports is expensive and time-consuming. Second, errors from these systems can lead to incorrect clinical research con-

clusions and negative outcomes for patients. Both of these issues are major obstacles to deployment. In this article, we de-

velop a system for classifying tumor attributes and extracting values from reports. Then we analyze how many labeled

reports are needed across a range of tasks. We find that with only 64 reports we achieve high accuracy, a much smaller

number than many existing datasets, which are in the several hundreds or thousands. Furthermore, we analyze our system’s

ability to estimate the probability of correctness of its outputs. For some tasks, it can reliably estimate this probability but

for others, it’s generally overconfident. However, by rescaling these estimates, we greatly improve their reliability.
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The full corpus was divided into 4 parts, 64% training, 16% val-

idation, 10% test, and 10% true test. We looked at the true test

only while compiling results. In order to handle our diverse set of

fields, we used 2 separate information extraction methods. For cate-

gorical fields, we used a document-based classification method

which has been previously applied to information extraction from

pathology reports.6,12 For fields with a large number of possible val-

ues (such as numeric quantities), we used a sequence labeling task to

extract individual tokens from the document.23 We applied our

methods to the full training dataset as well as randomly selected sub-

sets of 16, 32, 64, 128, and 256 reports. All models are implemented

in using scikit-learn and pytorch.24,25 Detailed explanation of the

pre-processing pipeline and dataset statistics are presented in the

Supplementary Material.

Document classifier methods
For categorical data fields, such as the presence of lymphovascular

invasion, we treat it as a document classification problem. These

fields have between 2 and 6 possible classes (Table 1). We apply

classical methods, such as logistic regression, random forests,

support-vector machines (SVMs), and adaptive boosting (AdaBoost)

on bag-of-n-gram features, as well as deep learning methods, such as

convolutional neural networks and long short-term memory net-

works.

Token extractor methods
Many critical clinical data elements, such as tumor volume, are not

suited for classification because they are not categorical in nature. In

order to broaden the variety of data fields extracted from the

reports, we employ an additional approach which we refer to as to-

ken extractor methods. These methods are well-suited to extract nu-

merical quantities from a document (such as the estimated tumor

volume or the patient’s medical record number, Table 1). For these

fields, we take each token’s surrounding context of k words repre-

sented as a bag-of-n-grams as the primary features. We additionally

append the token type encoded as a vector to the bag-of-n-grams

context vector. The token type vector specifies whether a particular

token is an ordinary word, a numeric value, or a hybrid of the 2.

These features are used to predict whether or not the token is the to-

ken we aim to extract using logistic regression, AdaBoost, or ran-

dom forest methods. Unlike the document classifier methods, we

excluded SVMs and deep learning methods for the token classifier

due to the impractical computational requirements for our compute

resources. Because our labeled data did not contain the location in-

formation of the token of interest within the document, we labeled

all tokens that matched our label as a positive example at the time

of training. At test time for each token, we compute the score under

the model that this token should be extracted and then choose the

token with the largest score as our final prediction. This token ex-

traction method is applied to the following fields: pathologic T, N,

and M stage, prostate weight, and tumor volume. For additional

details regarding the pathologic stage field, we refer the reader to

the supplementary material. We would like to give a comparison

with a related but slightly different information extraction task of

Named Entity Recognition (NER), which classifies named entities in

text into categories. Like token extraction, this too is a sequence la-

beling task. In NER, this involves labeling each token into a prede-

fined category and in our case, for a given field, we label each token

with a 0 or 1 as to whether or not it is the desired token for this field

and document. As a clarifying example for the distinction between

the tasks, an NER system with procedure as a predefined category

would label all mentions of procedures in a pathology report as the

procedures class. However, this is not what we want, as pathologists

will often discuss multiple procedures in a report, but we are inter-

ested in only the specific procedure that resected the tumor.

Table 1. Data elements extracted from pathology reports

Data elements Description

Document classifier algorithm fields

Gleason GradePrimary, secondary, tertiary Histologic grading of tumor aggressiveness based on the Gleason grading system. Each specimen

is assigned a primary, secondary, and occasionally a tertiary score, each of which are whole

numbers from 1 to 5

Tumor histologic type Primary histologic type, such as acinar adenocarcinoma, ductal adenocarcinoma, and small cell

neuro-endocrine carcinoma

Cribriform pattern Whether the cells exhibit a cribriform growth pattern (Gleason 4 only)

Treatment effect Indicator whether there is evidence of a prior treatment, such as hormone treatment

or radiation therapy

Margin status for tumor To evaluate surgical margins, the entire prostate surface is inked after removal. The surgical

margins are designated as “negative” if the tumor is not present at the inked margin and

“positive” if tumor is present at the inked margin

Margin status for benign glands The benign margins are designated as “positive” if there are benign prostate glands present

at the inked margin and “negative” otherwise

Perineural invasion Whether cancer cells were seen surrounding or tracking along a nerve fiber within the prostate

Seminal vesicle invasion Invasion of tumor into the seminal vesicle

Extraprostatic extension Presence of tumor beyond the prostatic capsule

Lymph node status Whether tumor was identified in lymph nodes

Token extractor algorithm fields

Pathologic stage classification

T (primary tumor)

N (regional lymph nodes)

M (distant metastasis)

Based on American Joint Committee on Cancer TNM staging system for prostate cancer.

Based on the edition used in each report (5th–8th edition)

Tumor volume Amount of tumor identified in prostate specimen (cubic centimeters)

Prostate weight Overall weight of the prostate (g)
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Dataset size and performance
We investigate the performance over varying data-regimes, since for

informaticists who wish to build a machine learning parser on their

data, a critical question is the quantity of data points needed for ade-

quate performance and which methods are most likely to perform

well. We fixed the training set size to 16, 32, 64, 128, and 256

reports, which were randomly drawn from the full training set and

averaged the results over 5 random draws.

Evaluation metrics
For each field, we report the weighted F1 score of the classifier,

which is the weighted sum of the F1 scores for each class in the field,

where the term for each class is weighted by the portion of true

instances of the class. In the Supplementary Tables S1–S4, we report

the micro F1 and macro F1 to better compare to existing literature.

For token extractor models, we compute the accuracy of whether

the token extracted from the report was correct.

Hyperparameter tuning
To tune hyperparameters for the classification models on the full

data, we used random search with a validation set to tune each

method. For each model, we randomly select 20 model-specific

hyperparameter configurations, train the model on the training set,

and obtain weighted F1 scores on the validation set. The model with

the hyperparameter configuration with the highest score is used to

obtain results on the test set. To tune hyperparameters for the classi-

fication models in the low data regimes (training on �256 reports),

we used random search across 20 configurations of hyperparameters

but with 4-fold cross-validation to calculate weighted F1 scores. For

extractor models, we used random search with 20 hyperparameter

configurations and 4-fold cross-validation for both the full data and

low data regimes.

We chose 4-fold cross-validation as it provided a good balance

between performance and computational cost in preliminary experi-

ments. For more details regarding hyperparameter ranges for differ-

ent models, we refer the reader to the Supplementary Materials.

Calibration of systems
To support multiple use cases for the outputs of our model, it is de-

sirable to estimate the model’s uncertainty reflecting the true proba-

bility of correctness for each predicted value. For example, values

that have a low probability of being correct can be flagged for man-

ual verification, or results can be limited to only those with a high

probability of being correct. More rigorously, for a model f and data

distribution X ideally we would like a function P�such that

Pxðf ðxÞ ¼ y jP�ðxÞ ¼ pÞ ¼ pfor allp � ½0;1�

One common definition of the discrepancy between the model’s

predicted probability of correctness and its true probability of cor-

rectness is given by the expected calibration error (ECE) which is the

expected difference between the models confidence and its true

probability of being correct.26

Ex½jPðf ðxÞ ¼ Yj cP ðxÞ ¼ pÞ � pj�

where f ðxÞis the model’s prediction for a datapoint point x, Yis the

true value, and bP(x) is the model’s predicted probability of being

correct for point x. However, this is typically not able to be mea-

sured in practice, for example ifdP ðxÞtakes on a continuous set of

values, so instead cP ðxÞis discretized into bins and the ECE27 is de-

fined as follows:

ECE ¼
XM

m¼1
jBmj=n jaccðBmÞ � conf ðBmÞj

Where Bmis the mth bin, accðBmÞ is the average accuracy of the

model in bin m, and conf ðBmÞis the average value of bP(x) of the

model in bin m.

To improve the calibration of our system, we apply isotonic re-

gression.26 In the binary case, it takes the confidence of the models

output of the positive class and fits a monotonic function where the

x-axis represents the model’s confidence score and the y-axis repre-

sents whether or not the model was correct. In the multivariate case,

the calibration method attempts to calibrate the probability estimate

of each class. It does this by first calibrating the probability of each

class in a one-vs-all setting, then after fitting, estimating the proba-

bilities by normalizing the one-vs-all probability for each class.

Error analysis
To understand the potential failure modes of our models, for each

field we manually analyzed 10 errors randomly chosen in our test

set split of the best models in Table 2 by comparing the model out-

put and annotated label with the text of the report to check the

source of the error. If there were fewer than 10 errors for a field, we

analyzed all the model’s errors.

If the error was a result of an incorrect label in our original data

set, it was named as an annotation error. Model errors occurred

when the model extracted the incorrect value for a certain field.

Next, an error was classified as a report anomaly if there was some-

thing wrong with the raw text of the report, such as if the sentences

of a report were repeated many times in the text or there was inter-

nal inconsistency in the report. Lastly, the evaluation error means

that the extracted value was correct but the evaluation method in-

correctly penalized the model such as if the correct extracted token

was 2 for volume of tumor and the model extracted the token “2-

cm” for example.

RESULTS

Document classifier performance
We calculated the weighted F1-score for each data field using the

true test set (Table 2). When working with the full training corpus

(n¼2066), convolutional networks perform the best (mean

weighted F1 0.972 across all 12 clinical data elements). However,

we see that the best non-deep-learning method is not far behind with

AdaBoost having a weighted F1 score of 0.965.

Token extractor performance
For token extraction, we measure the accuracy of extracting the cor-

rect token from each document (Table 2). In greater detail, we

choose the most probable token over all tokens in the document and

compare this to the ground truth. We observe that random forests

perform the best out of all the methods with a mean accuracy of

0.883 across 5 fields.

Performance as a function of dataset size
We see in (Table 3) for the classification fields, the classical machine

learning methods (logistic regression, SVM, AdaBoost, and random

forests) clearly outperform the deep learning methods on average,

likely due to the small amount of training data available. The results

also show that 128 reports are needed for the best methods to

achieve a 0.90 weighted F1 on average across all classification fields.

For the token extractor fields, the results seem to plateau at 64
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reports. Our experiments show that a training set size in the thou-

sands is not always needed to adequately extract structured data

from these pathology reports, an important observation for practi-

tioners weighing the cost of creating an annotated dataset.

Effect of calibration
We apply calibration to 2 of our models. For the classification

model, we apply isotonic calibration to boosting and for the extrac-

tor model we apply isotonic regression to the random forest

model.26 For the extractor case, we treat the probability of the token

with the highest probability as the confidence score of the model.

We fit our isotonic regression calibration methods on the develop-

ment test set and evaluate the ECE on the test set, binning our uncer-

tainty estimates bP(x) into bins of width 0.1 (Table 4). Additional

experiments investigating the ECE as a function of the bin size,

which we include in Supplementary Figures S1 and S2, show that

while the average ECE increased, the difference in the average ECE

between the smallest bin size (4) and the largest (64) was less than

0.02 for both classification and extraction tasks.27

We find that for most classifications fields, the model had

expected calibration scores less than 0.1 and that isotonic regression

generally improves upon this. Since for each class the one-vs-all

probabilities are calibrated, the calibrated model’s predictions may

differ from the original model if it is not a binary classification prob-

lem, so in addition to the ECE of the model, we list the weighted F1

score of the calibrated model. Conversely, extractor models are not

well calibrated out of the box in general, but surprisingly, by only

using the probability of the token with greatest probability, per-

forming isotonic regression on this single value is enough to achieve

sub 0.05 ECEs.

We also examined when the model was most overconfident,

where we look for examples with high estimated probabilities of be-

ing correct, but which were nevertheless wrong. We found the most

Table 2. Weighted F1 scores for classification fields and mean accuracy for token extractor fields on full training data sample (n¼ 2066)

Data elements Logistic

regression

AdaBoost

classifier

Random

forest

SVM CNN LSTM Majority class

accuracy

Gleason grade—primary 0.978 0.971 0.941 0.932 0.981 0.628 0.709

Gleason grade—secondary 0.958 0.943 0.913 0.912 0.968 0.576 0.467

Gleason grade—tertiary 0.923 0.930 0.844 0.886 0.930 0.741 0.901

Tumor histology 0.989 0.995 0.995 0.993 0.995 0.994 0.991

Cribriform pattern 0.963 0.981 0.963 0.968 0.987 0.966 0.997

Treatment effect 0.981 0.979 0.981 0.981 0.981 0.973 0.985

Tumor margin status 0.941 0.953 0.888 0.918 0.950 0.630 0.799

Benign margin status 0.977 0.975 0.972 0.981 0.978 0.967 0.997

Perineural invasion 0.944 0.978 0.938 0.929 0.972 0.613 0.771

Seminal vesicle invasion 0.943 0.974 0.940 0.965 0.976 0.784 0.904

Extraprostatic extension 0.954 0.953 0.882 0.939 0.961 0.778 0.712

Lymph node status 0.983 0.952 0.983 0.973 0.986 0.824 0.570

Mean weighted F1 across classification models 0.961 0.965 0.937 0.948 0.972 0.790 0.817

T stage 0.951 0.954 0.948 – – – –

N stage 0.954 0.954 0.948 – – – –

M stage 0.972 0.969 0.969 – – – –

Estimate tumor volume 0.605 0.765 0.873 – – – –

Prostate weight 0.846 0.855 0.914 – – – –

Mean accuracy for token extractor models 0.866 0.899 0.930 – – – –

CNN, convolutional neural network; LSTM, long short-term memory neural network; SVM, support vector machine.

Table 3. Mean weighted F1 score 6 standard deviation for classification models for classification models and mean accuracy 6 standard de-

viation for token extractor models on increasing numbers of reports (n) after 5 trials

Model n ¼ 16 n ¼ 32 n ¼ 64 n ¼ 128 n ¼ 256

Classification models (mean weighted F1 score across all classification fields 6 SD)

Logistic 0.781 6 0.175 0.846 6 0.117 0.875 6 0.090 0.911 6 0.059 0.934 6 0.041

AdaBoost 0.829 6 0.140 0.878 6 0.100 0.907 6 0.066 0.928 6 0.049 0.945 6 0.034

Random forest 0.795 6 0.169 0.835 6 0.128 0.867 6 0.101 0.882 6 0.088 0.901 6 0.070

SVM 0.738 6 0.214 0.763 6 0.209 0.786 6 0.194 0.842 6 0.112 0.860 6 0.140

CNN 0.720 6 0.225 0.790 6 0.163 0.851 6 0.122 0.893 6 0.086 0.935 6 0.055

LSTM 0.688 6 0.205 0.729 6 0.187 0.743 6 0.203 0.739 6 0.214 0.739 6 0.212

Token extractor models (mean accuracy across all token extractor fields 6 SD)

Logistic 0.844 6 0.085 0.897 6 0.079 0.892 6 0.096 0.902 6 0.087 0.896 6 0.092

Adaptive boost 0.877 6 0.097 0.892 6 0.080 0.890 6 0.084 0.896 6 0.082 0.890 6 0.092

Random forest 0.897 6 0.180 0.898 6 0.064 0.915 6 0.054 0.920 6 0.041 0.924 6 0.038

CNN, convolutional neural network; LSTM, long short-term memory neural network; SVM, support vector machine.
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overconfident example in each field and observed that in 10 of the

15 examples the algorithm was correct and the label was actually in-

correct.

Error analysis
The most common type of evaluation error for the token extractor

occurred when the model extracted the right token, but the evalua-

tion method did not correctly score the model (Supplementary Table

S6). For example, if the label for the estimated volume of tumor was

2 (in cm) and the model extracted the token “2-cm”, the model

would be penalized. The most common type of report anomaly oc-

curred when the text in the report was repeated. For example, in one

case, each sentence in the report was repeated 3 times. This was an

issue in the raw text of the report and was not an aberration in pre-

processing. Overall, error analysis shows that the scores given for

the models are likely underestimates and the models actually per-

form better than the raw results show.

For a comprehensive breakdown of errors, we refer the reader to

Supplementary Table S5. Because the pathologic stage errors are

highly correlated (due to the fact that the different types of stages

are encoded in the same token in the text), only the results for the

pathologic T-stage are shown.

DISCUSSION

We have investigated several practical issues in the clinical deploy-

ment of a machine learning-based pathology parsing system and de-

veloped a system that can accurately parse prostate reports across a

variety of fields and provide reliable per-label uncertainty estimates.

Furthermore, we evaluated the number of samples required for ade-

quate performance to guide outside practitioners who are consider-

ing using a learning-based parsers for their datasets.

The dual classification/extraction approach to our pipeline was

developed to accommodate a larger variety of data fields. Yala et al6

applied boosting across twenty binary fields on 17 000 labeled

breast cancer reports and observed strong performance with F1

scores above 0.9 for many fields. Gao et al12 applied hierarchical at-

tention networks to predict tumor site and grade from pathology

reports within the NCI-SEER dataset and noted improvement in

micro-F1 (up to 0.2 greater) compared to baselines across 2 fields

(primary site and histologic grade) for a dataset of lung and breast

cancer pathology reports. Much of the previous work does not at-

tempt to extract all relevant data fields since they rely primarily on

document classification methods which cannot handle continuous

values, such as tumor size or prostate weight or perform the related

but slightly different task of NER. Although Li and Martinez (2010)

attempt to extract data fields based on numeric values using a hier-

archical prediction method, the final prediction step relies on a rule-

based method that has no clear way to be calibrated.13 Furthermore,

while our 2 methods are not run on the same fields, our algorithm

appears to have higher performance in general. Our solution is de-

veloping a sequence tagging algorithm that extracts tokens corre-

sponding to the desired values directly, as well as employing

classifier methods to extract categorical data fields. Each method is

also capable of outputting a score that can be directly calibrated us-

ing isotonic regression. One limitation of our extraction methods is

that we only consider simple bag-of-n-grams-based representations

and it would be interesting to see how sample efficiency or calibra-

tion errors change under a deep learning approach.

Second, we investigated the necessary number of reports needed

for accurate classification for our pathology reports by varying the

size of the training set of reports from 16 to 256 across both classifi-

cation and extraction. While others have performed sample effi-

ciency analysis of NLP algorithms across many tasks,28–30 to our

knowledge, this has not been investigated for the important applica-

tion of clinical information extraction from pathology reports, with

the exception of Yala et al. who plot dataset size vs performance

over only one method (boosting) and over fields that only take 2 val-

ues.6 Overall, we found that only 128 labeled reports were needed

Table 4. Upper: classifier accuracy and expected calibration error for boosting before and after isotonic calibration and Lower: expected cal-

ibration error for random forest model before and after isotonic calibration

Data elements Weighted-F1 ECE Isotonic weighted-F1 Isotonic ECE

Classification calibration

Gleason grade—primary 0.95 0.03 0.93 0.03

Gleason grade—secondary 0.94 0.08 0.92 0.14

Gleason grade—tertiary 0.91 0.05 0.91 0.03

Tumor histology 0.99 0.009 0.99 0.007

Cribriform pattern 0.995 0.007 0.995 0.017

Treatment effect 0.99 0.007 0.99 0.003

Tumor margin status 0.96 0.15 0.94 0.013

Benign margin status 0.994 0.007 0.995 0.019

Perineural invasion 0.95 0.26 0.96 0.02

Seminal vesicle invasion 0.987 0.16 0.97 0.02

Extraprostatic extension 0.96 0.12 0.96 0.01

Lymph node status 0.96 0.04 0.98 0.01

Data elements ECE Isotonic ECE

Extractor calibration

T stage 0.155 0.016

N stage 0.144 0.013

M stage 0.007 0.005

Estimated volume of tumor 0.221 0.021

Prostate weight 0.278 0.033
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for the best methods for classification and only 64 for the token ex-

tractor, a small number compared to the dataset sizes used in prior

work. It is important for practitioners who have a smaller dataset to

understand approximately how much performance to expect from a

machine learning-based approach as it can be expensive and time-

consuming to create a large corpus of annotated documents. We

hope this encourages more groups to explore these approaches, as

large datasets may not always be required. Our study is limited by

focusing on a single cancer from one institution, and further work

can assess generalizability to other cancers and sites. Of note, there

was heterogeneity in report structure and style over 20 years.

Another important observation is that the classical statistical

learning methods outperformed deep learning methods by a large

margin when fewer than 256 data points were available, while deep

learning only slightly outperformed logistic regression when using

all 2066 reports in the training set. This suggests deep learning only

adds marginal value and the complexity of the problem, at least for

the reports we worked with, is more suited to classical methods.

Finally, we investigated the reliability of uncertainty estimates of

the model, which to the authors’ knowledge, has not been investi-

gated in other pathology information extraction work. Knowing

which reports are likely to be incorrect can decrease the time needed

to manually verify extracted data and filter uncertain predictions for

tasks like clinical research with small populations, where each pre-

dicted value may have a large impact on conclusions. Through our

calibration work, we observed that the classification model was typ-

ically well calibrated without any modification, whereas our token

extraction algorithm was not. However, by just using the probabil-

ity of the selected token, isotonic regression was a very effective cali-

bration solution. We furthermore investigated when the model is

most likely to be overconfident and found that two-thirds of these

errors were due to incorrect annotation labels, not incorrect algo-

rithm outputs.

CONCLUSION

Creating annotated datasets and reliable systems are serious practi-

cal concerns when developing and deploying biomedical informa-

tion extraction systems due to the high cost of creating annotations

and the impact of errors on patients outcomes. We show when ap-

plying machine learning to pathology parsing, accurate results can

be obtained using relatively small annotated datasets and calibration

methods can improve the reliability of per-label uncertainty esti-

mates.
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