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Abstract: Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma characterized by poor
prognosis and high rate of metastasis. Current treatment is based on chemo- and/or radiotherapy
and surgery. TNBC is devoid of estrogen, progesterone and HER2 receptors. Although precision
medicine has come a long way to ameliorate breast cancer disease management, targeted therapies
for the treatment of TNBC patients are still limited. Mounting evidence has shown that non-coding
RNAs (ncRNAs) drive many oncogenic processes at the basis of increased proliferation, invasion
and angiogenesis in TNBC, strongly contributing to tumor progression and resistance to treatments.
Many of these ncRNAs are secreted in the tumor microenvironment (TME) and impinge on the
activity of the diverse immune and stromal cell types infiltrating the TME. Importantly, secreted
ncRNAs may be detected as circulating molecules in serum/plasma from cancer patients and are
emerging a promising diagnostic/therapeutic tools in TNBC. This review aims to discuss novel
insights about the role of secreted circulating ncRNAs in the intercellular communication in the
tumor microenvironment and their potential clinical use as diagnostic and prognostic non-invasive
biomarkers in TNBC.

Keywords: breast cancer; TNBC; non-coding RNA; ncRNA; exosomes; tumor microenvironment;
liquid biopsy

1. Introduction

Breast cancer is the second leading cause of cancer-related mortality in women. Triple-
negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized
by significant inter- and intra-tumor molecular heterogeneity and defined by the lack
of expression of estrogen receptor (ER), progesterone receptor (PR), and HER2 receptor.
Owing to the absence of receptors, exploited in other BC subtypes as therapeutic targets,
TNBC patients often experience less favorable outcomes compared to other breast cancer
subtypes [1,2]. The current standard therapies are surgical and medical treatment followed
by adjuvant radiotherapy (RT) with or without chemotherapy. Compared to other subtypes
of breast cancer, TNBC has the highest amount of metastasis and lowest survival rates [3].
There is a high risk of recurrence in this subtype of breast cancer also; resistance to therapy
is the major obstacle to successful treatment of TNBC [4]. Consequently, there is limited
progress in targeted therapies for the treatment of TNBC patients. This indicates the need
to develop new TNBC treatment strategies.

Many studies have shown that non-coding RNAs make up the majority (about 90%)
of the transcribed genome, and they lack the ability to code for proteins. Surprisingly, only
1–2% of the transcribed genome encodes proteins [5]. Various non-coding RNAs have
been shown to regulate gene expression. Non-coding RNAs comprise ribosomal RNAs
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(rRNAs), transfer RNAs (tRNAs), microRNAs (miRNAs), small interfering RNAs (siRNAs),
small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), PIWI-interacting RNAs
(piRNAs), extracellular RNAs (exRNAs), small Cajal body-specific RNAs (scaRNAs), long
non-coding RNAs (lncRNA) and circular RNAs (circRNAs). These non-coding RNAs play
a crucial role in many biological processes [5,6]. Moreover, their aberrant expression can
lead to cancer initiation, progression, and metastasis, therefore they might be considered as
therapeutic targets and attractive tools for diagnosis and prognosis of cancer [5,6].

Although high morbidity tumor tissue biopsy is currently the most widely used
procedure for cancer diagnosis and definition of prognosis, attempts to find promising
non-invasive biomarkers for cancer screening, diagnosis and prognosis are generating
considerable interest [7]. Of note, non-coding RNAs can circulate in the body fluids and can
be detected easily in the plasma, serum, saliva, seminal, cerebrospinal fluid and urine of
cancer patients including triple negative breast cancer [7–9]. Importantly, circulating non-
coding RNAs represent a source of information about the status of malignancy and changes
of circulating ncRNAs levels are correlated with the degree of tumor progression [7,8].

Among circulating non-coding RNAs, microRNAs, long non-coding RNAs and cir-
cular RNAs have been considered as a biomarker in different types of cancer including
TNBC. microRNAs are the most studied group of non-coding RNAs [9]. These small
non-coding RNAs (17–22 nucleotides) act as a gene expression regulator by binding to
3′UTR of target mRNAs and recruiting specific silencing proteins that form the RISC (RNA
Induced Silencing Complex) [10]. Many studies have reported that microRNAs are con-
sidered not only as regulatory molecules, but also as potential therapeutic targets [11–14].
Long non-coding RNAs (lncRNAs) are transcripts of RNAs longer than 200 nucleotides,
which do not encode proteins. LncRNAs can function as signaling, decoys, guided, and
scaffold lncRNAs [15,16]. Circular RNAs (circRNAs) have been recently discovered and
are generated by non-canonical back-splicing events, frequently linked to exon-skipping
of pre-mRNA. Back-splicing leads to the production of covalently closed circular RNAs
which lack 3′ end poly (A) tail and 5′ end cap [17]. Due to their structure, circRNAs are
not exposed to the majority of RNases and therefore are very stable molecules. Increasing
observations have indicated that they can act as sponges, which control the activity of other
regulatory proteins like RNA binding proteins (RBPs) or microRNAs. Moreover, they can
function as gene expression and transcription regulators [18–20].

Circulating non-coding RNAs can be released into body fluids, and reach distant
target organs, as cell-free, non-vesicle associated molecules or otherwise as extracellular
vesicle-associated molecules. In the first case, proteins like Argonaute2 (AGO), GW182,
nucleophosmin 1 (NPM1) and high-density lipoproteins (HDL) may be responsible for the
binding and transport of non-coding RNAs. In the second case, extracellular vesicles (EVs)
surrounded by lipid bilayer can transport the non-coding RNAs. EVs can be classified
into two large classes: (a) exosomes, which are produced by exocytosis from a multi-
vesicular body (MVB) with an approximate size of 40–100 nm [21]; and (b) microvesicles
(MVs), which derive directly from the plasma membrane through outward budding with
dimensions in the range of 100–1000 nm [8,22].

Extracellular vesicles containing a variety of macromolecules, included non-coding
RNAs, are released in the tumor microenvironment (TME), where they actively participate
in cancer progression (Figure 1).

The tumor microenvironment (TME) is a complex environment composed of a variety
of cell types including tumor cells, tumor stromal cells like fibroblasts, endothelial and
immune cells [23]. In general, there is a crosstalk between cancer cells and the TME,
therefore the TME affects the development and progression of cancer [24,25]. Exosomes
have been now recognized as major mediators of the communication between tumor cells
and the other cell types in the TME. Additionally, they have the ability to modulate the
behavior of cells populating the TME and to cooperate in immune response and tumor
metastasis [24]. Therefore, exosomes containing non-coding RNAs could be exploited for
liquid biopsy and used as promising non-invasive biomarkers for the diagnosis and the
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definition of prognosis in cancer. In this review, we provide an overview of the recent
literature on the role of circulating non-coding RNAs in the cross-talk between TNBC cells
and the TME, as well as on the possible use of these ncRNAs as biomarkers and indicators
of tumor progression.
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Figure 1. Crosstalk of circulating non-coding RNAs and tumor microenvironment. (A) The tumor micro-
environment (TME) includes a cellular and an extracellular component. The cellular component consists 
of tumor cells, immune cells (TAMs, T cells, B cells, NK cells, DCs, and MDSCs) and cancer-associated 
fibroblasts (CAFs). The extracellular component of TME is composed by ECM proteins and signaling 
molecules (like cytokines, chemokines, growth factors, hormones, etc.), which are secreted by the cellular 
component. (B) ncRNAs are processed and released in body fluids. Circulating ncRNAs can be released 
in two ways: (1) as cell-free RNAs, complexed with protein such as AGO, NPM1 or HDL; or (2) in extra-
cellular vesicles (exosomes and microvesicles). Both tumor cells and stromal cells may release exosomes 
in the TME. Through body fluids, ncRNAs can reach distant sites in the body and act as molecular me-
diators. (C) Circulating ncRNAs are stable and easily detectable and can be used as non-invasive bi-
omarkers in liquid biopsy. TME: tumor microenvironment, TAM: Tumor-associated macrophage, NK: 
Natural killer cell, DC: Dendritic cell, MDSC: Myeloid-derived suppressor cell, CAF: cancer-associated 
fibroblast, ECM: extracellular matrix, SDE: Stromal-derived exosome, CDE: Cancer-derived exosome, 
AGO: Argonaute2, NPM1: Nucleophosmin 1, HDL: High-density lipoprotein, MVB: Multivesicular 
body, MV: Microvesicle, CTC: Circulating tumor cell. 
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Figure 1. Crosstalk of circulating non-coding RNAs and tumor microenvironment. (A) The tumor
microenvironment (TME) includes a cellular and an extracellular component. The cellular component
consists of tumor cells, immune cells (TAMs, T cells, B cells, NK cells, DCs, and MDSCs) and
cancer-associated fibroblasts (CAFs). The extracellular component of TME is composed by ECM
proteins and signaling molecules (like cytokines, chemokines, growth factors, hormones, etc.), which
are secreted by the cellular component. (B) ncRNAs are processed and released in body fluids.
Circulating ncRNAs can be released in two ways: (1) as cell-free RNAs, complexed with protein
such as AGO, NPM1 or HDL; or (2) in extracellular vesicles (exosomes and microvesicles). Both
tumor cells and stromal cells may release exosomes in the TME. Through body fluids, ncRNAs can
reach distant sites in the body and act as molecular mediators. (C) Circulating ncRNAs are stable
and easily detectable and can be used as non-invasive biomarkers in liquid biopsy. TME: tumor
microenvironment, TAM: Tumor-associated macrophage, NK: Natural killer cell, DC: Dendritic
cell, MDSC: Myeloid-derived suppressor cell, CAF: cancer-associated fibroblast, ECM: extracellular
matrix, SDE: Stromal-derived exosome, CDE: Cancer-derived exosome, AGO: Argonaute2, NPM1:
Nucleophosmin 1, HDL: High-density lipoprotein, MVB: Multivesicular body, MV: Microvesicle,
CTC: Circulating tumor cell.
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2. Functional Impact of Secreted ncRNAs on Surrounding Stromal Cells and at
Metastatic Sites in TNBC

It is well recognized that cancer cells communicate, directly by cell–cell contact or
through paracrine mechanisms, with each other and with the other cells of the TME,
causing a gene expression reprogramming that enables protumoral functions, such as
neoangiogenesis and immune escape. Extracellular vesicles, in particular, have been shown
to exert a pivotal role in the transport of non-coding RNAs from cancer cells to neighboring
cancer and stromal cells, contributing to the functional reshaping of the TME [26].

The majority of the studies have focused on the identification of microRNAs secreted
by cancer cells and targeting a variety of cell types in the TME. It has been extensively
reported that the miRNA profiles of EVs are distinct from the matched cellular profiles.
Of note, cancer cells are able to actively secrete high amounts of specific miRNAs that are
usually retained in normal untransformed cells [27]. Moreover, metastatic breast cancer
cells have been shown to secrete exosomes that are enriched in miRNAs compared to
non-metastatic breast cancer cells [28]. EVs isolated from cancer cells or from the blood
of cancer patients enclose not only miRNAs, but also protein components of the RISC
complex, thus displaying a cell-independent capacity to process pre-miRNAs into mature
miRNAs and an immediately active miRNA-RISC complex in the recipient cell [28].

One major function of miRNA-containing EVs secreted by metastatic TNBC cells is
to confer metastatic capability to the non-metastatic cancer cell population. It has been
reported, for example, that miR-200 is secreted in EVs from TNBC cells and is detectable in
the serum of metastatic breast cancer patients [29,30]. Transfer of miR-200 from metastatic
to non-metastatic cells impinges on these last by inducing mesenchymal-to-epithelial tran-
sition. Mechanistically, miR-200 not only enhances epithelial traits, facilitating engraftment
in the metastatic niche, but also suppresses the secretion of anti-metastatic factors in re-
cipient cells [31]. A similar pro-invasive activity of recipient cells has been reported for
EVs-associated miR-10b in TNBC [32] (Figure 2).
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Figure 2. Examples of miRNAs secreted in EVs by TNBC cells and their functional impact in the
primary tumor and at metastatic site. microRNAs are secreted by TNBC cells into extracellular
vesicles (EVs). These reach recipient cells both in the tumor microenvironment (TME) and, through
the bloodstream, in the metastatic niche. miRNAs enclosed in the EVs contribute to tumor progression
by affecting motility and metabolism of tumor cells and fibroblasts (CAFs), permeability of the
vasculature and stiffness of the TME.

As already mentioned, non-tumor cell types in the tumor stroma may also be targeted
by cancer-derived EVs. A cell type that is strongly reprogrammed in the TME of primary
tumors and at metastatic sites is the cancer-associated fibroblast (CAF), which contributes
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to cancer progression through its ability to affect extracellular matrix composition, T-cell
function and growth factors secretion (reviewed in [33]).

A pivotal role in CAF reprogramming is exerted in TNBC by miR-9. The oncoprotein
MYC is responsible for the induction of miR-9 in TNBC cells, where miR-9 targets E-
cadherin (CDH1) 3’-UTR thus favoring EMT, motility and metastasization [34]. Of note,
analysis of CAFs isolated from TNBC patients evidenced that miR-9 is expressed in these
cells at higher levels, compared to matched normal fibroblasts. miR-9 is indeed secreted
in exosomes by cancer cells and transferred to recipient fibroblasts in the TME, resulting
in enhanced cell motility of CAFs. Expression of miR-9 in CAFs causes the modulation of
genes mainly involved in cell motility and extracellular matrix remodeling pathways [35].
Further study from the same group also showed that miR-9 directly targets the ECM
glycoprotein fibulin-3 (EFEMP1) in CAFs and EFEMP1 down-regulation is responsible for
the observed increased CAFs motility upon miR-9 induction. Moreover, the supernatant of
EFEMP1-depleted CAFs is able to confer resistance to cisplatin to TNBC cells, highlighting
a two-way paracrine communication between these two cell types [36].

Another miRNA able to impact on CAFs behavior in the TME is miR-105. Similarly
to miR-9, miR-105 is also induced by the oncoprotein MYC in TNBC cells; this miRNA is
subsequently encapsulated in extracellular vesicles and secreted by the tumor cell, then
transferred in paracrine manner to CAFs, also causing activation of MYC pathway in these
recipient cells. Specifically, CAFs undergo a reprogramming whereby, in the presence of nu-
trients, they enhance glucose and glutamine metabolism to fuel adjacent cancer cells, while,
upon nutrients’ deprivation, these CAFs detoxify metabolic wastes by converting lactic
acid and ammonium into energy-rich metabolites [37]. miR-105-dependent reprogramming
of CAFs thus influences the composition of the shared metabolic environment to promote
cancer cells’ growth. Interestingly, secreted miR-105 not only affects CAFs behavior, but
also strongly impacts on endothelial cells. Indeed, in endothelial monolayers, the transfer
of cancer-secreted miR-105 causes down-regulation of tight junction protein ZO-1 and a
consequent destruction of tight junctions allowing metastasization of breast cancer cells [38].
Permeability of the endothelial monolayer is also enhanced by the EVs-associated miR-939,
targeting VE-cadherin [39].

The endothelial function is strongly affected by the EVs of breast cancer cell derivation
also at metastatic sites. Breast cancer cells metastasizing to the brain may indeed promote
the destruction of the blood–brain barrier (BBB) through the secretion of EV-associated
miR-181c, which in turn down-regulates 3-phosphoinositide-dependent protein kinase-1
(PDPK1). PDPK1 reduction then leads to activated cofilin-induced modulation of actin
dynamics responsible for the BBB modification facilitating the metastatic process [40].

In the context of metastatic breast cancer, another recipient cell type of cancer-derived
EVs is the osteoblast. Bone represents one of the most frequent metastatic sites of advanced
breast cancer. Wang and colleagues reported that breast cancer-derived miR-218 is present
in the blood of breast cancer patients with bone metastases. Functionally, cancer-secreted
miR-218 directly down-regulates type I collagen (COL1A1) expression in osteoblasts, in-
hibiting its deposition in the bone [41]. Reprogramming of CAF by cancer-derived EVs
has been also reported to occur in the lung, another frequently targeted organ in TNBC.
Specifically, EV-associated miR-122, secreted by breast cancer cells, is able to reprogram
lung fibroblasts and astrocytes to suppress glucose metabolism by modulating the expres-
sion of pyruvate kinase (PKM); this network down-regulates glucose consumption in niche
cells to allow metastasized cancer cells to have more glucose available [42].

In addition to the above-mentioned miRNAs, lncRNAs have also been identified as
secreted in exosomes and functionally relevant in the TME (summarized in Figure 3). One
such example is represented by SNHG16, a breast cancer-derived exosomal lncRNA, which
may reach the Tregs population in the TME and cause immunosuppression. Functionally,
SNHG16 is able to sponge miR-16-5p leading to activation of SMAD5 expression; activated
SMAD5, in turn, upregulates the expression of CD73 in Tregs, a feature associated to the
immunosuppressive function [43]. Another lncRNA secreted in exosomes from breast
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cancer cells, included TNBC cells, is BCRT1. BCRT1, transferred in exosomes, reaches the
TAM population in the TME, causing their M2 polarization, which in turn accelerates cancer
progression [44]. In addition to cancer-secreted lncRNAs, it has been shown that lncRNAs
may be secreted also by other cell types in the TME and may have functional relevance on
cancer cells’ behavior. RN7SL1 and HISLA are two relevant lncRNAs, secreted, respectively,
by CAFs and TAMs, involved in chemoresistance through different mechanisms. RN7SL1
causes the activation of an anti-viral signaling in the cancer cell, then leading to tumor
growth and therapy resistance [45], while exosomal HISLA causes the activation of HIF1A,
which favors glycolysis and chemoresistance in the targeted cancer cells [46]. Recently, the
presence of lncRNA MALAT1 has also been detected in exosomes from various cancer cell
lines, included TNBC cells, and it was shown that exosomal MALAT1 exerts an autocrine
pro-proliferative role on MDA-MB-231 breast cancer cells [47]. The function of lncRNA
MALAT1, upregulated and oncogenic in a variety of malignancies, included TNBC [48–50],
has been extensively studied in cancer cells; however, its role in the cross-talk between
different cell types in the TME still has to be revealed, and the identification of exosomal
MALAT1 now opens up an extremely fascinating and unexplored area of research.
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in TNBC. LncRNAs (BCRT1 and SNHG16) may be secreted by cancer cells and impinge on the activity
of other cell types in the TME, such as TAMs and Tregs, enhancing their pro-tumoral behavior. At the
same time, various cells in the TME may release lncRNAs, such as HISLA and RN7SL1, in exosomes
and reach tumor cells to increase their resistance to treatments.

3. Circulating Non-Coding RNAs as Biomarkers in TNBC

As mentioned above, EVs have been highlighted as important mediators in the com-
munication among tumor cells as well as between tumor and stromal cells. LncRNAs,
miRNAs and circRNAs are encapsulated in EVs and then transferred to proximal and distal
recipient cells, inducing responses in the TME both in early and late stages of the tumor
progression [51,52]. Moreover, non-coding RNAs may be present in the bloodstream as
EV-free molecules, frequently included in ribonucleoprotein complexes or in complexes
with lipids or lipoproteins as triglycerols, cholesterol and fat-soluble vitamins [53,54]. Cir-
culating RNAs can also survive in extreme pH conditions, as those present in extracellular
environment, and this enables their detection in a variety of biological fluids, such as
blood, urine, tears, cerebrospinal fluid, saliva, and semen [52]. These features have made it
possible to explore and develop liquid biopsy approaches for diagnosis purposes and to
define the prognosis and therapeutic decisions in many tumor types, including TNBC.
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The possibility of using new and powerful technologies, such as single-cell RNA se-
quencing and mass cytometry, enabled shedding light on ncRNA-related dynamic changes
of TME components during TNBC transformation and malignant progression [23]. The
identification and the full understanding of circulating ncRNA roles in the TME could
strongly help in assessing the risk of relapse and metastasis, the response to treatment and
in developing new molecular targeted therapies to improve the survival in TNBC.

3.1. Circulating microRNAs in TNBC

Many studies that have used RNA sequencing methodologies have highlighted spe-
cific miRNA panels implicated at different levels in tumor progression and specifically
associated to molecular and histological breast cancer subtypes, redefining the BC hall-
marks [55].

The best-known oncogenic miRNA, transversal between the various types of cancer, is
miR-21, expressed at high levels in BC II/III stages, HER2 positive and TNBC. Functionally,
miR-21 high levels are anti-apoptotic and contribute to the proliferation of cancer cells
by inducing the PI3K/Akt pathway, being PTEN and PDCD4 two major targets of this
miRNA [56–58]. Furthermore, high levels of miR-21 are associated with poor prognosis in
patients with TNBC [59]. miR-21 is an independent prognostic factor for overall survival
(OS) and disease-free survival (DFS) and predicts the presence of lymph node metastases in
TNBC [60,61]. miR-21 has been identified as a circulating miRNA (ci-miRNA) in the serum
of breast cancer patients in several studies and a meta-analysis evidenced that increased
circulating miR-21 is a potential biomarker for breast cancer [62,63].

One of the first research studies in which serum samples from primary ductal TNBC
patients were analyzed for ci-miRNA levels is attributable to a collaboration study of
the Børresen-Dale and Santarpia groups [64]. The aim of this research was to identify
ci-miRNAs able to predict clinical outcome in TNBC. Through genome-wide serum miRNA
screening, Sahlberg and colleagues identified a very robust ci-miRNA signature (miR-
18b, miR-103, miR-107, and miR-652) that was able to predict tumor relapse and overall
survival. Multivariate Cox regression analysis showed that this four-miRNA signature was
an independent prognostic classifier of patients with TNBC [64].

Subsequently, many groups have focused on the research and validation of ci-miRNAs
to stratify BC subtypes, to correlate them with the response to therapy and to evaluate their
prognostic value. Another ci-miRNA identified in TNBC is miR-720. Increased serum levels
of miR-720 were found in TNBC patients highly expressing ADAM8, a protein correlated
with invasive and metastatic features in TNBC [65]. Contrarily to the above-mentioned
miRNAs, miR-34 and miR-940 were found down-regulated in TNBC vs. healthy controls
and miR-940 was also identified as predictor of worse prognosis [66,67].

As TNBCs do not express hormone receptors and HER2, the therapy options for
these patients are restricted to neoadjuvant chemotherapy (NAC), radiotherapy, adjuvant
chemotherapy and surgery [68]. The aim of NAC is the regression and containment of
breast cancer and axillary lymph nodes. Achieving this response at the time of surgery
is an important surrogate marker for patient survival prognosis. In this context, the
expression of ci-miRNAs as markers of the efficacy of neoadjuvant therapy is an ambitious
goal. To date, few studies have connected serum ncRNA levels to the response to NAC.
Liu et al. reported that a decrease of serum miR-21 level after NAC plus trastuzumab
treatment associates with better outcome (OS and DFS) in patients with HER2-positive
breast cancer [69]. Furthermore, another study by Gu et al. highlighted that a low level of
miR-451 in serum associates to NAC in a cohort including all breast cancer subtypes [70].
Accordingly, an association between elevated serum levels of miR-451 and improved
clinical and pathological response to NAC of locally advanced BC has been identified [71].

Very recently Ritter and colleagues analyzed intra- and extra-cellular breast cancer-
related miRNAs in TNBC cells lines treated with various chemotherapeutic agents (car-
boplatin, paclitaxel, gemcitabine and epirubicin), highlighting that miRNA expression
is strongly affected by these treatments. Analysis of the same miRNA panel in serum
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samples from a small group of TNBC patients (n = 8) before and during NAC (pilot study)
interestingly evidenced an upregulation of miR-17, miR-19b and miR-30b in those patients
who did not achieve a clinical complete response (cCR) to NAC [72]. Despite the small
samples size and the preliminary nature of this study, these results lay an optimistic basis
for further investigations on the use of miRNAs in liquid biopsy to determine patient
response to treatments.

Diverse miRNAs have been recently shown to act in a synergistic way with chemother-
apy drugs to decrease cancer proliferation [73]. Thus, the combined use of therapies and
selective inhibitors with miRNAs may represent an opportunity to decrease drug resistance
in TNBC [74,75].

Very recently, Qattan and colleagues identified through an integrated network analysis
a pool of ci-miRNAs that were differentially regulated in TNBC versus normal breast and
luminal breast cancer. Furthermore, they highlighted the clinical relationship between
some specific ci-miRNAs, chemoresistance pathways, and clinical outcomes [76]. Briefly,
miR-19a/b-3p, miR-25-3p, miR-22-3p, miR-210-3p, miR-93-5p, and miR-199a-3p, present
at high levels in the blood of TNBC patients, regulate several cancer-related pathways,
as PI3K/Akt/mTOR, HIF-1, TNF, FoxO, Wnt, and JAK/STAT, PD-1/PD-L1 and EGFR
tyrosine kinase inhibitor resistance (TKIs) [76]. Of note, a significant association of miR-93,
miR-210, miR-19a, and miR-19b upregulation with overall survival in these TNBC patients
was shown.

ci-miRNAs could also act as key regulators in immune surveillance and immune
escape as well as players in metastasis of breast cancer cells. Thomopoulou and colleagues
have recently published that the differential expression of plasma miR-10b, miR-19a, miR-
20a, miR-126 and miR-155 is able to regulate the immune response during breast cancer
progression [77]. They obtained plasma samples from early and metastatic breast cancer
patients before adjuvant or first-line chemotherapy, respectively. Low miR-10b and miR-155
levels are associated with shorter disease-free survival, and, in the subgroup of TNBC
patients, low miR-155 expression independently predicted short DFS [77].

The results of these recent papers highlight circulating miRNAs as powerful indicators
of drug resistance pathways and their potential usefulness as targets for overcoming drug
resistance in TNBC.

3.2. Circulating lncRNAs in TNBC

LncRNAs are 200 nucleotides or more in length and usually are non-protein-coding
transcripts [78]. Numerous sequencing results from cancer patients have now made it
clear that lncRNAs expression is deregulated in various types of tumors, included breast
cancer [79]. Several lncRNAs are involved in aberrant cell proliferation, apoptosis, invasion,
and angiogenesis in cancers [80]. In TNBC, various groups have identified a substantial
number of deregulated lncRNAs that could play important roles in the process of tumori-
genesis and metastasis. The potential value of these lncRNAs could provide clues for the
diagnosis and treatments of TNBC (reviewed in [81]). Although most studies have brought
miRNAs to the fore as potential biomarkers, several recent studies have also highlighted
the importance of lncRNA analysis as a non-invasive approach for screening and managing
BC molecular subtypes.

HOTAIR is a lncRNA that induces migration and invasion of TNBC cell lines and
was the first lncRNA to act as a marker of metastasis, also in breast cancer [82–84]. Its
oncogenic activity is carried out through different mechanisms, such as the regulation
of chromatin conformation, by acting as molecular scaffold, or the direct sponging of
miRNAs to release expression of target mRNAs [85]. Interestingly, the analysis of tissue
samples by in situ hybridization evidenced that HOTAIR expression was associated with
lymph node metastasis in a cohort of TNBC samples; of note, HOTAIR was also strongly
associated to androgen receptor expression, highlighting its relevance in the LAR subtype
of TNBC [86]. Overexpression of serum exosomal or serum circulating HOTAIR has been
also repeatedly evidenced and found correlated with poor survival and poor response to
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chemotherapy in breast cancer patients [87–89]. However, liquid biopsy studies did not
evidence specific associations between HOTAIR levels and receptors status, suggesting
that circulating HOTAIR might represent a powerful liquid biopsy biomarker for breast
cancer independently from the subtype [87].

Comparison of lncRNA profiles in plasma samples from TNBC and non-TNBC re-
cently revealed additional lncRNAs that could be used as diagnostic biomarkers in TNBC.
Specifically, authors highlighted that antisense noncoding RNA in the INK4 locus (ANRIL),
hypoxia inducible factor 1alpha antisense RNA-2 (HIF1A-AS2), and urothelial carcinoma-
associated 1 (UCA1) were markedly up-regulated in the plasma of patients with TNBC,
compared with patients with non-TNBC. The use of these three lncRNAs as signature
showed excellent diagnostic performance [90].

Recently, the expression analysis performed in the serum samples from 72 TNBC,
105 non-TNBC, 60 benign breast disease patients and 86 healthy subjects evidenced that
higher lncRNA TINCR levels are detectable in BC patients, especially in TNBC, compared
to subjects without cancer [91]. High circulating TINCR was significantly correlated
with clinicopathological features and with poor OS in TNBC. High TINCR expression
distinguished the subgroup of TNBC patients with cancer relapse. Interestingly, it has been
subsequently demonstrated that TINCR and miR-761 act along a functional axis in early
TNBC, promoting cell migration, invasion and EMT [92]. Furthermore, the authors showed
that luteolin (LU), a natural compound with anti-TNBC activity, was able to repress the
TINCR/miR-761 axis impinging on their metastatic potential [92]. These results indicate
that TINCR/miR-761 targeting could represent a potential therapeutic approach for TNBC.

An epigenome-wide association study (EWAS) conducted on a large cohort of TNBC
patients to identify circulating biomarkers showed that LINC00299/ID2 (RNA 299) had a
higher methylation in TNBC patients compared with controls [93]. The fact that hyperme-
thylation of LINC00299 in peripheral blood could represent a useful circulating biomarker
for TNBC was also supported by Manoochehri and colleagues who analyzed an additional
prospective cohort of patients [94]. Interestingly, they found a significant association be-
tween methylated LINC00299 levels and TNBC subgroup in young age patients (age 26–52
showing p = 0.0025 and age 22–46 showing p = 0.001, respectively). These results suggest a
potential role of hypermethylated LINC00299 as diagnostic biomarker in young women
with TNBC [94].

LncRNA X-inactive specific transcript (XIST) is an important regulator for X inacti-
vation in mammals [95]. Recently, it was observed that XIST plays critical roles in tumor
growth and gene expression control, also thanks to its ability to act as a miRNA sponge [96].
Moreover, XIST has been shown to act as a prognostic factor in diverse cancer types [97]. A
very recent study explored the clinical value of exosomal XIST secreted in the serum by
tumor cells to predict recurrence in patients with TNBC [98]. Of note, TNBC tissues and
blood serum samples from relapsing patients showed higher XIST and exo-XIST expression
level compared to non-recurrent patients. According to the rationale of the study, the
authors found that exo-XIST was expressed at low level after resection of the primary
breast tumors and at high level at the time of recurrence. Importantly, serum exo-XIST
expression was associated with poor overall survival of TNBC patients [98]. This interesting
study correlated the serum exo-XIST to the diagnosis and prognosis of TNBC patients and
showed that serum exo-XIST may be a valid biomarker to predict the recurrence status.

3.3. Circulating Circular RNAs in TNBC

With the rapid development of RNA-seq methodologies, the related bioinformatics
analyses and the containment of sequencing costs, more and more information has been
gathered on circular RNAs (circRNAs). These data have highlighted circRNAs as very
stable molecules expressed in all eukaryotes, highly circulating in TME and fluids, and very
versatile and specific, in terms of cell type, tissue or developmental stage, in the regulation
of numerous physiological pathways [99–101]. Thanks to these characteristics, circRNAs
have recently been judged to be ideal candidates as biomarkers of diagnosis and prognosis,
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particularly in liquid biopsies [20,102,103]. Since circRNAs were the last molecules of the
ncRNA family to emerge as functionally relevant, few of these have been so far analyzed in
serum or plasma, and even less in other biological fluids [104].

A systematic review and meta-analysis has been recently carried out to evaluate
the value of circRNAs in the diagnosis of breast cancer. This study considered all the
published articles reporting about the detection of circRNA expression levels in serum,
plasma, or tissue before 31 December 2020 [105]. In this study, circRNAs exhibited a
high diagnostic power for breast cancer, with two circRNAs, including circ_0001073 and
circTADA2A-E5/E6, showing the highest diagnostic values, with AUC value of 0.990 and
0.937, respectively [105]. These results are prompting scientists to implement the search
for circRNAs in the fluids of breast cancer patients and to assess their potential use as
biomarkers in the various subtypes of BC.

A few studies have recently explored the expression level of hsa_circ_0000615 (cir-
cZNF609), hsa_circ_0104824, hsa_circ_0069094, hsa_circ_0079876, hsa_circ_0017650, and
hsa_circ_0017526 in the peripheral blood of breast cancer patients and assessed their diag-
nostic value [106–108]. In a cohort of 57 BC patients, the plasma level of hsa_circ_0001785
was related to the histological grade, TNM stage, and distant metastasis of breast cancer,
with high diagnostic value (AUC = 0.784) [109]. Wang et al. reported the significant overex-
pression of hsa_circ_0020707, hsa_circ_0064923, hsa_circ_0104852, hsa_circ_0087064, and
hsa_circ_0009634 in the serum from patients with breast cancer and positive correlations
with carcinogenesis and progression [110].

In addition to the assessment of the expression level and clinical relevance of circu-
lating circRNA, a few studies have been recently published that reported the evaluation
of specific circRNA in serum samples along with their functional characterization at the
intracellular level. Identification of circRNA function adds relevant information if these
circulating molecules are to be used as targets for cancer diagnosis and treatment.

A few examples of circRNA present in the blood of BC patients and with known
functional roles in TNBC cells are described below and in Figure 4.
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Figure 4. Examples of circRNAs secreted in EVs by TNBC cells or by CAFs and their functional role
in TNBC cells. CircRNA are mainly involved in the inhibition of the function of microRNAs through
sponging activity. This results in released expression of miRNA’s target mRNAs and enhancement of
pro-tumoral properties.

Jia et al., found higher levels of circKIF4A (hsa_circ_0007255) in the tissue and serum
samples from BC patients compared to healthy controls and adjacent normal tissues,
respectively. Authors identified in BC cells an oncogenic role for circ_0007255, which is
responsible for the inhibition of miR-335-5p and the consequent release of expression of its
target SIX2, with functional impact on oxygen consumption, colony formation, and cell
motility in BC cells [111]. An oncogenic role of circKIF4A has been reported by Tang et al.,
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who confirmed that circKIF4A is specifically overexpressed in TNBC tissues, where it is
associated to poor clinical outcome. In TNBC cells, circKIF4A also favors the expression of
KIF4A by sponging miR-375 to impinge finally on the proliferation and migration of TNBC
cells [112].

Interestingly, circBCBM1 (hsa_circ_0001944) overexpression in primary BC tissues
was associated with shorter brain metastasis-free survival and with brain metastasis pro-
motion in mouse model [113,114]. Accordingly, circBCBM1 was also found upregulated
in plasma of BC patients who developed brain metastasis, becoming a putative novel
diagnostic and prognostic biomarker and potential therapeutic target for breast cancer
brain metastasis [114]. Functionally, circBCBM1 acts by sequestering miR-125a, enabling
released expression of BRD4 protein with subsequent up-regulation of MMP9, a crucial
player in the metastatic process.

Very recently, the novel circular RNA circHIF1A (circ_0032138) was found overex-
pressed in breast cancer tissues and associated with TNBC subtype, metastasis, and poor
prognosis [115]. By a mechanistic point of view, circHIF1A modulated the expression and
translocation of transcription factor Nuclear Factor I B (NFIB), through post-transcriptional
and post-translational modifications, leading to the activation of the Akt/STAT3 signal-
ing pathway and inhibition of p21. These activities are related to increased proliferation
and invasion in TNBC cell models [115]. Interestingly, the authors assessed the presence
of circHIF1A into exosomes and found it up-regulated in the plasma of breast cancer
patients [115]. In support of circHIF1A as a biomarker and target molecule for breast
cancer therapy, Zhan and colleagues identified this molecule in a screening of circRNA
present in exosomes from hypoxic CAFs in breast cancer [116]. circHIF1A from hypoxic
CAFs-derived exosomes proved to be an important player in conferring stem cell proper-
ties to breast cancer cells, by sponging miR-580-5p and consequently upregulating CD44
expression [116].

Additionally, circPSMA1 was found up-regulated in the exosomes from serum of
TNBC patients and TNBC cell lines, compared to non-TNBC patients and non-TNBC
cell lines. Functionally, intracellular circPSMA1 acts by sponging miR-637, releasing the
expression of its target Akt1 [117].

More and more studies are associating altered expression of circRNAs with protu-
moral and metastatic functions in TNBC [118–120]. For example, circWAC was found
highly expressed and associated with worse TNBC patient prognosis [121]. It exerted the
oncogenic activity by affecting miR-142/WWP1/PI3K signaling and inducing resistance
to chemotherapeutic treatment with paclitaxel (PTX) in vitro and in vivo [121]. Novel
circPDCD11 (hsa_circ_0019853) was significantly upregulated in TNBC tissues and cells
and closely correlated with a poor prognosis, acting as an independent risk factor for
TNBC prognosis [122]. Functionally, circPDCD11 was proved to accelerate glucose uptake,
lactate production, ATP generation, and the extracellular acidification rate in TNBC cells,
enhancing LDHA expression by sponging miR-432-5p [122].

All these circRNAs identified in tumor and metastatic TNBC tissues would be promis-
ing biomarkers in liquid biopsy if they were identified also in human fluids, creating a
panel of robust biomarkers for the early diagnosis and prognosis and active surveillance of
TNBC patients.

4. Conclusions and Perspectives

Secreted non-coding RNAs play crucial roles during cancer progression and strongly
contribute to remodel the tumor microenvironment and the metastatic niche, to enable
the formation of a supporting vasculature, the inhibition of tumor recognition by the
immune system and, finally, the spreading of tumor cells and metastatization. The full
comprehension of the ncRNA-guided networks at the basis of these events is central for the
development of novel effective therapies aimed at disrupting the cross-talk between tumor
cells and other cell types in the tumor microenvironment; such therapeutic approaches
would strongly prompt the immune system to recognize and eliminate tumor cells. At
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the same time secreted non-coding RNAs also represent powerful biomarkers to be ex-
ploited for diagnostic in liquid biopsy and for therapeutic purposes. A comprehensive
understanding of the mechanisms of action of secreted ncRNAs in TNBC represents the
future challenge, which will allow the widest use of these molecules both as diagnostic
tools and as therapeutic targets.
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