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The broad-spectrum antiviral 
favipiravir protects guinea pigs 
from lethal Lassa virus infection 
post-disease onset
David Safronetz1,†, Kyle Rosenke1, Jonna B. Westover2, Cynthia Martellaro1, 
Atsushi Okumura3, Yousuke Furuta4, Joan Geisbert6, Greg Saturday5, Takashi Komeno4, 
Thomas W. Geisbert6, Heinz Feldmann1 & Brian B. Gowen2

With up to 500,000 infections annually, Lassa virus (LASV), the cause of Lassa fever, is one of the 
most prevalent etiological agents of viral hemorrhagic fever (VHF) in humans. LASV is endemic 
in several West African countries with sporadic cases and prolonged outbreaks observed most 
commonly in Sierra Leone, Liberia, Guinea and Nigeria. Additionally several cases of Lassa fever have 
been imported into North America, Europe and Asia making LASV a global threat to public health. 
Despite this, currently no approved therapeutic or vaccine exists to treat or prevent LASV infections. 
Here, using a passaged strain of LASV that is uniformly lethal in Hartley guinea pigs, we demonstrate 
that favipiravir, a broad-spectrum antiviral agent and leading treatment option for influenza, 
has potent activity against LASV infection. In this model, once daily treatment with favipiravir 
significantly reduced viral titers in tissue samples and reduced mortality rates when compared with 
animals receiving vehicle-only or ribavirin, the current standard of care for Lassa fever. Favipiravir 
remained highly effective against lethal LASV infection when treatments were initiated nine days 
post-infection, a time when animals were demonstrating advanced signs of disease. These results 
support the further preclinical evaluation of favipiravir for Lassa fever and other VHFs.

Viral hemorrhagic fevers (VHFs) are among the most deadly and feared group of diseases in humans 
and for most no approved vaccine or treatment exists1. Members of at least four families (Bunyaviridae, 
Filoviridae, Arenaviridae and Flaviviridae) are known to cause VHFs, though more etiological agents are 
likely to exist. While some VHFs are associated with sporadic but potentially explosive outbreaks, others 
are essentially endemic in specific geographical regions and are often associated with high annual inci-
dence rates. With an estimated 300,000–500,000 infections annually, Lassa virus (LASV, Arenaviridae) is 
a perfect example of the latter group2,3. In humans, LASV infection can cause a wide variety of disease 
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manifestations from essentially subclinical to severe hemorrhagic fever characterized by multi-organ 
failure and death, a condition known as Lassa fever (LF)2. The overall fatality rate for LF is between 
1–2%; however, rates can increase to greater than 50% in nosocomial settings and community-based 
outbreaks4,5.

LASV is a prototypical member of the Arenaviridae; it has a bi-segmented RNA genome which 
produces five viral proteins using an ambi-sense coding strategy. In nature, LASV is maintained in 
the multi-mammate rat, Mastomys natalensis6. Although the ubiquitous M. natalensis is found across 
sub-Saharan Africa, evidence of infected rodents has exclusively been noted in Western African coun-
tries. Due to this, cases of LF are most commonly observed in Sierra Leona, Liberia, Guinea and Nigeria. 
These four countries represent the regions historically considered endemic for LASV/LF; though it is 
becoming increasingly clear that other West African nations, including Mali, Cote d’Ivoire, Benin and 
Ghana are also at risk for sporadic cases and potentially explosive outbreaks of LF7–10. Additionally, sev-
eral imported cases of LF originating from West Africa have been diagnosed in Asia, the Americas, and 
most commonly Europe, making LASV/LF a global concern for human health11.

The high annual incidence of LF in West Africa suggests a prophylactic vaccination strategy would 
be the most effective way of reducing the burden of LASV infection in this population. However, the 
lack of approved vaccines with no candidates currently in clinical trials necessitates the evaluation of 
therapeutic options, preferably those already approved for human use, for treating LASV infections and 
LF disease. To that end ribavirin, a broad spectrum antiviral agent which is licensed for the treatment 
of hepatitis C, is often used off-label to treat patients diagnosed with LF. Although ribavirin therapy has 
been shown to reduce the morbidity and mortality associated with LF, its limited efficacy is reliant on 
treatment initiation within 6 days of disease onset12.

Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is a novel antiviral agent recently 
approved in Japan as an anti-influenza drug and Phase 3 clinical studies have been completed in 
the United States for the same indication. Previous studies demonstrated that favipiravir inhibits the 
RNA-dependent RNA polymerase of influenza and it is effective against all strains and serotypes that 
it has been tested13–17. However, like ribavirin, in vitro and/or in vivo studies suggest that favipiravir 
exhibits broad-spectrum antiviral activity against a variety of RNA viruses, including alpha-, paramyxo-, 
picorna-, and caliciviruses, as well as etiological agents associated with VHFs including bunya-, flavi-, 
filo- and arenaviruses15,17–29. In most instances, in vitro studies have shown that the antiviral activity of 
favipiravir is similar to or better than that of ribavirin for most RNA virus15,17. Moreover, the safety of the 
compound has been thoroughly evaluated by the Japanese Ministry of Health, Labour and Welfare, and 
the United States Food and Drug Administration (FDA). Clinical evaluation during the recent ongoing 
Ebola outbreak suggests that favipiravir is well tolerated by those receiving oral treatment in West Africa 
Ebola treatment centers30. Considering the above, favipiravir should be further evaluated both in animal 
models as well as clinical trials for a number of RNA viral infections.

Recently, favipiravir was shown to effectively prevent lethal disease associated with Pichindé virus 
infection in guinea pigs and hamsters which are surrogate disease models for VHFs of arenaviral etiol-
ogy21,26,27. To date, the effectiveness of favipiravir has not been evaluated against pathogenic Old World 
arenaviruses. Therefore, in the present study, we investigated the antiviral efficacy of the compound in 
both cell culture and in vivo using using a guinea pig-adapted strain of LASV-Josiah (GPA-LASV) which 
is uniformly lethal in Hartley outbred guinea pigs.

Results
In vitro effect of favipiravir on infectious LASV titers.  Treatment of LASV infected Vero cells with 
favipiravir resulted in diminished infectious viral titers in a dose dependent manner (Fig.  1). Analysis 
of infectious LASV titers (TCID50) in supernatants collected at day 3 and 5 post-infection from Vero 
cell cultures treated with varying concentrations of favipiravir resulted in EC90 values of 1.7 and 11.1 μ g/
ml, respectively. As expected, no toxicity was observed at the highest concentration tested (100 μ g/ml), 
translating to SI values of > 59 and > 9 for the day 3 and day 5 assays, respectively.

Assessment of GPA-LASV infection in outbred guinea pigs for challenge dose determination 
for antiviral efficacy studies.  Prior to conducting the favipiravir efficacy studies we sought to ensure 
the uniform lethality of GPA-LASV in outbred Hartley guinea pigs and to determine an approximate 
LD50 in these animals. All eight guinea pigs infected with GPA-LASV in the first experiment developed 
severe disease requiring euthanasia between days 14 and 19 post-infection with an average time to lethal 
disease of 15 days. In contrast, only a single animal infected with wild-type LASV Josiah developed 
severe disease and was euthanized 23 days post-infection (Fig. 2A). In a follow-up study, groups of four 
animals were infected with ten-fold serial dilutions of GPA-LASV. Animals which received low doses 
(10−1 to 101 TCID50) were refractory to lethal disease with essentially no signs of infection. A single 
animal infected with 102, two animals infected with 103, and all animals infected with 104 TCID50 of 
GPA-LASV developed severe disease (Fig. 2B). The approximate LD50 for GPA-LASV in outbred Hartley 
guinea pigs was calculated to be 103 TCID50. Based on these results subsequent experiments were con-
ducted with a challenge dose of 105 TCID50, which is equivalent to 100 ×  the LD50.
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In vivo efficacy of favipiravir treatment on lethal LASV infection in guinea pigs.  Based on 
previous studies evaluating the efficacy of favipiravir against Pichindé virus in hamsters, a surrogate 
model for LF, and Junin virus, a New World arenavirus, in guinea pigs; doses of 150 and 300 mg/kg/d 

Figure 1.  In vitro inhibition of LASV by favipiravir. Vero cells were infected with wild-type LASV (Josiah, 
m.o.i. =  0.01) and cultured in the presence of increasing concentrations of favipiravir. Linear regression 
analysis conducted on infectious LASV titers in supernatants collected at 3 and 5 days post-infection 
revealed a clear dose response with an EC90 of between 1.7 and 11.1 μ g/mL, respectively.

Figure 2.  Titration of the GPA-LASV Josiah strain in outbred guinea pigs. (A) Comparison of survival 
rates following challenge with wild-type (WT) LASV and GPA-LASV. Groups of eight outbred guinea pigs 
were infected i.p. with 10,000 TCID50 and monitored for disease progression and survival. (B) In order 
to determine challenge dose, groups of four outbred guinea pigs were inoculated i.p. with ten-fold serial 
dilutions of GPA-LASV and monitored for disease progression and survival. The LD50 was estimated at 1,000 
TCID50. ***p <  0.001 compared to WT LASV infection.
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were selected for the initial efficacy study21,26,31. Since ribavirin is often used to treat cases of LF, an 
additional group treated with ribavirin was included for comparison. Placebo treated animals devel-
oped a fever (defined here as a body temperature of ≥ 40 °C) beginning on day 6 post-infection which 
continued until the time of euthanasia (Fig.  3A). Although weight loss was variable in these animals, 
ranging from 8% to > 20% loss from peak weight, the entire group was euthanized between 12 and 13 
days post-infection based on overall condition (Fig. 3). Animals treated daily with 150 mg/kg favipiravir 
also developed a fever between days 8 and 12 post-infection which coincided with weight loss between 2 
and 16% of peak body weight. A single animal in this group expired on day 12 post-infection; however 
it was not overtly ill and its death was likely due to difficulties with recovering from the isoflurane anes-
thesia used to sedate the animals prior to treatments. In contrast, animals treated at 300 mg/kg/d were 
completely protected against GPA-LASV infection with no weight loss noted across the entire group and 
only two animals developed a fever, though only on days 10 and 12 post-infection. Interestingly, in the 
ribavirin treated comparison group, two animals succumbed to infection on the final day of treatment 
(day 16 post-infection) and the remaining animals in this group quickly developed fever after cessation 
of treatment and rapidly lost weight (5 to > 20% of peak body weight). The remaining four animals in 
this group succumbed to infection or were euthanized within 13 days (days 23 to 29 post-infection) after 
treatments were completed. Mock-infected animals treated with the high dose of favipiravir did not show 
any adverse signs associated with daily treatments.

Figure 3.  Treatment of lethal LASV infection in guinea pigs with favipiravir beginning 48 hours after 
challenge. Groups of nine guinea pigs were challenged with a lethal dose of GPA-LASV and treated s.c. 
once daily for two weeks with favipiravir (150 or 300 mg/kg/d), ribavirin (50 mg/kg/d) or vehicle placebo 
beginning 48 hours after challenge. At a time when control (vehicle treated) animals were demonstrating 
signs of advanced disease, three animals per group were euthanized for sample collection. The remaining 
six animals per group were monitored for (A) temperature, (B) body weight, and (C) survival for up to 42 
days post-infection (p.i.). *p <  0.05, **p <  0.01, ***p <  0.001 compared to placebo; ap <  0.05 and cp <  0.001 
compared to ribavirin.
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Compared to the control (placebo treated) animals, the survival rates in favipiravir-treated animals 
were statistically significant with p values of < 0.001 and < 0.01 for the 300 and 150 mg/kg/d treatment 
groups, respectively (Fig.  3C). Although the ribavirin treated group demonstrated a significant delay 
in time to lethal disease compared to the control group with a p value of 0.001, survival outcome in 
favipiravir-treated animals was significantly better compared to the ribavirin group with p values of 
< 0.001 and < 0.05 for the 300 and 150 mg/kg/d treatment groups, respectively.

Viral titrations conducted on serum and tissue samples from each group of animals provide corrobo-
rating support for the efficacy of favipiravir against LASV infection (Fig. 4). Infectious viral titers in sam-
ples collected from animals treated daily with 300 mg/kg favipiravir were reduced by 2–3 logs compared 
with the placebo control group. Viral titers in tissues from the 150 mg/kg favipiravir treatment group 
were similar to those from the ribavirin comparison group and were approximately 1 log lower than the 
placebo control groups. Consistent with these findings, LASV antigen was not detected by IHC analysis 
in lung, liver or spleen samples collected from animals treated daily with 300 mg/kg favipiravir (Fig. 5). 
LASV antigen was detectable in all tissues examined from both the low dose favipiravir group as well as 
the ribavirin comparison group; however, the pattern of antigen staining in these tissues was less intense 
and more focal compared to the diffuse and coalescing patterns noted in the placebo controls (Fig. 5).

In the second efficacy experiment, we sought to determine if delayed treatment with favipiravir would 
remain effective in preventing lethal LASV infection. To that end, four groups of six guinea pigs were 
infected with GPA-LASV as in the first experiment and treatments for three groups with 300 mg/kg/d of 
favipiravir were initiated at 5, 7, and 9 days post-infection, while the forth control group received vehicle 
placebo beginning on day 5 post-infection. Once daily treatments for each group lasted for 14 consecutive 
days. The six control, placebo treated animals developed severe disease indicated by fever beginning on 
day 7 and significant weight loss (> 20%) which first began on day 9 post-infection (Fig. 6A,B). The con-
trol animals succumbed to infection or were humanly euthanized between days 14 and 16 post-infection 
(Fig. 6C). Fever was uniformly noted across all treatment groups beginning on day 7 post-infection with 
the exception of the group which first received favipiravir on day 5. In this group, only a single animal 
had a temperature exceeding 40 °C and only on day 7 post-infection. Similarly, none of the animals in 
this group experienced any significant decreases in body weight. All six animals which began treatments 

Figure 4.  Effect of favipiravir treatment on viral loads in guinea pigs. In the first in vivo efficacy study, 
three guinea pigs per treatment group (150 or 300 mg favipiravir/kg/d, 50 mg ribavirin/kg/d, or placebo) 
were euthanized for sample collection on day 12 post-infection, a time when control animals were displaying 
signs of terminal disease. Infectious titers in (A) Serum, (B) Liver, (C) Spleen and (D) Lung are shown. 
*p <  0.05, ***p <  0.001.
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on day 7 post-infection were febrile at time of treatment onset; however, fever resolved in four of these 
animals before day 9 post-infection (1–2 days post-treatment onset). Body temperature in the remaining 
two animals in this group returned to normal on or before days 11 and 15 post-infection and similar 
to the day 5 treatment group, no animals in this group experienced any significant decreases in body 
weight. Despite having increased temperatures for 2–4 days, the fever observed in animals in the day 9 
treatment group resolved within 2–4 days after treatment onset. One animal in this group rapidly lost 
weight (> 20% of peak body weight) and quickly became hypothermic (temperature < 36 °C) resulting 
in it being humanely euthanized. The remaining animals in this group quickly recovered and only lost 
between 5 and 10% of peak body weight. The survival rates in all three treatment groups are statistically 
significant with p-values of < 0.01 for the day 5 and day 7 treatment onset groups and < 0.05 for the day 
9 treatment onset group.

Figure 5.  Immunohistochemical analysis of tissues from animals infected with GPA-LASV and treated 
daily with favipiravir, ribavirin or placebo. Tissue samples from infected guinea pigs treated daily with 
favipiravir (150 or 300 mg/kg/d), ribavirin (50 mg/kg/d) or placebo were collected at 12 days post-infection 
and examined for the presence of LASV antigen (glycoprotein, GP) using a GP-specific monoclonal antibody 
according to standard immunohistochemistry techniques.
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All surviving animals from both efficacy experiments demonstrated high titer (≥ 6400) anti-LASV 
nucleocapsid IgG antibodies in convalescent (day 42) serum samples; thereby confirming these animals 
were exposed to LASV.

Discussion
With an annual incidence rate of up to 500,000 infections, LASV is easily the second most prominent 
etiological agent of VHF, behind only dengue virus. In addition to a large endemic region comprising 
many countries in West Africa, dozens of imported cases of LF have been diagnosed in North America, 
Asia and Europe, which makes LASV/LF a global public health concern. Despite this, LF remains one of 
the world’s most neglected diseases with no licensed therapeutic or vaccine options currently available.

A limitation to evaluating potential therapeutics against LASV infection or LF disease is lack of 
readily available rodent models which can be utilized in initial efficacy studies. Currently, the only 
immuno-competent small animal disease models for the study of LASV infection are strain 13 and less 
commonly strain 2 inbred guinea pigs32. Although these models are based on infection with wild-type 
LASV isolates, a lack of commercial vendors to purchase these animals from limits their availability. Even 
institutes with in-house breeding colonies are hampered for the types of studies described here in that it 
can be difficult to produce sufficient numbers of guinea pigs within a limited size/age range at one time. 
Despite the commercial availability of outbred Hartley guinea pigs their use as an infection or disease 
model for LASV/LF is hampered by lethality rates of approximately 30%33, meaning antiviral studies like 

Figure 6.  Favipiravir treatment of advanced LASV infection in guinea pigs. Groups of six guinea pigs 
were challenged with a lethal dose of GPA-LASV. Beginning on days 5, 7, and 9 post-challenge, favipiravir 
treatment (300 mg/kg/d, once daily s.c. for 14 consecutive days) was initiated in the respective group of 
animals. A control, vehicle placebo treatment group was included with treatments commencing at 5 days 
post-infection and (A) temperature, (B) body weight, and (C) survival were monitored for up to 42 days 
post-infection (p.i.). *p <  0.05, ***p <  0.001.
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the one described here would require considerably larger group sizes in order to determine statistically 
significant differences between treatment and control animals.

In order to overcome these hurdles we utilized a strain of LASV Josiah which had been passaged from 
terminally-ill outbred guinea pigs into healthy animals, four times. The resultant isolate (GPA-LASV, 
unpublished data) demonstrated a uniformly lethal phenotype at challenge doses of 104 TCID50 or greater 
(LD50 =  103 TCID50). Histological abnormalities in this model recapitulated those commonly observed 
in the inbred strain 13 model34 with classical LASV lesions noted in liver (hepatocellular degeneration 
and lymphohistiocytic hepatitis), spleen (sinus histiocytosis) and lungs (interstitial pneumonia) of these 
animals (unpublished data). Combined, the GPA-LASV Hartley guinea pig model provided us a con-
venient small animal model to evaluate the antiviral efficacy of favipiravir against LASV infection and 
ensuing disease.

Following infection with 100 ×  the LD50 of GPA-LASV, placebo treated guinea pigs began to show 
signs of disease, including increased temperature and weight loss on days 6 and 8, respectively. Other 
signs of disease, including lethargy, ruffled fur, recumbency and reddening of ears and footpads appeared 
between days 9 and 11 post-infection. Animals in the placebo treatment group succumbed to infection 
or were euthanized between days 12 and 16 post-infection. Since ribavirin is currently the standard of 
care for LF patients, a comparison group was included in these studies. Animals treated with ribavirin 
appeared relatively normal throughout the treatment phase, although animals essentially only main-
tained their body weight with very minimal gains noted. Within two days of the end of treatments the 
four remaining animals in the ribavirin treatment group developed signs of disease and although treat-
ment provided a prolonged time to death, it did not improve the overall survival rate. Similar results 
with ribavirin treatment (albeit at half the dose utilized here and by i.p. injection) in a guinea pig model 
of LF have been previously noted35. In contrast, treatment with the low and high doses of favipiravir 
provided significantly increased survival rates with only a single animal in the low dose group requiring 
euthanasia; though primarily because of difficulties recovering from anesthetic as opposed to disease 
severity. Nevertheless, animals in the 150 mg/kg/d treatment group experienced mild to moderate signs 
of disease which were delayed by 1–2 days compared to the control group, all of which resolved within 
7–10 days of onset. Despite demonstrating similar infectious titers and IHC viral staining patterns to the 
ribavirin treatment group, animals in the low dose favipiravir group did not experience a recrudescent 
LASV infection after treatments were stopped.

Similar to recent favipiravir efficacy studies against Pichindé virus infection in guinea pigs21, animals 
receiving 300 mg/kg/d were completely protected from lethal LASV infection with no signs of disease 
observed throughout the course of the initial study. Supporting this, tissue samples collected at 12 days 
post-infection revealed infectious viral titers as much as 3 logs lower than the control animals with no 
viral antigen detectable by IHC. Importantly, treatment with 300 mg favipiravir/kg/d remained protective 
even when treatments were initiated several days after clinical signs of disease, a scenario which more 
closely mimics what would be expected for human cases of LF. Although animals which began treatment 
at 1 week or greater post-infection all experienced signs of disease, their condition quickly improved 
within a few days of the initiation of treatment. Only a single animal (treatment initiation at day 9 
post-infection) did not respond fully to favirpiravir therapy with no resolution of signs of disease and 
eventual death. To put the concentration of favipiravir utilized in these studies in the context of human 
dosing, based on body surface area conversions36, 300 mg/kg in a guinea pig represents a human dose of 
65 mg/kg, which is less than the 100 mg/kg day 1 loading dose (6 g of favipiravir, assuming 60 kg person; 
reduced to 40 mg/kg/d for days 2–10) being evaluated in the ongoing Ebola outbreak30.

Due to the often non-descript prodrome associated with many etiological agents of VHFs, the devel-
opment and characterization of broad spectrum antivirals is vital to increase life expectance as well as 
to curtail potential human-to-human spread of some of these agents. Our present findings suggest that 
in addition to other emerging VHF agents including Ebola, Crimean-Congo-hemorrhagic fever, Andes 
and Junin viruses, favipiravir is highly effective at preventing lethal disease associated with LASV infec-
tion, even when treatments are initiated several days after the onset of clinical disease. Combined with 
its excellent tolerability in humans, these studies further suggest that favipiravir should be a front line 
treatment option for patients demonstrating symptoms of VHF.

Methods
Ethics statement.  In vivo efficacy studies were approved by the Institutional Animal Care and Use 
Committee of the Rocky Mountain Laboratories (RML). Animal work was conducted adhering to the 
institution’s guidelines for animal use, and followed the guidelines and basic principles in the United 
States Public Health Service Policy on Humane Care and Use of Laboratory Animals, and the Guide 
for the Care and Use of Laboratory Animals by certified staff in an Association for Assessment and 
Accreditation of Laboratory Animal Care (AAALAC) International accredited facility.

Biosafety.  All work with infectious LASV and potentially infectious materials derived from animals 
was conducted in a Biosafety Level 4 (BSL 4) laboratory in the Integrated Research Facility of the Rocky 
Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National 
Institutes of Health (NIH). Sample inactivation and removal was performed according to standard oper-
ating protocols approved by the local Institutional Biosafety Committee.
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Animals.  Outbred male Hartley guinea pigs (300–350 g) (Charles River, Wilmington MA) were 
ear-tagged for identification and group housed, 2 per box in an isolator caging unit. For the in vivo 
efficacy studies animals were also subcutaneously implanted with IPTT-300 electronic transponders for 
temperature measurement with a DAS 6002 hand-held scanner (BMDS, Seaford, DE). Animals were 
acclimated to BSL 4 environment for one week prior to challenge and, in the antiviral studies, sorted so 
that the average body weights of each treatment group was similar.

Virus.  In vitro studies were conducted with LASV strain Josiah37. In vivo experiments utilized a LASV 
strain Josiah that was passaged four times in Hartley guinea pigs (guinea pig-adapted LASV, GPA-LASV) 
resulting in a uniformly lethal phenotype in these animals (Safronetz, Feldmann, Geisbert, unpublished 
data). In the first in vivo experiment a comparison group of animals infected with wild-type LASV Josiah 
was included. Both viruses were propagated in Vero cell culture and titered using standard 50% tissue 
culture infectious dose (TCID50) infectivity assays and the Reed-Muench formula.

Antiviral compounds.  Favipiravir was provided by the Toyama Chemical Company, Ltd. (Toyama, 
Japan) and Ribavirin was purchased from R & D Systems (Minneapolis, MN). For in vitro studies, com-
pounds were dissolved directly in cell culture media (see below). For in vivo studies, the antiviral com-
pounds were prepared in sterile water supplemented with 74.6 mg/ml meglumine excipient.

In vitro antiviral efficacy studies.  In order to determine the 90% effective concentration (EC90) of 
favipiravir against LASV, nearly confluent (> 95%) monolayers of Vero cells were infected with LASV 
Josiah at a multiplicity of infection (m.o.i.) of 0.01. After a 1 hour absorption, cells were washed and 
the inoculum replaced with culture media (Dulbecco’s modified Eagle’s medium supplemented with 2% 
fetal bovine serum, 100 U/ml penicillin, 100 μ g/ml streptomycin and 2mM L-glutamine) containing var-
ying concentrations (0, 0.1, 0.25, 0.5, 1, 2.5, 5, 12.5, 25, 50 or 100 μ g/ml) of favipiravir. On days 3 and 
5 post-infection supernatants were collected and infectious viral titers were determined as above. Cell 
viability was assessed visually at the time of sample collection. The EC90, which indicates the dose at 
which the viral titer is reduced by 1 log10, was calculated using basic linear regression analysis on the 
points in the linear range (r-squared > 0.9). The maximum concentration of favipiravir utilized in these 
in vitro studies (100 μ g/ml) is well below the documented 50% cytotoxic concentration (CC50) in Vero 
cells (> 500 μ g/ml)38. The selectivity index (SI) was calculated as CC50/EC90.

Determination of challenge dose for the GPA-LASV.  In order to determine an appropriate chal-
lenge dose with the GPA-LASV we first conducted a pilot experiment to ensure uniform lethality of 
GPA-LASV in outbred Hartley guinea pigs. To that end two groups of eight guinea pigs were infected 
with 1 ×  104 TCID50 of LASV or GPA-LASV (both strain Josiah) via intraperitoneal (i.p.) injection. 
Animals were monitored for disease progression for 42 days and were only euthanized if they reached 
a pre-determined clinical score indicative of advanced terminal disease (based on weight loss, mobility 
and respiration). In a second experiment, six groups of four guinea pigs were challenged with ten-fold 
serial dilutions of GPA-LASV (dose range 1 ×  104 to 1 ×  10−1 TCID50) by i.p. injection. Animals were 
monitored for disease progression for 42 days and were euthanized when they demonstrated signs of 
advanced terminal disease.

In vivo antiviral efficacy studies.  The in vivo efficacy studies were conducted in two independ-
ent experiments. In the first study, three groups of nine guinea pigs were inoculated with 1 ×  105 
TCID50 GPA-LASV representing 100 ×  the 50% lethal dose (LD50) via i.p. injection. Beginning on day 
2 post-infection, animals were treated for 14 consecutive days with favipiravir (150 or 300 mg/kg/d) or 
ribavirin (50 mg/kg/d). Since oral gavage is not recommended for guinea pigs, treatments were admin-
istered with once daily subcutaneous (s.c.) injections. A control group of six guinea pigs was inoculated 
with GPA-LASV as above and treated according to the same schedule with vehicle placebo. Additionally, 
three guinea pigs were mock-infected and included as normal controls. Animals were subjected to mild 
isoflurane anesthesia prior to each treatment. Weights and body temperatures were recorded every sec-
ond day. At a time when control animals were showing signs of advanced, terminal disease three animals 
per treatment group were euthanized and tissue samples collected to assess the extent of viral replication. 
The remaining six animals per group were monitored for disease progression and survival for 42 days.

In the second experiment the efficacy of delayed treatment onset with favipiravir was assessed. 
Three groups of six guinea pigs were inoculated with GPA-LASV as above. Beginning on day 5, 7 and 9 
post-infection, favipiravir treatments were initiated in one group of animals respectively with daily s.c. 
injections of 300 mg/kg/d for 14 consecutive days. A control group of six guinea pigs was inoculated as 
above and treated with vehicle placebo beginning on day 5 post-infection. Weights and temperatures 
were recorded every second day. Survivors were monitored for 42 days post-infection.

Virus detection.  Tissues collected in the first efficacy experiment were tested for the presence of 
LASV via infectious viral titration assays as well as immunohistochemistry (IHC). For infectious titers, 
serial ten-fold dilutions of clarified tissue homogenates (10% weight by volume) were analyzed for viral 
loads on Vero cells via standard TCID50 methodologies. For IHC, tissue samples were inactivated and 
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fixed with 10% formalin and processed according to standard methodologies. Thin sections were stained 
for viral antigen using a LASV GP2-specific monoclonal antibody (1:200 dilution, antibody L52-121-22, 
kindly provided by Dr. Lisa Hensley)39 on a Discovery XT instrument (Ventana Medical Systems, Tucson, 
AZ). Slides were blindly evaluated by a veterinary pathologist.

Serology.  Seroconversion to LASV infection in convalescent serum samples collected from surviving 
animals in the treatment studies was assessed using standard enzyme-linked immunosorbent serological 
assay (ELISA) methodologies with an in-house recombinant, bacterially expressed LASV nucleocapsid 
protein as the antigen40.

Statistical analysis.  Statistical differences between infectious titers in treatment groups were exam-
ined using one-way analysis of variance with Tukey-Kramer multiple-comparison posttest. Survival 
curves were compared using the log-rank (Mantel-Cox) test. Statistical analyses were accomplished using 
Prism 5 (GraphPad Software, La Jolla, CA).
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