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The motor imagery (MI)-based brain-computer interface (BCI) is an intuitive interface that
provides control over computer applications directly from brain activity. However, it has
shown poor performance compared to other BCI systems such as P300 and SSVEP
BCI. Thus, this study aimed to improve MI-BCI performance by training participants in
MI with the help of sensory inputs from tangible objects (i.e., hard and rough balls),
with a focus on poorly performing users. The proposed method is a hybrid of training
and imagery, combining motor execution and somatosensory sensation from a ball-
type stimulus. Fourteen healthy participants participated in the somatosensory-motor
imagery (SMI) experiments (within-subject design) involving EEG data classification
with a three-class system (signaling with left hand, right hand, or right foot). In the
scenario of controlling a remote robot to move it to the target point, the participants
performed MI when faced with a three-way intersection. The SMI condition had a better
classification performance than did the MI condition, achieving a 68.88% classification
performance averaged over all participants, which was 6.59% larger than that in the
MI condition (p < 0.05). In poor performers, the classification performance in SMI was
10.73% larger than in the MI condition (62.18% vs. 51.45%). However, good performers
showed a slight performance decrement (0.86%) in the SMI condition compared to the
MI condition (80.93% vs. 81.79%). Combining the brain signals from the motor and
somatosensory cortex, the proposed hybrid MI-BCI system demonstrated improved
classification performance, this phenomenon was predominant in poor performers (eight
out of nine subjects). Hybrid MI-BCI systems may significantly contribute to reducing
the proportion of BCI-inefficiency users and closing the performance gap with other
BCI systems.

Keywords: motor imagery, brain-computer interface (BCI), sensory stimulation training (SST), somatosensory
attentional orientation (SAO), poor performer
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INTRODUCTION

A brain-computer interface (BCI) enables communication and
control over computer applications and external devices directly
from brain activity (Yao et al., 2017), and can improve the
quality of life and independence of people with motor disabilities
(Joadder and Rahman, 2017). Motor imagery (MI) can provide
an intuitive mapping of direction between BCI interfaces and
control commands better than other existing systems (i.e., steady-
state visually evoked potential– and event-related potential–
based BCI systems) because the required MI tasks would be
closely associated with commands to control the external device
(Batula et al., 2014). However, owing to the poor MI-BCI
performance achieved thus far, this technique is a long way
from providing interfaces that interact with external devices
in applications in daily life. The performances of BCI systems
feature a significant user-dependent difference; users can be
categorized as either “good” or “poor.” Thus, one of the critical
issues in MI-BCI studies is to improve performance and narrow
the gap between good and poor performers. In addition, some
users do not reach a sufficient level of accuracy (less than
70%) when trying to control an external device using a BCI
system, a phenomenon called “BCI illiteracy” (Allison and
Neuper, 2010; Yao et al., 2018) or “BCI inefficiency” (Shu et al.,
2018; Zhang et al., 2019a). Studies revealed that 15–30% of
users have BCI inefficiency and are unable to generate the
proper brain rhythms even after BCI training (Leeuwis et al.,
2021). Previous studies found that 55.6% (Lee et al., 2019) and
42.9% (Meng and He, 2019) of BCI-naïve participants were
unable to achieve a 70% performance across one and three
training sessions, respectively. BCI inefficiency is a significant
problem that warrants research effort if these systems are
to be useful in the future (Maskeliunas et al., 2016). Recent
studies have tried to improve the classification performance of
BCI inefficiency subjects using the deep learning method (i.e.,
convolutional neural network) because they cannot produce
stronger contralateral ERD/ERS activity (Zhang et al., 2019b;
Stieger et al., 2021; Tibrewal et al., 2021).

BCI research aimed at improving performance can focus
either on technological factors (i.e., improvements in algorithms
for feature extraction and classification) or on human factors
(i.e., factors affecting how well a person generates quality
EEG patterns). The latter has been relatively less studied
(Penaloza et al., 2018), but many studies have attempted
to improve the performance of MI-BCIs using a human-
factors approach. This was done by assisting performance of
the experimental task by providing visual feedback of the
following kinds: (1) MI task results (i.e., direction, gauge bar)
(Mousavi et al., 2017; Lukoyanov et al., 2018), (2) virtual
reality environment (Skola et al., 2019; Choi et al., 2020),
(3) neuro-feedback (Ono et al., 2018; Meekes et al., 2019),
and (4) realistic visual feedback designed to induce a sense
of embodiment (Alimardani et al., 2018) or a virtual-reality
embodiment (Škola and Liarokapis, 2018). Other studies have
demonstrated enhancement of MI-BCI performance resulting
from improvements in training methods by use of haptics
(Wu et al., 2017; Grigorev et al., 2021) and electric-stimulation

feedback (Bhattacharyya et al., 2019). Haptic feedback can
affect the modulation of beta (Wu et al., 2017) and mu
(Grigorev et al., 2021) rhythms in the left or right sensorimotor
cortex during hand movement. Another study reported the
use of auditory feedback to improve MI performance by
modulating sensorimotor rhythms (McCreadie et al., 2013).
Lastly, studies have shown improvements in MI performance
through multimodal feedback, including haptic and visual
feedback (Lukoyanov et al., 2018; Wang et al., 2019), electrical
stimulation, and visual feedback (Bhattacharyya et al., 2019).

Many previous studies have made efforts to improve MI
performance by using visual, haptic, electrical, and auditory
feedback, and some have reported improvements (Ladda et al.,
2021). However, training using sensory stimulation with tangible
objects has not been considered. MI is a challenging technique
that often requires high concentration and extended training
from users (Royer et al., 2010), and a substantial percentage of
participants do not achieve good accuracy even after training
(Guger et al., 2003). In this context, a hybrid training approach
that combines two or more training methods can potentially
improve the poor performance of some users by improving the
consistency of the MI features detected by the BCI (Ramos-
Murguialday et al., 2012). We focused on revising the training
method to improve performance in poorly performing users
by combining MI and somatosensory attentional orientation
(SAO). SAO and MI are cross-modal mental tasks independent of
exogenous stimuli and have different neurophysiological origins,
namely the somatosensory and motor cortices, respectively (Yao
et al., 2017). We believe that hybrid training methods can
improve the performance of users compared to conventional
methods that use only signals recorded over the motor
cortex. Thus, this study explored a new hybrid imagery
method to improve MI performance that employed three MI
classes: left hand, right hand, and right foot. This approach
involved training in the use of the sensations from tangible
objects (i.e., a hard and rough ball) and motor execution
(ME), where participants were instructed to imagine them
at the same time.

MATERIALS AND METHODS

Participants
For this study, we recruited 14 healthy participants, of
which 7 were female and all were right-handed. The
mean age of the participants was 27.21 ± 3.88 year.
All participants in this experiment had prior experience
with the motor imagery paradigm. Each was paid 90,000
KRW. None had any family or medical history of central
nervous system disorders. Participants were asked to sleep
normally and abstain from alcohol, cigarettes, and caffeine
for 12 h before the experiment. Written consent from
all participants was obtained after informing them of the
restrictions and requirements of the experiments. This
study was approved by the Ethics Committee of the Korea
Institute of Science Technology, Seoul, South Korea (approval
number: 2020-021).
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Electroencephalogram Acquisition
Electroencephalogram (EEG) signals were recorded at a sampling
rate of 2,048 Hz using a BioSemi ActiveTwo system (BioSemi BV,
Amsterdam, Netherlands) with 64 channels mounted on an EEG
electrode cap arranged in the international 10–20 montage. The
ground and reference electrodes were replaced by the common-
mode sense and driven right-leg electrodes, which are specific to
BioSemi systems1. EEG signals were down sampled to 256 Hz
for analysis and the common-average reference was used for
offline analysis. An infinite impulse response filter (1–50 Hz) and
a wavelet-based neural network were applied to the raw EEG
signals to remove artifacts (Nguyen et al., 2012).

Experimental Design
This experiment utilized both MI (as control) and
somatosensory-motor imagery (SMI) for BCI training. The
participants sat in a comfortable armchair in an electrically
shielded room. The monitor screen was placed 1 m from the
participant, who was instructed to sit still, limit eye blinks,
and minimize body, facial, and arm movements. The stimuli
for MI were indicated using arrows on a three-way crossroads
graphic (i.e., right, left, and forward). The stimuli were video
clips presented before the crossroads was entered and located in
the target direction. Participants then performed either the MI
or the SMI task. The experimental environment and stimuli are
presented in Figure 1.

The MI paradigm consisted of a motor execution task (MET)
and a motor imagery task (MIT). In the MET session, participants
were required to perform movements of the left hand, right
hand, or right foot, and the MIT session involved only imagining
these physical movements (kinesthetic imagery). In the sessions,
the movements of both hands and the right foot were cued by
pictures of clenching hands and footprints, respectively. At the
beginning of each trial, a “+” mark appeared in the center of
the screen for 2 s. Then a cue arrow pointing to the left (METL
and MITL), right (METR and MITR), or forward (METF, MITF)
was presented visually on the three-way crossroad in the video
clip. Participants were instructed to perform the task for 3 s
after the cue appeared. After 0.5 s, neuro-feedback of the cortical
activations around the motor and sensorimotor cortex (Figure 1)
was presented until the participant responded with a keypress to
indicate completion of the task. Each paradigm always started
with the execution session (i.e., MET or SST–MET) and then
proceed to the imagery session (i.e., MIT or SAO–MIT), as shown
in Figure 2. In this study, neuro-feedback was based on EEG
power in the frequency band 8–30 Hz recorded during the motor
task. The sampling time window for power measurement was
2.4–4.4 s, which was the same length as that of the window for
feature extraction for classification. After each run, we calculated
the EEG power mapped to a cortical topography over one run and
gave the subject feedback to increase motivation and to produce
better results. Subjects could confirm the results of imagery task
by the information of color and location in the brain topography,
and it could have a positive effect on their task performance.
The next trial started after subject’s feedback (Zoefel et al., 2011;

1http://www.biosemi.com/faq/cms&drl.htm

Boe et al., 2014; Duan et al., 2021). To allow the subjects to
concentrate on the experimental tasks, we designed the tasks
to be administered when the subjects felt fully prepared. The
procedures for MET and MIT for a single trial are shown in
Figure 2A. Participants were required to perform a total of 150
MET trials (three classes: METL, METR, and METF, 50 trials
each) in three runs, and 300 MIT trials (three classes: MITL,
MITR, and MITF, 100 trials each) in six runs. Classes were
presented in random order in each session.

The SMI paradigm consisted of sensory stimulation training
(SST) with MET and SAO with MIT. In the SST–MET session,
participants were required to clench hard and rough tangible balls
in their left or right hands or step on a hard and rough half-
ball, as shown in Figure 3. In the SAO–MIT session, participants
were asked to use hybrid imagery for the movement of the left
hand, right hand, and right foot that included the somatic sensory
sensation of the tangible objects. Participants were required to
perform a total of 150 SST–MET trials (three classes: SST–METL,
SST–METR, and SST–METF, 50 trials each) in three runs, and
300 SAO–MIT trials (three classes: SAO–MITL, SAO–MITR, and
SAO–MITF, 100 trials each) in six runs. As in MI tasks, the classes
were presented in random order in each session. The procedure
for a single trial was the same as in the MI paradigm (Figure 2B).
This study used a “within subject” design and all participants
were required to perform both MI and SMI paradigms. They
experienced either the MI (i.e., MET/MIT) or the SMI (i.e.,
SST–MET/ SAO–MIT) paradigm on the first day, and on the
next day, they experienced the other paradigm at the same time
of day (e.g., first day MI; second day, SMI; order randomized
across participants). The SMI session was compared with the MI
session to determine whether the classification performances of
the three-class MI-BCI were improved between total, good, and
poor performer groups. In addition, to improve the classification
performance in the poor performer group, the cross-modality
including eight combinations between MI and SMI were analyzed
using two separate sessions with different trainings in mind.
Some previous studies have reported that the proposed hybrid
combination of SAO with MI has improved the classification
performance in BCI-inefficient subjects (Yao et al., 2014, 2017).
After each experiment paradigm, the subjects were required to
report their feeling or experience for MI and SMI. The questions
of the post-experimental interview are as follows. (1) Which
experiment, MI or SMI, is more helpful to conduct imagery? (2)
What makes MI or SMI so good? (open-end question).

In this study, we recorded electromyogram (EMG) signals
from the left hand, right hand, and right foot during the training
sessions to rule out individual differences in force or speed.
Previous studies have reported that the imagined force and speed
of hand clenching affects brain oscillations (Fu et al., 2017; Xiong
et al., 2019). The maximum voluntary contraction (MVC) of
participants was measured, and they were asked to train at 50%
of their MVC. Participant training was guided by feedback of
force and speed results calculated from the EMG response and
they were asked to maintain consistency in the imagination
paradigm. The EMG feedback was presented as a sub-screen
bar graph during the execution paradigm (i.e., in MET and
SST–MET sessions). EMG electrodes were attached to the left
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FIGURE 1 | (A) Stimuli for motor imagery-based brain-computer interface task, (B) experimental environment, and (C) neuro-feedback mechanism.

FIGURE 2 | Overview of the experiments for the motor imagery (MI) and somatosensory-motor imagery (SMI) paradigms. (A) MI paradigm. The left hand signals
METL and MITL, the right hand signals METR and MITR, and the right foot signals METF and MITF. Subscripts: L, turn left; R, turn right; F, go forward. MET, motor
execution task; MIT, motor imagery task. (B) SMI paradigm. The left hand signals SST-METL and SAO-MITL, the right hand signals SST-METR and SAO-MITR, and
the right foot signals SST-METF and SAO-MITF. SST, sensory stimulation training; SAO, somatosensory attentional orientation.

hand, right hand, and right foot, as shown in Figure 4B. EMG
signals were recorded at 2048 Hz using a BioSemi ActiveTwo
system (BioSemi BV, Amsterdam, Netherlands) and six flat
active electrodes. The high-pass and low-pass filters utilized were

minimum order elliptic infinite impulse response type from
MATLAB 2020a (MathWorks Inc., Natick, MA, United States).
Raw EMG signals were down sampled to 256 Hz and the DC
component removed using a 0.5-Hz high-pass filter. Finally, root
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FIGURE 3 | Image of the somatosensory stimulus. Hard and rough tangible balls were used as stimuli for the left and right hands while a hard and rough half-ball
was the stimulus for the right foot.

mean square processing was performed and a 1-Hz low-pass filter
was used for smoothing before calculation of the MVC.

Feature Extraction
MI generates a spatial change in brain activity. To extract the
spatial information from EEG signals, we used the Riemannian
geometry approach with the spatial covariance matrices of each
motor imagery task (Barachant et al., 2012). To obtain task-
related spatial information, we extracted raw EEG data from
the motor and somatosensory cortices through relevant EEG
channels (i.e., FCz, C1, C3, C5, T7, Cz, C2, C4, C6, T8, and
CPz; Figure 4A) followed by 8–30 Hz bandpass filtering. We
selected the minimum number of EEG channels that can reflect
the activation of both the motor and somatosensory cortices. The
primary motor cortex and the somatosensory cortex are located
anterior and posterior to the central sulcus, respectively, and the
electrodes in the central area (i.e., C1, C2, C3, C4, C5, and C6)
reflect the activation of both the motor and somatosensory cortex
(Christensen et al., 2007; Yao et al., 2017). After the preprocessed
EEG data were extracted from the time window of the motor
imagery task (2.4–4.4 s), the epoched EEG data were transformed
into symmetric positive-definite (SPD) matrices (Horev et al.,
2016). We here calculated the SPD as a covariance matrix to
extract the EEG spatial features for each motor imagery task. We
denoted the pre-processed EEG signals as X ∈ Rn × t (n is the
number of selected channels and t is the number of temporal
data per trial). Based on the MI EEG signals, we estimated
the normalized sample covariance matrix (SCM) as “C” in (1)
(Ramoser et al., 2000).

C =
XXT

trace(XXT)
, (C ∈ Rn × n) (1)

The SCM is an n × n SPD matrix with strictly positive
eigenvalues Pn (Pn = {P C, P > 0}). The SPD matrices had
dimensions m = n (n + 1)/2 because of their positive-definite and
symmetric properties.

In this study, we used the median absolute deviation (MAD)
to obtain the centrality characteristics of the EEG SPD matrices
(Uehara et al., 2016). Using the MAD, the SPD matrices from the
normalized covariance matrix for each motor task were arranged

in a Riemannian manifold, which is a smooth manifold equipped
with a high-dimensional Euclidean tangent space. Riemannian
geometry is useful for identifying the brain information in EEG
signals (Barachant et al., 2012). On the Riemannian manifold, we
calculated the geodesic distance and mean of two SPD matrices
with P1, . . ., Pi, Pj, . . ., Pm, as shown below in (2)–(4):

Pgeodesic, i,j = P
1
2
i

(
P
−

1
2

i PjP
−

1
2

i

)t
P

1
2
i , (t ∈ [0, 1]) (2)

Pdistance,i,j = || Log(P−1
i Pj)||F (3)

Pmean =
argmin
P∈P(n)

∑m

i=1
P2

distance (P, Pi) , (i, j ∈ m) (4)

Classification
After obtaining the centrality characteristics for each motor
task using SPD matrices and the MAD strategy, we applied
the Riemannian geometry-based classifier, which calculates the
Fisher geodesic minimum distance to the mean (FgMDM)
(Barachant et al., 2012). The FgMDM discriminates the classes
of motor tasks by geodesic filtering. In this study, after we
set the training covariance matrices (Ctrain) and test covariance
matrices (Ctest),Ctrain was projected into the tangent space. After
the training data projection, we estimated the geodesic filters that
maximize the between-class matrix and minimize the within-
class matrix. The filtered features of each motor task in the
tangent space were then projected onto the Riemannian manifold
and were used to train the FgMDM classifier. Following this, Ctest
was also classified using the FgMDM after projection onto the
geodesic filter ofCtrain. We conducted this procedure with 10-fold
cross-validation.

RESULTS

The average accuracy for all participants was 62.29 ± 16.96%
for MI and 68.88 ± 14.04% for SMI. A paired t-test revealed a
significant difference in the classification accuracy of MI and SMI
(Shapiro-Wilk test, p= 0.560), with the performance of SMI better
than that of MI (t12 = −2.669, p = 0.019, Cohen’s d = 0.423, with
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FIGURE 4 | (A) Eleven electrode positions (red dotted lines) were used for electroencephalogram analysis. (B) Shown are electrode positions of the three channels in
the electromyogram that were used to control by neuro-feedback the force and speed of movements (i.e., left hand, right hand, and right foot).

small effect size). Averaging over all participants, SMI achieved a
68.88% classification accuracy, 6.59% larger than that of MI, as
shown in Table 1.

Figure 5 summarizes the classification performances of the
good and poor performers in MI and SMI conditions. In our
study, good performers were defined as those having more
than 70% accuracy, a definition adopted from a previous study
(Zhang et al., 2019a). In the poor performer group, the average
classification performance on the SMI task was 10.73% larger
than that on the MI task (62.18 ± 11.1% vs. 51.45 ± 10.27%).
In contrast, the good performer group showed a slight reduction
(0.86%) in performance on the SMI task compared to the MI task
(80.93± 10.19% vs. 81.79± 4.91%).

We used heat maps to plot the covariance matrix pattern in
MI and SMI conditions to observe the relationship among the
11 channels. For this, we conducted repeated paired t-tests on
the components of the covariance matrix, using a Bonferroni-
corrected p-value of 0.00008 (p = 0.01/121). For good performers,
we isolated nine significant differences in the covariance matrix
pattern between MI and SMI conditions. For poor performers,
however, we found 30 significant differences in the connectivity
among channels in the covariance matrices between MI and SMI
conditions, as shown in Figure 6.

Table 2 shows the cross-modality classification results, where
all eight (2ˆ3) possible combinations for the two different
modalities (MI and SMI) and for the three classes are presented.
All combinations for each left hand, right hand, and right foot are
as follows: MMM, SSS, SMM, SSM, SMS, MSM, MMS, and MSS.
M and S mean motor image and somatosensory motor image,
respectively, and the abbreviations presented in each condition
are mapped in the order of the left hand, right hand, and right
foot. For example, MSM condition is defined as a three-class
analysis, with MI, SMI, and MI corresponding to left hand, right
hand, and right foot, respectively. Classification performance of
each pair of imagery tasks for all participants was 69.37–78.13%

[72.13 ± 9.71% (SMM), 70.41 ± 7.85% (SSM), 78.13 ± 10.48%
(SMS), 74.62 ± 10.87% (MSM), 69.37 ± 9.78% (MMS), and
75.62 ± 11.35% (MSS)], with SMS cross-modality achieving the
best performance. The performance of the SMS condition was,
on average, 15.84 and 9.25% greater than that of the MMM
and SSS conditions, respectively. In the good performer group,
classification performance of each pair of imagery tasks was
76.67–86.98% [83.23 ± 6.10% (SMM), 76.67 ± 6.04% (SSM),
86.98 ± 6.70% (SMS), 85.84 ± 5.49% (MSM), 79.90 ± 3.34%
(MMS), and 86.05± 9.71% (MSS)]. The SMS condition achieved
the best performance, which was, on average, 5.19 and 6.05%
greater than in the MMM and SSS conditions, respectively. In
the poor performer group, classification performance of each
pair of imagery tasks was 63.52–73.22% [66.89 ± 5.54% (SMM),
66.93 ± 6.46% (SSM), 73.22 ± 8.85% (SMS), 68.39 ± 7.63%
(MSM), 63.52 ± 6.84% (MMS), and 69.83 ± 7.35% (MSS)]. The
SMS condition achieved the best performance, which was, on
average, 21.76 and 11.04% greater than in the MMM and SSS
conditions, respectively. Performances after optimized selection,
which isolates the individual highest performance across cross-
modalities, was on average 1.73, 2.23, and 1.45% higher in all
participants, the good performer group, and the poor performer
group, respectively.

Table 3 shows the results of interviews reported by subjects
after each experimental paradigm. To question 1, the four good
performers answered that the MI task was more helpful. They
answered that the MI was more familiar than SMI as they had
done it previously, and SMI was more confusing than MI. On
the other hand, the eight poor performers answered that the
SMI task was more helpful. Among them, four subjects reasoned
that SMI felt more comfortable while performing kinesthetic MI
and other three answered that tangible objects helped enable
consistent imagery. In addition, subjects 10 (poor performer) and
11 (good performer) reported no significant difference between
the two paradigms.
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TABLE 1 | Classification accuracy in the motor imagery (MI) and somatosensory-motor imagery (SMI) conditions.

Class S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Avg.

MI 56.00 27.14 85.71 57.33 86.43 52.00 82.00 65.00 43.33 50.00 72.67 54.29 58.00 82.14 62.29

SMI 60.00 50.00 91.33 62.86 88.00 67.33 82.67 87.14 51.67 55.00 62.00 54.29 71.33 80.67 68.88

SMI-MI 4.00 22.86 5.62 5.52 1.57 15.33 0.67 22.14 8.33 5.00 −10.67 0.00 13.33 −1.48 6.59

The bottom row presents the accuracy differences between conditions. S1–S14, all participants.

FIGURE 5 | Comparison of the classification accuracy for motor imagery and somatosensory-motor imagery conditions between good and poor performer groups.

DISCUSSION

This work proposes a unique approach to improving MI-BCI
performance for three classes by using a tangible object-based
training method to enhance MI. Approaches to improving
BCI performance are divided into technological factors (i.e.,
improving the algorithm) and human factors (i.e., improving the
EEG patterns of the users) (Penaloza et al., 2018). Technological
factors may have reached their limit in enhancing performance.
In addition, the MI-BCI approach may have limitations in
generating quality EEG patterns from users (Blankertz et al.,
2006; Tangermann et al., 2012). This work proposes a new
hybrid method of imagery that combines motor execution and
somatosensory sensation from a tangible object to improve
the MI performance of poorly performing users. The three
classes showed an average accuracy in the SMI condition 6.59%
larger than in the MI condition (68.88% vs. 62.29%, p < 0.05).
In poor performers, SMI achieved an average classification
performance 10.73% larger than did MI (62.18% vs. 51.45%).
Good performers did not show a significant difference between
the MI and SMI conditions. This work confirmed that methods

using hybrid modalities (i.e., combining MI and SAO) can be
useful alternatives to elementary modalities in improving the
three-class BCI performance of poor performers.

The investigation of the effect of hybrid modality was
motivated by how well a person can generate quality EEG
patterns. First, this study attempted to achieve quality EEG
patterns by enabling consistent MI using tangible objects. We
confirmed that participants have different methods of MI for the
task of imagining hand clenching. For instance, some imagined
performing hand clenching (i.e., kinesthetic imagery) while
others imagined watching a hand clenching (i.e., visual imagery).
The participants performed tasks with their preferred method
of MI and reported difficulties in using non-preferred methods.
Inconsistent MI methods can adversely affect the quality of
EEG patterns in participants (Neuper and Pfurtscheller, 2009;
Wolpaw and Wolpaw, 2012). According to post-experiment
interviews, participants in the poor-performer group who had
experienced the hybrid modality were able to perform consistent
MI by imagining the sensation of a tangible object (i.e., the
imagination of hand clenching). This approach is considered to
have a positive impact on generating quality EEG patterns as
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FIGURE 6 | Comparison of the right-hand covariance matrix heat maps of the motor imagery and somatosensory-motor imagery conditions to show relationships
among 11 selected channels. (A) Good performer group. (B) Poor performer group. Color scales show the paired t-statistic. The significance test was two-tailed.

TABLE 2 | Classification accuracy of imagery tasks under cross-modality conditions.

Participant Imagery task

MMM SSS SMM SSM SMS MSM MMS MSS

S1 56.00 60.00 69.33 66.88 71.25 71.25 65.00 60.59

S2 27.14 50.00 60.63 67.33 65.00 57.65 56.88 61.33

S3 85.71 91.33 84.29 86.00 97.14 94.67 80.71 94.00

S4 57.33 62.86 76.67 65.00 76.67 79.29 64.67 69.29

S5 86.43 88.00 90.67 75.33 90.00 87.86 77.86 93.57

S6 52.00 67.33 69.33 64.67 81.33 78.00 64.00 78.67

S7 82.00 82.67 80.00 80.00 84.67 80.00 82.00 84.00

S8 65.00 87.14 70.00 80.77 91.43 74.17 76.15 80.77

S9 43.33 51.67 58.33 55.83 63.33 57.50 53.33 67.50

S10 50.00 55.00 63.33 61.67 62.50 63.33 65.00 61.67

S11 72.67 62.00 73.33 68.00 76.67 80.00 74.67 68.00

S12 54.29 54.29 63.08 71.54 71.43 65.00 70.67 71.33

S13 58.00 71.33 71.33 68.67 76.00 69.33 56.00 77.33

S14 82.14 80.67 87.86 74.00 86.43 86.67 84.29 90.67

Averages

Total sample 62.29 68.88 72.73 70.41 78.13 74.62 69.37 75.62

Good performer 81.79 80.93 83.23 76.67 86.98 85.84 79.90 86.05

Poor performer 51.45 62.18 66.89 66.93 73.22 68.39 63.52 69.83

Each task is described by a three-character code, i.e., MMM, SSS, SMM, SSM, SMS, MSM, MMS, and MSS; M: motor imagery, S: somatosensory-motor imagery. The
first, second, and third letters in the code denote the left hand, right hand, and right foot, respectively. The participant numbers of those previously classified as “poor
performers” on a pure M task are in bold, and the best classification results between the cross-modality conditions are in bold and italicized.
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TABLE 3 | Results for a subjective interview related to feeling or experience
between MI and SMI paradigms.

Participant Question 1: Which experiment,
MI or SMI, is more helpful to

conduct imagery?

Question 2: What makes MI
or SMI so good?

S1 SMI I don’t know clearly

S2 SMI SMI is more comfortable to
perform kinesthetic MI

S3 MI MI is more familiar than SMI

S4 SMI Tangible object (SMI) helps to
make consistent imagery

S5 MI MI is more familiar than SMI

S6 SMI SMI is more comfortable to
perform kinesthetic MI

S7 MI MI is more familiar than SMI

S8 SMI Tangible object (SMI) helps to
make consistent imagery

S9 SMI SMI is more comfortable to
perform kinesthetic MI

S10 Anything is fine Anything is fine

S11 Anything is fine Anything is fine

S12 SMI Tangible object (SMI) helps to
make consistent imagery

S13 SMI SMI is more comfortable to
perform kinesthetic MI

S14 MI MI is more familiar than SMI

The poor performers are in bold.

it enables participants to perform consistent MI. Furthermore,
previous studies have reported significant differences in MI
patterns depending on the force and speed of hand clenching
(Fu et al., 2017; Geng and Li, 2020; Ortega et al., 2020). Here,
we presented feedback to participants on the force and speed of
hand and foot movements based on EMG signals (target: 50% of
MVC) so that these parameters are stabilized across MI trials. If
the force and movement speed are not controlled, the participant
performs the MI task based on user characteristics. Movement
was controlled in this study because it is a major factor that can
affect the procedure for hypothesis testing.

Second, the SAO and MI modalities in hybrid BCI should
enhance classification performance compared to that of the
motor-cortex EEG only. SAO from the somatosensory cortex and
MI from the motor cortex have distinctive neurophysiological
origins (Yao et al., 2017). This study confirmed that both
the somatosensory and motor cortices can be influenced by
hybrid MI using tangible objects (i.e., a rough and hard ball),
which leads to improved MI performance by generating quality
EEG patterns. In the analysis of the feature covariance matrix,
the SMI condition in the poor-performer group improved
the connectivity among the 11 channels relative to the MI
condition. These results support the idea that hybrid-modality
imagery using tangible objects can generate quality EEG patterns.
However, we found no significant changes in the good performer
group. All participants underwent under the MI-BCI paradigm.
The good-performer group was defined as participants who
achieved high performance in the MI paradigm, and the poor
performer group was defined as those who did not. According to

the post-experiment interviews, the good performer group found
the established MI method more familiar than SMI and found it
difficult to imagine two modalities at once. The poor-performer
group, however, found that SMI using a tangible object could help
them to imagine more specifically and consistently than in the MI
condition. In the classification results, the poor performer group
showed better performance in the SMI condition than in the
MI condition. The good performer group revealed no significant
difference among the two paradigms. We thus believe that
training methods to enable specific and consistent imagination
can lead to the generation of quality EEG patterns and contribute
to improving the performance of the poor performer who has
previously reported difficulties with MI methods.

A limitation of this study is recruitment of only healthy
subjects. MI-BCIs are commonly used in medical applications
such as restoring motor functions in stroke patients. Because
the stroke patients with loss of motor movement are unable
to make voluntary movements, the established training process
uses the passive movement (PM) by external devices instead of
ME. A previous study reported that PM (i.e., the execution of
a movement by an external agency without voluntary control)
and MI induce similar EEG patterns over the motor cortex
(Arvaneh et al., 2017). Many previous studies have tried using
MI-based BCI control with passive motion for stroke patients,
and significant positive results have been confirmed (Arvaneh
et al., 2017; Cantillo-Negrete et al., 2018; Lu et al., 2020). Because
a tangible object can be applied to a hand or foot when the
patient performs a passive movement using an external agent, the
proposed method may have a positive effect on stroke patients.
This limitation requires further validation in future studies.

Previous research reported that a hybrid modality (MI and
SAO with a vibration burst) achieved an average classification
accuracy for classes 7.70% larger than did MI and 7.21% larger
than did SAO (86.1% vs. 78.4% and 78.9%, respectively) (Yao
et al., 2017). Another study showed that the hybrid modality
group achieved an accuracy 11.13% higher than did the MI
group and 10.45% higher than did the selective sensation group,
using a vibration stimulus for the two classes (Yao et al., 2014).
Moreover, prior studies have reported that hybrid modalities
using somatosensory stimuli can improve MI-BCI performance.
These studies applied MI and SAO stimuli to both hands (i.e.,
L-MI, R-SAO, R-MI, L-SAO). However, our study differs in
that participants were instructed to simultaneously imagine MI
and SAO stimuli on the hands and feet. Ours is an intuitive
approach in which movements and sensations based on tangible
objects (somatosensory signals) can be simultaneously imagined
in the motor imagery procedure. The past studies did not employ
intuitive imagining of two modalities simultaneously because
vibration stimuli and motor actions are independent. However,
the proposed method of this study allows intuitive imagining of
two modalities because the motor action and the somatosensory
stimulus (i.e., a tangible object) are dependent. For example,
the users are able to imagine feeling the sense of a tangible
object in the hand when their hand is grasping. The proposed
hybrid imagery is consistent with the human mental model, and
intuitive processes designed according to this mental model show
high efficiency in behavior or action (Young, 2008). Our work
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demonstrated relatively good performance compared to previous
studies, and can contribute to improving the performance of
poorly performing users. This study has the limitation that
the small sample size was too small to allow generalization of
the results, requiring further validation in future studies with
a larger sample.

This study compared performance in cross-modality
conditions such as MMM, SSS, SMM, SSM, SMS, MSM, MMS,
and MSS, involving mixtures of MI (“M”) and SMI (“S”)
conditions on different body parts. (The order employed in
the above three-letter codes is left hand, right hand, right foot.)
In the poor performer group, the SMS cross-modality had the
best performance, which was 21.76% larger than in MMM and
11.04% larger than in SSS (78.9%). The conditions with different
modalities on the two hands (i.e., SMS, MSM, and MSS) had
higher performance than did conditions with the same modality
on the hands (i.e., MMM, SSS, SSM, and MMS). We believe
that cross-modality combinations of MI and SMI help users
to distinguish their hands better in imagination than do single
modalities. A previous study reported that the cross-modalities
of left-MI, right-SAO (84.1%), and right-MI and left-SAO
(84.9%) showed a higher performance than having the same
modality on the two hands, i.e., left-MI and right-MI (78.4%)
and left-SAO and right-SAO (78.9%) (Yao et al., 2017). MI and
SMI were conducted in two separate sessions with different
trainings in mind. Thus, the results obtained from combining
the experimental data of the two separate sessions may differ
from the experimental results of a single session. The purpose of
this study is to confirm the possibility of cross-modality, which
will be verified through future research. Future studies are needed
on cross-modality imagery using various somatosensory stimuli,
such as tangible objects that feel rough and hard, rough and soft,
or smooth and soft, or with vibration and electric stimuli.

In addition, this work placed the arrow on the sides of the
display indicating the cue for the MI task. The arrows could
be placed closer to the center of the screen rather than on the
sides, to reduce eye movement and eye movement artifacts in the
EEG. The neuro-feedback is also presented on the side screen,
which can cause the EEG artifacts by eye movement. These issues
need to be improved to minimize the effect of the artifacts in
further study. In conclusion, this study proposes a unique hybrid-
MI using a somatosensory stimulus to improve the MI-BCI
performance of poorly performing users. The hybrid modality
enabled consistent MI and activation of both the somatosensory
and motor cortex using a rough and hard ball as the stimulus
(SAO). This hybrid modality led to a significantly improved
three-class MI-BCI performance in poor performers. In addition,
we here confirmed that the cross-modality combination of MI

and SMI performed better than did a single modality. However,
only one type of somatosensory stimulus was assessed in this
study. We believe that combinations of the different types
of somatosensory stimuli alluded to above may significantly
improve BCI performance and should be further investigated
in future. The hybrid modality proposed in this study can help
poor performers improve MI-BCI performance and BCI literacy,
which can contribute to the practical use and uptake of BCI.
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