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Abstract: UWB is a rapidly developing technology characterised by high positioning accuracy,
additional data transferability, and communication security. Low costs and energy demand makes
it a system that meets the requirements of smart cities (e.g., smart mobility). The analysis of the
positioning accuracy of moving objects requires a ground truth. For the UWB system, it should have
an accuracy of the order of millimetres. The generated data can be used to minimize the cost and time
needed to perform field tests. However, there is no UWB simulators which can consider the variable
characteristics of operation along with distance to reflect the operation of real systems. This article
presents a 2D UWB simulator for outdoor open-air areas with obstacles and a method of analysing
data from the real UWB system under line-of-sight (LOS) and non-line-of-sight conditions. Data are
recorded at predefined outdoor reference distances, and by fitting normal distributions to this data
and modelling the impact of position changes the real UWB system can be simulated and it makes it
possible to create virtual measurements for other locations. Furthermore, the presented method of
describing the path using time-dependent equations and obstacles using a set of inequalities allows
for reconstructing the real test scenario with moving tags with high accuracy.

Keywords: UWB; sensor data analysis; simulator; data reconstruction

1. Introduction

Internet of things (IoT) devices are ubiquitous and are presented in the industry and
in houses where they provide a lot of information (i.e., allowing one to automate processes
or take care about the safety or life of people). IoT devices are an indispensable element of
smart cities or industry 4.0 (e.g., intelligent parking lots that provide information about
available spaces and make it easier to find a previously parked car) [1]. Such devices
are also used in sports or rehabilitation [2,3]. GPS and inertial navigation are widely
applied to determine the position of an object [4,5]. However, in urbanized areas the
GPS signal is often distorted or completely unavailable. Inertial navigation allows for
positioning regardless of the infrastructure. However, the position error accumulates over
the time [6]. Ultra-wideband (UWB) is a rapidly developing technology that has become a
beneficial alternative/supplement to other systems used in the automotive industry due
to its low energy demand, low costs, additional data transferability, and communication
security [7–11]. The UWB technology enriches a range of network types that can be used in
the IoT for smart city applications [12]. The UWB system, apart from the option of data
transmission, allows for determining the position with high accuracy, which together with
the growing interest in autonomous vehicles will be important in the smart cities or smart
industries [13–15]. Positioning systems such as Lidar, radar, ultrasound, interaction sensors,
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or cameras provide information about the vehicle’s surroundings [16–20]. Their advantage
lies in independence from infrastructure. However, they do not provide information about,
for example, an obstacle located directly behind a sharp bend, and they do not inform in
advance about a road collision or a traffic jam because they can only inform users about
things they can see. To propagate information about dangers, vehicles must communicate
with the environment (including other vehicles or infrastructure) [21]. The advantages
of the UWB system, such as the aforementioned accurate positioning or the possibility to
communicate, make this system widely researched [22–24]. For analysing the accuracy
of localization algorithms (trilateration) or raw data processing methods, reference data
(ground truth) is used to check their effectiveness and quality. Reference data can be
obtained from any system, the accuracy of which should be an order of magnitude larger
(lower error) than the accuracy of the analysed system. Another solution is to repeat a given
test scenario many times while maintaining the same parameters. Then, the mean values
from all approaches should be used as reference data. Due to the fact that the accuracy of
the UWB system, with appropriate data analysis, is in the order of a few centimetres, the
accuracy of the reference system applied has to be in the order of millimetres. In addition,
the sampling frequency of the UWB system can reach 100 Hz, making it difficult to find
a reference system. It seems that the best solution is to run a given test scenario multiple
times and average the obtained results [25]. However, taking into account the measuring
platform (and the whole test stand), which is a car or a remote-controlled model, it is almost
impossible for a driver or a RC model operator to repeat the scenario many times while
maintaining the same parameters.

Due to the UWB system’s accuracy, it is common to determine the accuracy of the
whole system at reference points where the object stops or by passing over this type of
point and reading the marker (e.g., RFID, video analysis) [4,26]. In this approach, there
is no available information on the accuracy of the position at each point on the path
that the object has followed (where UWB position data is available). Additionally, time
synchronization (e.g., of video with UWB data) is challenging. Another way is to determine
the accuracy by comparing the reference path (the assumed path), and the path plotted
based on the UWB system data. On the other hand, the information about the time when a
given position was acquired is omitted in this approach.

Taking into account the limitations of the reference system, it was decided that we
build a simulator that would reflect the operation of the off-the-shelf (and currently applied)
UWB system used for positioning objects in real conditions. The benefits of building the
simulator do not only affect the quality of the prepared algorithms and the precise analysis
of the results, but also save time that has to be spent on performing the test in a real test
stand and allow to continue research in situations where access to the test stand is limited
(e.g., due to weather conditions or limitations resulting from events such as the COVID19
pandemic or internal restrictions of a plant).

Positioning systems simulators (e.g., for Lidar, radar, IMU, etc.) are widely used for
testing algorithms that analyse data derived from them [27,28]. Simulation data is easier
to obtain and does not require time-consuming testing in the field. However, there is a
lack of a UWB simulator that would consider the variable characteristic of operation along
with distance.

The UWB positioning system provides distances between network nodes, namely
tags associated with the positioned object and the anchors (reference points). Obtained
distances are used to calculate the position in the trilateration process [29,30]. Furthermore,
distances from at least three reference points are needed to determine the position on a
plane (2D). Thus, it is necessary to have a simulator that provides the same data as the
real system.

Due to the lack of complete information on the transmission parameters and configu-
ration of data exchange between the nodes of the UWB systems, it is difficult to build a
simulator starting from a low level (e.g., frame transmission in the network) [31]. For this
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reason, a real system has been treated as a black box, and its operation has been modelled
based on the information the system generates (i.e., distances).

The presented simulator is designed to simulate the UWB system for outdoor (open-
air) areas with obstacles. The outputs of the proposed simulator are the distances between
the user-defined network nodes, which can be acquired in both LOS and NLOS conditions.
NLOS conditions are possible to obtain by the option of the simulator to add obstacles to
the test stand. Among the variety of assumptions, the following have to be taken at first:
the object moves according to the planned scenario (in a local coordinate system) and data
from all network nodes within the tag range has to be collected. The simulator’s input
data is the functions (shape) of the road/path in uniformly accelerated motion in the time
domain, which reflects the passage of the object for a given test scenario.

It was observed that each of the applied positioning systems (of different vendors)
based on UWB technology (and more precisely on DW1000 modules [32]) are characterised
by slightly different parameters such as:

• Error in the determined distance;
• Variation of the measurements;
• Maximum sampling frequency; or
• Maximum ranging distance.

Data from the systems based on DWM1000 modules with an external omnidirectional
antenna is used to build the simulator. The data was collected in an open area, with no
additional objects close to the test stand. The influence of various materials (such as glass,
people, wood) on distance measurement has been evaluated, and it was noticed that the
metal plate has the greatest but reasonable influence on the signal. During the construction
of the simulator, the worst-case scenario was assumed, which is a metal plate close to
one node. The following stages of data analysis from the UWB system, building a virtual
measurement environment along with collision detection, are presented in the diagram in
Figure 1. The first stage of the analysis, the collection and analysis of data from the real
system and its description, is discussed in Section 2. The creation of the virtual test stand,
obstacle creation, and distance simulation are discussed in Section 3.
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Figure 1. Main block diagram of the data analysis. 
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2. Collecting Data for UWB Simulator

Treating the positioning system as a black box, data of the measured distances between
two nodes (tag and one anchor) was collected at the distances indicated in Table 1. The
measurements were made in a stationary scenario (the nodes between which the measuring
was performed were not moving during the ranging process) in two variants: line-of-
sight (LOS) conditions and non-line-of-sight (NLOS) conditions (where the obstacle was
simulated by covering one of the nodes with a 0.5 × 0.5 m metal plate—assuming the
worst-case scenario) as presented in Figure 2. The test stand was located outside in an
open area with no additional obstacle nearby. Each scenario includes 10,000 distance
readings (rangings). The collected data and the designated statistics allow one to describe
the operation of the system.

Table 1. Reference distances.

Distances [cm]

50; 100; 150; 200; 250; 300; 350; 400; 450; 500;
550; 600; 650; 700; 750; 800; 850; 900; 950; 1000;
1100; 1200; 1300; 1400; 1500; 1600; 1700; 1800;

1900; 2000

Measurements [samples/distance] 10,000
Overall LOS/NLOS [samples] 600,000 (2 × 300,000)
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The system operation has been checked for both conditions separately (for LOS and
NLOS conditions). The two-stage analysis of the collected data (distances) allows one to
check whether the statistical parameters are similar and can be described with common
parameters and show how much impact the obstacle has on the measurement of the
distance between nodes using the UWB system.

In the first step, the data of the distance between nodes in LOS conditions was
analysed. Sample system readings for a reference (fixed) distance of 50 cm between
nodes are presented in Figure 3. It should be noted that the resolution of the system applied
is 1 cm. The analysed system is characterised by an overestimation of the distance value
for all the tested distances. There are many reasons for this phenomenon including the
desynchronization of clocks between nodes, different accuracy of the clocks used, or the
system configuration (delays). It is important to mention that this does not lay within the
scope of the constructed simulator (the simulator is intended to reflect the real system, not
to increase the accuracy of ranging).
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Figure 3. System readings (determined distances) for 50 cm distance between nodes.

The collected statistical measures relating only to the distance measurement under
LOS conditions are presented in Table 2. The mean values (dmean) are close to the median
value (dmed), which indicates a relatively symmetrical concentration of the measurements
around the mean. The difference is presented in Figure 4. The maximum absolute value of
the difference between the mean value and the median value (|dmean−dmed|) is 0.6 cm
(for the distance of 20 m).
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Table 2. Statistical measures of the distance under LOS conditions.

Reference [cm]
dref

Mean [cm]
dmean

Median [cm]
dmed

STD [cm]
dstd

Min [cm]
dmin

Max [cm]
dmax

|dmean − dmed|
[cm]

50 52.0 52 1.8 45 59 0.0
100 108.5 109 2.4 94 118 0.5
150 157.7 158 2.4 147 166 0.3
200 209.2 209 2.3 200 218 0.2
250 264.5 265 2.1 254 273 0.5
300 305.2 305 2.1 299 318 0.2
350 362.2 362 2.5 353 371 0.2
400 407.3 407 1.9 401 414 0.3
450 459.0 459 1.5 453 466 0.0
500 513.5 513 2.2 503 522 0.5
550 565.6 566 2.5 554 572 0.4
600 614.2 614 1.9 607 621 0.2
650 660.5 661 1.4 653 665 0.5
700 707.0 707 1.4 702 713 0.0
750 763.4 763 1.8 758 770 0.4
800 816.1 816 2.0 807 823 0.1
850 865.6 866 2.1 856 875 0.4
900 916.1 916 2.6 908 925 0.1
950 967.3 967 2.2 959 976 0.3
1000 1018.5 1019 2.4 1010 1026 0.5
1100 1117.3 1117 2.0 1111 1124 0.3
1200 1210.7 1211 1.4 1205 1216 0.3
1300 1311.2 1311 1.0 1308 1315 0.2
1400 1407.6 1408 1.5 1402 1415 0.4
1500 1519.8 1520 1.6 1513 1525 0.2
1600 1621.3 1621 1.6 1616 1627 0.3
1700 1716.4 1716 1.8 1710 1724 0.4
1800 1820.1 1820 1.5 1814 1826 0.1
1900 1919.3 1919 1.5 1913 1925 0.3
2000 2015.6 2015 1.7 2010 2021 0.6

To simulate the distances obtained from the real system precisely, the parameters of
the data (distance) distribution have been determined to reflect the system’s operation.
Such parameters allow one to add appropriate distortion to the exact data derived from
the reference system (which in the discussed example are the accurate distances between
two UWB nodes in the Cartesian coordinate system).

Even though the tests such as Lilliefors’ test and the Kolmogorov–Smirnov test reject
the null hypothesis that the data comes from a normal distribution; based on the central
limit theorem, the mean value of the random variable is similar to the normal distribution
when the population is large enough. Therefore, having a sufficiently large sample, it is
possible to approximate the distribution of the tested population to a normal distribution
with a given value of mean and standard deviation.

Standard deviation changes over the predefined range (from minimum to maximum
distances value) and is in the range of 1.0–2.6 cm, as shown in Figure 5.

With the reference value (which was determined using a laser rangefinder and a tape
measure), it is possible to establish the examined UWB system’s accuracy. The essential
statistical measurements of errors are summarised in Table 3.
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Table 3. Statistical measures of the accuracy (distance error) under LOS conditions.

Reference
[cm] dref

MBE [cm]
dmbe

RMSE
[cm] drmse

STD
[cm] dstd

εmin
[cm]

εmax
[cm]

|ε|min
[cm]

|ε|max
[cm]

50 2.0 2.7 1.8 −5 9 0 9
100 8.5 8.9 2.4 −6 18 0 18
150 7.7 8.1 2.4 −3 16 0 16
200 9.2 9.5 2.3 0 18 0 18
250 14.5 14.7 2.1 4 23 4 23
300 5.2 5.6 2.1 −1 18 0 18
350 12.2 12.4 2.5 3 21 3 21
400 7.3 7.5 1.9 1 14 1 14
450 9.0 9.1 1.5 3 16 3 16
500 13.5 13.6 2.2 3 22 3 22
550 15.6 15.8 2.5 4 22 4 22
600 14.2 14.4 1.9 7 21 7 21
650 10.5 10.6 1.4 3 15 3 15
700 7.0 7.2 1.4 2 13 2 13
750 13.4 13.5 1.8 8 20 8 20
800 16.1 16.2 2.0 7 23 7 23
850 15.6 15.8 2.1 6 25 6 25
900 16.1 16.3 2.6 8 25 8 25
950 17.3 17.4 2.2 9 26 9 26

1000 18.5 18.7 2.4 10 26 10 26
1100 17.3 17.4 2.0 11 24 11 24
1200 10.7 10.8 1.4 5 16 5 16
1300 11.2 11.2 1.0 8 15 8 15
1400 7.6 7.8 1.5 2 15 2 15
1500 19.8 19.8 1.6 13 25 13 25
1600 21.3 21.4 1.6 16 27 16 27
1700 16.4 16.5 1.8 10 24 10 24
1800 20.1 20.2 1.5 14 26 14 26
1900 19.3 19.4 1.5 13 25 13 25
2000 15.6 15.6 1.7 10 21 10 21
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The maximum (εmax) and minimum (εmin) distance error (1) varies with distance
without a clear correlation with a reference value of distance which is indicated in Figure 6a.
The mean error range for this set of data is 14.8 cm, the minimum value is 7 cm (for a
reference distance of 13 m), and the maximum value is 24 cm (for a reference distance of
1 m; see Figure 6b):

εi = di − d̂i, (1)

where di is the measured distance and d̂i is the reference distance.
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The fundamental accuracy measure in positioning systems (indoor and outdoor) is a
root mean square error (RMSE, (2)). For the analysed system, the mean error changes with
distance without being clearly monotonous. The average RMSE value for all reference
distances is 13.3 cm, the maximum value is 21.4 cm (for the distance of 16 m), and the
minimum value is 2.7 cm (for the distance of 50 cm). The other values are presented in
Figure 7.
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Due to the dominant overestimation of the distances, the mean bias error (MBE) (3) is
close to the RMSE, presented in Figure 8 for all reference distances. However, when the
system overestimates and underestimates the distances, the differences between the MBE
and the RMSE increase. If the tested system is characterized by underestimation of the
distance measurement, the MBE will be negative and will significantly deviate from the
RMSE value. Therefore, the MBE value can be used to correct the distance in further data
analysis during the position’s determination:

RMSE =

√√√√ 1
N

N

∑
i=1

(
di − d̂i

)2
(2)

MBE =
1
N ∑N

i=1

(
di − d̂i

)
, (3)

where N is the number of measured distances (in one reference distance), di is the measured
distance, and d̂i is the reference distance.
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Figure 8. RMSE and MBE.

The parameters (mean value and standard deviation) of the normal distribution on
the test sample of 10,000 samples were determined for all reference distances. An example
of the probability density function and cumulative distribution function of the normal
distribution, as well as the empirical functions, are presented in Figure 9a,b, respectively.
Thus, it can be said that the normal distribution largely approximates the distribution of
the analysed system and allows for the reproduction of the system’s operation.

The determined parameters of the distributions describe the data collected at 50 cm
intervals (and for distances above 10 m at 100 cm intervals). Figure 10 shows the parameters
of normal distributions fitted with the collected data at reference distances. To simulate
the operation of the system at other distances, changes in distribution parameters can be
modelled (approximated).
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Figure 10. Normal distribution parameters.

The function which approximates the changes in standard deviation is divided into
subranges, and for each subrange a polynomial is fitted. The following functions for
approximation have been applied: 2nd and 3rd-degree polynomial, linear regression, power
function. The best accuracy was obtained in subranges using the 3rd-degree polynomial.
Fitting the functions (polynomials of at the most third degree) on a subrange allows one to
model the changes at points where the reference measurement was not performed (between
reference distances). For this purpose, local minima have been established along with the
measurements range. The minimum number of measurement points (reference distances)
between successive local minima is used as a parameter limiting the creation of an excessive
number of approximating functions. The minimum number of measurement points is
chosen empirically, and it consists of three points. In the next step, the polynomial is fitted
at the intervals defined by the two successive local minima. In this way, the standard
deviation changes as a function of distance is approximated (see Figure 11). This approach
results in a good approximation of the systems’ accuracy between the reference points.
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The above procedure has to be repeated for the second parameter of the normal
distribution, namely the mean value. The function that approximates the mean in given
distances is expected to be a linear function due to the continuous increase in the distance
between the tag and the anchor at successive measurement points and, thus, reduced signal-
to-noise ratio (SNR). However, it has to be kept in mind that the system error changes
with the distance in an irregular manner (as shown in Figure 9). Therefore, to model the
nonlinear changes in the system’s operation, a parameter other than the mean value of the
distance must be found. The parameter that shows the distance error and can be applied to
reproduce the mean value (based on accurate value) is the MBE. The analysed real system
is characterised by overestimation of the distance. Therefore, the MBE is always positive.

In the same manner as for the standard deviation, to represent the MBE value in
points between successive measurement points, the error change should be modelled.
For this purpose, local minima were also determined with a minimum distance of three
reference distances, and a polynomial of at the most third degree was approximated (see
Figure 12).
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The determined approximating functions and their domains allow for the reconstruc-
tion of the system operation at various distances in LOS conditions.

Similar data analysis has to be performed for measurements of distances under NLOS
conditions. The collected statistical measures on the distance readings are summarised
in Table 4. The influence of a metal obstacle on distance measurement has been reported.
The mean value of the standard deviation (dstd) for all measurements increased to 6.1 cm
(by 217%), the minimum value increased to 1.15 cm (by 11%), and the maximum value
increased to 18 cm (by 594%).

Table 4. Statistical measures of the distance under NLOS conditions.

Reference [cm]
dref

Mean [cm]
dmean

Median [cm]
dmed

STD [cm]
dstd

Min [cm]
dmin

Max [cm]
dmax

|dmean − dmed|
[cm]

50 99.8 100 1.1 96 107 0.2
100 179.4 181 7.9 120 186 1.6
150 225.6 228 5.6 190 234 2.4
200 227.4 230 17.6 196 279 2.6
250 262.3 258 10.9 251 323 4.3
300 309.6 310 1.4 305 315 0.4
350 433.3 433 3.1 375 439 0.3
400 408.4 408 1.4 403 414 0.4
450 511.2 511 10.6 476 538 0.2
500 548.7 547 10.5 518 582 1.7
550 635.2 638 8.6 591 645 2.8
600 602.9 603 1.5 597 609 0.1
650 650.8 651 1.3 646 657 0.2
700 769.5 770 8.9 720 784 0.5
750 824.3 824 1.3 808 829 0.3
800 803.2 803 1.5 798 810 0.2
850 852.3 852 4.5 845 934 0.3
900 898.6 895 8.9 890 940 3.6
950 955.0 955 2.5 950 999 0.0
1000 1009.9 1010 1.9 1003 1026 0.1
1100 1163.0 1163 2.7 1136 1169 0.0
1200 1207.7 1208 1.6 1201 1213 0.3
1300 1348.2 1349 9.2 1319 1372 0.8
1400 1403.6 1399 10.5 1390 1471 4.6
1500 1498.4 1498 1.2 1494 1503 0.4
1600 1660.9 1661 9.8 1626 1677 0.1
1700 1757.3 1757 1.9 1751 1764 0.3
1800 1835.5 1836 14.2 1800 1873 0.5
1900 1901.3 1901 1.4 1896 1907 0.3
2000 2014.9 2015 18.0 1993 2077 0.1

The positioning system error for NLOS conditions has also changed. In terms of the
RMSE, there is an average increase to 35.1 cm (by 164%), the minimum value has decreased
to 1.5 cm (by 43%), and the maximum error value has increased to 85.6 cm (by 300%). Exact
values are listed in Table 5.

The metal obstacle (NLOS conditions) affects the real positioning system’s operation.
The error of the distances determined by the real system is higher by an average of 164%.
The normal distribution parameters (mean value and standard deviation) are calculated
analogically to the procedure under LOS conditions to reflect the system’s operation under
NLOS conditions. Then the changes in error and deviation as a function of distance
are modelled.
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Table 5. Statistical measures of accuracy (distance error) under NLOS conditions.

Reference
[cm] dref

MBE [cm]
dmbe

RMSE
[cm] drmse

STD
[cm] dstd

εmin
[cm]

εmax
[cm]

|ε|min
[cm]

|ε|max
[cm]

50 49.8 49.8 1.1 46 57 46 57
100 79.4 79.8 7.9 20 86 20 86
150 75.6 75.8 5.6 40 84 40 84
200 27.4 32.6 17.6 −4 79 0 79
250 12.3 16.4 10.9 1 73 1 73
300 9.6 9.8 1.4 5 15 5 15
350 83.3 83.3 3.1 25 89 25 89
400 8.4 8.5 1.4 3 14 3 14
450 61.2 62.1 10.6 26 88 26 88
500 48.7 49.8 10.5 18 82 18 82
550 85.2 85.6 8.6 41 95 41 95
600 2.9 3.3 1.5 −3 9 0 9
650 0.8 1.5 1.3 −4 7 0 7
700 69.5 70.1 8.9 20 84 20 84
750 74.3 74.3 1.3 58 79 58 79
800 3.2 3.5 1.5 −2 10 0 10
850 2.3 5.0 4.5 −5 84 0 84
900 −1.4 9.0 8.9 −10 40 0 40
950 5.0 5.5 2.5 0 49 0 49

1000 9.9 10.1 1.9 3 26 3 26
1100 63.0 63.1 2.7 36 69 36 69
1200 7.7 7.9 1.6 1 13 1 13
1300 48.2 49.1 9.2 19 72 19 72
1400 3.6 11.1 10.5 −10 71 0 71
1500 −1.6 2.0 1.2 −6 3 0 6
1600 60.9 61.7 9.8 26 77 26 77
1700 57.3 57.3 1.9 51 64 51 64
1800 35.5 38.3 14.2 0 73 0 73
1900 1.3 1.9 1.4 −4 7 0 7
2000 14.9 23.3 18.0 −7 77 0 77

3. Simulator Description

Data flow in the simulator (presented in Figure 13) is divided into three sections:
determination of the reference path (reference object motion), environment detection
(LOS/NLOS), and distance generation.

Step one: place (indicate) anchors in the fixed positions on the plane. The default
model configuration is created automatically based on the approximated function of MBE
and standard deviation. Step two: define the object’s movement with respect to time,
taking into account the assumptions described in Section 3.1 and using equations of lines
and arc described in Section 3.2. Step three: the reference path points are automatically
calculated using the object motion function described in step two. The reference distances
to anchors (defined in step one) are automatically calculated. Step four: describe obstacles
using linear and nonlinear functions—described in more detail in Section 3.4. Step five: it
is automatically checked whether the anchors are within LOS/NLOS conditions for each
point on the path. Step six: distortion is added (see Section 3.5) to the distances (calculated
in step three) using the appropriate model (some of the distances may be within LOS and
others NLOS conditions, depending on the detected conditions in step five).
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and arcs (the vehicles’ turning radius is limited), as shown in Figure 14. Combining 
straight lines and arcs makes it possible to define various test scenarios (paths of move-
ments) that can be observed in road traffic, especially on junctions. That movement mod-
elling allows for more straightforward adaptation of the virtual scenario in real conditions 
(e.g., by a driver or an autonomous vehicle). Thus, the vehicle motion is modelled by con-
necting the curves together, but the variable trajectory of motion is not the only determi-
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• Acceleration or tangential acceleration for arc (constant or expressed as a function of 

time, which affects the x and y coordinate functions, further considerations include 
the constant acceleration)—a in m/s2; 
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3.1. System Assumptions

The first part of the simulator environment is the description of the test scenario
(i.e., the movement path of a vehicle or an object). The considerations are limited to two-
dimensional spaces. The vehicle’s route (car or RC model) is approximated by straight lines
and arcs (the vehicles’ turning radius is limited), as shown in Figure 14. Combining straight
lines and arcs makes it possible to define various test scenarios (paths of movements) that
can be observed in road traffic, especially on junctions. That movement modelling allows
for more straightforward adaptation of the virtual scenario in real conditions (e.g., by a
driver or an autonomous vehicle). Thus, the vehicle motion is modelled by connecting
the curves together, but the variable trajectory of motion is not the only determinant of
how many curves the road consists of. The division of the path (and thus the motion) into
segments depends on the following parameters:

• Initial position—(x0, y0) in m;
• Initial speed—v0 in m/s;
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• Acceleration or tangential acceleration for arc (constant or expressed as a function of
time, which affects the x and y coordinate functions, further considerations include
the constant acceleration)—a in m/s2;

• The movement direction (as the angle with the positive direction of the X-axis in the
local coordinate system)—α in radians;

• Turning radius—r in m;
• The rotation direction in which the object rotates around an axis (clockwise or

anticlockwise).
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3.2. Motion Description

Curves (lines and arcs) describing the path are presented as a function of time, assum-
ing constant acceleration (a = const).

In the case of lines, using the formula for the displacement in uniformly accelerated
motion (4) and the trigonometric functions (5) and (6), it is possible to determine the
coordinates of an object as a function of time (7) and (8):

s = v0t +
1
2

at2 (4)

sin(α) =
y
s

(5)

cos(α) =
x
s

(6)

x(t) = x0 + cos(α)
(

v0t +
1
2

at2
)

(7)

y(t) = y0 + sin(α)
(

v0t +
1
2

at2
)

, (8)

In the case of arcs, using the formula for the displacement in uniformly accelerated
motion (4), the arc length Formula (9), and the parametric equation of the circle (10), and
the coordinates of an object moving along an arc with a given radius as a function of time
can be obtained (11) and (12):

s = rα (9){
x = a0 + r cos(α)
y = b0 + r sin(α)

(10)

x(t) = a0 + r cos

(
v0t + 1

2 at2

r

)
(11)
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y(t) = b0 + r sin

(
v0t + 1

2 at2

r

)
, (12)

Depending on the point at which the arc connects to the previous segment of the path
(starting point for the current part of the path) and the direction of movement, the angle
should be modified in Formulas (11) and (12). Examples of modifications with an accuracy
of 90◦ are shown in Figure 15a for clockwise movement and Figure 15b for the counter
clockwise movement.
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For example, for the starting point at an angle of 90◦ (1st quarter) and clockwise
motion (see Figure 16), Equation (11) takes the form (13) and Equation (12) takes the
form (14).

x(t) = x0 + r cos

(
π

2
−

v0t + 1
2 at2

r

)
(13)

y(t) = y0 − r + r sin

(
v0t + 1

2 at2

r

)
(14)
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An example of an object path consisting of a straight line and an arc is shown in
Figure 17. The number of points defining the path depends on the time chosen for a single
transmission between two UWB nodes (between tag and chosen anchor).
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3.3. UWB Distance Estimation

Euclidean distances between the tag and the anchors (15) are determined for each
point on the reference path, where (xAk , yAk ) are coordinates of the k-th anchor and (xT , yT)
are coordinates of the tag. The calculated distances are exact values and can be used as a
ground truth for further testing of the developed algorithms.

dk,i =

√(
xAk − xT

)2
+
(
yAk − yT

)2 (15)

Based on the calculated measures and developed models describing changes in MBE
and standard deviation (σ) of the real UWB positioning system for LOS and NLOS condi-
tions, distortion is added to the exact value (16):

d′k,i = dk,i + MBEdk,i
+ Rσdk,i

(16)

where dk,i is the distance between k-th anchor and i-th position on the path, MBEdk,i
is

MBE suitable for dk,i , σdk,i
is the standard deviation suitable for dk,i, R is a standard normal

random variable.
All determined reference distances between the tag and the anchor are modified by

adding distortion according to (16) in the final phase of the simulator operation. The real
UWB positioning system uses TWR (two way ranging) to obtain the distance between a
tag and an anchor. If the tag is in motion, the TWR method measures the time (afterwards
the time is converted into the distance) three times and presents the average time (thus,
the average distance) as a result. The accuracy is good enough for static and low speed
objects, where the difference in position between successive measurements is small. If the
object is moving with greater speed, the TWR method itself generates lower accuracy since
the following distances (measured at the device level) differ significantly. The resulting
distance is an average and it refers to distance (ranges) from the past (earlier position on
the path). In other words, when an object is moving, the delay (time needed for ranging) on
the UWB positioning system indicates past position. The simulator has been applying the
same mechanism, assuming simulator level time, e.g., 1 ms per one data exchange between
a tag and an anchor (this time can be configured and adjusted to requirements). Hence, to
obtain the average distance between a single anchor and a tag, an overall 3 ms are needed.
If the system has four anchors, a single data packet (with distances to 4 anchors) is made
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available every 12 ms. On the simulator level, three distances for every 12 ms are generated
based on the objects’ speed and path. The shift between distances (per single ranging) is
calculated based on the current speed (configured time interval between three distances on
the system level is constant, i.e., 1 ms) and defined path.

The distances are prepared in such a way that they can be treated as distances from
the real system and may be applied in further processing. The mean and deviation for the
measured and simulated distances are presented in Table 6.

Table 6. Comparison of real data with simulated data.

Reference [cm] dref
Measured Distances [cm] Simulated Distances [cm] Difference

dmean dstd dmean dstd dmean dstd

LOS
1 108.5 2.4 108.5 2.3 0.0% 3.1%
2 209.2 2.3 209.2 2.3 0.0% 0.6%
3 305.2 2.1 307.0 2.1 0.6% 0.8%
5 513.5 2.2 513.1 2.3 0.1% 5.7%
7 707.0 1.4 707.0 1.4 0.0% 2.3%

10 1018.5 2.4 1017.8 2.4 0.1% 2.2%
13 1311.2 1.0 1309.8 1.0 0.1% 1.2%
16 1621.3 1.6 1621.3 1.7 0.0% 3.6%
19 1919.3 1.5 1919.3 1.5 0.0% 0.0%

NLOS
1 179.4 7.9 182.1 7.9 1.5% 0.8%
2 227.4 17.6 235.6 17.4 3.6% 0.8%
3 309.6 1.4 309.7 1.4 0.0% 0.8%
5 548.7 10.5 548.7 11.1 0.0% 5.8%
7 769.5 8.9 770.5 8.9 0.1% 0.8%

10 1009.9 1.9 1016.8 1.9 0.7% 0.8%
13 1348.2 9.2 1348.3 9.1 0.0% 0.8%
16 1660.9 9.8 1658.5 9.7 0.1% 0.8%
19 1901.3 1.4 1901.3 1.4 0.0% 0.8%

3.4. Description of Obstacles

Introducing obstacles (not moving objects) in the simulator environment is an addi-
tional feature that gives much more possibilities of test scenarios. Other simulators do not
offer LOS/NLOS detection with different ranging accuracy for them. The construction of
an obstacle is based on its description with linear or nonlinear functions on the 2D plane,
depending on the shape. For example, the set of functions describing one obstacle that
should describe a bounded set is presented in Figure 18. Thus, the simulated transmission
(distance) can be either in LOS or NLOS conditions depending on the current position of
an object with respect to an anchor. Hence, each position on the track must be checked,
whether the straight line passing through the tag and the chosen anchor cross the obstacle.
In other words, it has been checked whether the line has at least one common point with
the obstacle.

When an obstacle is described with functions, a system of inequalities is formed. It
is possible to solve a system of inequalities and designate a group of possible solutions
(a set of values). However, the purpose of this task is to determine whether the currently
measured distance is determined under LOS or NLOS conditions. Therefore, the exact
group of solutions is not needed, but only information if any solution does exist. This task
can be treated as an optimisation problem, limiting the solution to examining whether there
is any solution—the point where a line (passing through the tag and the chosen anchor)
intersects the obstacle. If the solution is not found, it means that the distance is determined
in LOS conditions, whereas if the solution is found, it means that the distance is determined
in NLOS conditions.
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Iterative algorithms have been applied to find the solution (to check if the connection
between a tag and an anchor is under LOS or NLOS conditions). Their operation time
depends on the chosen parameters (e.g., the maximum number of iterations, the minimum
step value, the minimum change of the function value, etc.). The number of tests performed
(detecting LOS/NLOS conditions) depends on the number of points on the path, the
number of anchors, and the obstacles. Apart from the selection of the algorithm’s stop
parameters, the calculations can also be paralleled by dividing the points on the path
into groups to speed up the calculations. For example, for one obstacle, four anchors,
and one tag, the simulation lasts about seven hours (on a PC with a six-core processor)
for about 10,000 points on the reference path (i.e., making 1× 4× 1× 10, 000 = 40, 000
checks). The time of simulation increases linearly with the number of checks performed
(e.g., for two obstacles, four anchors, and one tag and for 10,000 points on the path the
simulator performs 2× 4× 1× 10, 000 = 80, 000 checks and it lasts about 14 h). The time
of simulation can be reduced by using grid mapping—it divides the test stand into cells
(resulting in fewer checks). It is possible to generate an occupancy grid with adjustable cell
size. It may reduce the simulation time significantly.

3.5. Simulation of Distances

It is possible to generate data from the UWB system with the use of the designed and
created simulator in laboratory conditions based on: the data of the error values; standard
deviations (for both environments); the description of the environment (with or without
obstacles); and a path shape (see Figure 19). The red line shows the reference track and
the circles represent distances between each anchor and a sample point on the track (tag).
The obtained distances allow to determine the object’s position in the further stages of data
analysis and to correct them.

An exemplary path consisting of three segments with parameters is presented in
Figure 20. The exemplary path contains three segments (two linear segments and an arc).
The first linear segment is defined by a timeslot from t0 = 0 s up to t1 = 2 s, start position of
x0 = −2.5 m, y0 = 9 m, an acceleration 5 m/s2, the initial velocity of 0 m/s and the direction
of the movement (as the angle with the positive direction of the X-axis) equals 0 rad. The
second segment (an arc) is defined by the timeslot from t1 = 2 s up to t2 = t1 + 1.2566 s,
the initial position is the last position from the previous segment, the acceleration equals
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0 m/s2, the initial velocity equals 10 m/s (it is a continuous value), and the arc radius
is 4 m. The third segment is defined by the line within timeslot from t2 = 3.2566 s up to
t3 = t2 + 0.83 s, the initial position is the last position from the previous segment (the arc
segment), the acceleration equals 5 m/s2, the initial velocity 10 m/s, and the direction of
the movement equals 3.1916 rad. The distances for the trilateration process are available
for every data packet (12 times system interval). The distance between the tag to the
four nearest anchors and the time shift of an object is included. Simulator output, i.e.,
a path calculated (by trilateration algorithm) using generated distances, can be seen in
Figure 21. The data obtained may be further utilized for various purposes. Still, the most
important is to have a reference path and a real UWB system simulator described by the
proposed model.
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4. Conclusions

The designed and created UWB 2D positioning system simulator can be applied to
simulate the movement of objects such as AGVs, vehicles, cars, and RC models and has
numerous advantages. It allows for defining a customised path of an object, taking into
account initial velocity, acceleration, and type of path (line or arc). A number of the required
positioning devices (anchors) that can be placed on the plane are flexible. The simulator
has a unique feature in the form of obstacles description. The user defines the number
of obstacles, and they can be placed in any place on the plane. It leads to another great
advantage of the simulator that is taking into consideration LOS and NLOS conditions.

There are no reliable UWB simulators that can be applied for objects in motion, taking
into account the changing accuracy of the system along with the distance and LOS/NLOS
conditions. The presented simulator has been designed and its properties have a strong
relationship to the real UWB system. Such an approach allows for further data analysis and
it does not require repetitive test scenarios in the field. The presented simulator allows to
emulate the real positioning system for further evaluation of various algorithms of raw data
processing or trilateration. The presented analysis of data from the UWB system shows the
error variability along with the distance and the impact of the obstacle on the measured
distances. For this reason, the simulator uses set of functions to generate distances and is
equipped with the possibility to add obstacles and detection of LOS/NLOS conditions.

The construction of the simulator based on modelled changes in distribution parame-
ters allows for quick adaptation of the simulator to another UWB system (another model
or produced by another manufacturer). The simulation time can be a limitation because of
the LOS/NLOS detection module (time of simulation increases with a number of reference
points and obstacles).

Conducting multiple tests in real conditions (in the field) is time consuming. The
simulator makes it easy to describe various test scenarios and generate UWB data according
to a defined path. The presented description (of obstacle and motion) allows for a relatively
simple transfer of a virtual (simulated) test scenario to a real test stand which simplifies the
comparison of results. A particular advantage of the simulator is the accurate ground truth
(i.e., exact distances between nodes) which is necessary when preparing algorithms that
should increase the accuracy of the determined position and which is extremely difficult to
find (accuracy of the millimetres order and high sampling frequency).
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