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ABSTRACT

Introduction: In the current COVID-19 pan-
demic, clinicians require a manageable set of
decisive parameters that can be used to
(i) rapidly identify SARS-CoV-2 positive
patients, (ii) identify patients with a high risk of
a fatal outcome on hospital admission, and (iii)

recognize longitudinal warning signs of a pos-
sible fatal outcome.
Methods: This comparative study was per-
formed in 515 patients in the Maria
Skłodowska-Curie Specialty Voivodeship
Hospital in Zgierz, Poland. The study groups
comprised 314 patients with COVID-like
symptoms who tested negative and 201 patients
who tested positive for SARS-CoV-2 infection; of
the latter, 72 patients with COVID-19 died and
129 were released from hospital. Data on which
we trained several machine learning (ML)
models included clinical findings on admission
and during hospitalization, symptoms, epi-
demiological risk, and reported comorbidities
and medications.
Results: We identified a set of eight on-admis-
sion parameters: white blood cells, antibody-
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synthesizing lymphocytes, ratios of
basophils/lymphocytes, platelets/neutrophils,
and monocytes/lymphocytes, procalcitonin,
creatinine, and C-reactive protein. The medical
decision tree built using these parameters dif-
ferentiated between SARS-CoV-2 positive and
negative patients with up to 90–100% accuracy.
Patients with COVID-19 who on hospital
admission were older, had higher procalcitonin,
C-reactive protein, and troponin I levels toge-
ther with lower hemoglobin and platelets/neu-
trophils ratio were found to be at highest risk of
death from COVID-19. Furthermore, we iden-
tified longitudinal patterns in C-reactive pro-
tein, white blood cells, and D dimer that
predicted the disease outcome.
Conclusions: Our study provides sets of easily
obtainable parameters that allow one to assess
the status of a patient with SARS-CoV-2 infec-
tion, and the risk of a fatal disease outcome on
hospital admission and during the course of the
disease.

Keywords: COVID-19 prognosis; Laboratory
parameters; Machine learning; Predictive
features; SARS-CoV-2 diagnosis

Key Summary Points

Why carry out this study?

In the clinical setting it is important to
rapidly identify SARS-CoV-2 positive
patients, and to provide patients with
COVID-19 with appropriate medical
support by monitoring parameters that
are associated with poor disease outcomes.

We asked whether concise subsets of
clinical parameters can be identified to
diagnose SARS-CoV-2 positive patients, to
identify patients with COVID-19 with a
high risk of a fatal outcome on admission
to hospital, and to recognize longitudinal
parameter patterns as warning signs of a
possible fatal COVID-19 outcome during
hospitalization.

What was learned from the study?

With a medical decision tree that was built
using machine learning-selected
diagnostic laboratory parameters, SARS-
CoV-2 positive and negative patients can
be distinguished on the basis of the full
blood count and procalcitonin only.

With the use of machine learning we
determined that older age, higher
procalcitonin, C-reactive protein (CRP),
and troponin I as well as lower
hemoglobin and platelets/neutrophils
ratio were the strongest predictors of a
fatal outcome of COVID-19 on admission
to hospital, whereas the strongest
predictors in the longitudinal parameter
patterns measured during hospitalization
were CRP, white blood cells, and
D dimers.

The identified subsets of parameters will
help to quickly identify and isolate SARS-
CoV-2 positive patients, and will assist in
the adoption and adjustment of effective
treatment for patients with COVID-19
with warning signs of a fatal disease
outcome in the clinical setting.

J. Solek
Department of Biostatistics and Translational
Medicine, Medical University of Lodz, 90-419 Lodz,
Poland

J. Nowicki
Department of Paediatrics, Newborn Pathology and
Bone Metabolic Diseases, Medical University of
Lodz, 90-419 Lodz, Poland

M. Dobrogowski
Maria Sklodowska-Curie Specialty Voivodeship
Hospital, 95-100 Zgierz, Poland

M. Sokolowska
Christine Kühne – Center for Allergy Research and
Education (CK-CARE), 7265 Davos, Switzerland

Infect Dis Ther



INTRODUCTION

As the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) began to spread world-
wide at the beginning of 2020, causing the
outbreak of coronavirus disease 2019 (COVID-
19), individual countries started to reorganize
their respective healthcare systems. The Polish
government as a specific example created a net-
work of 19 hospitals dedicated to patients with
confirmed or suspected infection with SARS-
CoV-2. The main idea was to provide those
patients with the best possible medical services,
while separating them from patients without
COVID-19. Infection with SARS-CoV-2 results in
different clinical presentations, some of which
can require hospitalization and advanced man-
agement. The health burden of the disease and
especially the high number of concurrent
patients [1] constitute a serious problem for
healthcare systems. In the situation of emerging
SARS-CoV-2 waves and shortage of resources, it is
crucial to find a simple and cost-effective solu-
tion to identify infected patients as early as pos-
sible, and to closely monitor those laboratory
parameters that are most strongly associated
with the worst disease outcomes. The aim of this
study was therefore to use machine learning (ML)
to identify a subset of specific features that will
assist with the diagnosis of a SARS-CoV-2 infec-
tion and the prediction of COVID-19 course and
outcome based solely on the standard clinical
and laboratory data collected during hospital-
ization. This could provide medical staff with
(i) priority testing approaches on admission to
hospital, (ii) initial predictors of a fatal COVID-19
outcome, and (iii) clear warning signs of disease
progression associated with a fatal outcome
during hospitalization.

The reliable and widely accepted diagnostic
tools of an acute infection with SARS-CoV-2
remain PCR swabs and, although less sensitive,
antigen rapid diagnostic tests (Ag-RDTs) [2, 3],
which became widely available in spring 2021.
While Ag-RDTs results are available at the point-
of-care in 15–30 min, PCR testing is more time-
consuming and takes at least 2–3 h, but often
much longer to be ready. Since RT-PCR and Ag-
RDTs were developed, less efforts have been

dedicated to predicting SARS-CoV-2 positivity on
the basis of patient reports of symptoms and
medical history, or on standard laboratory values
on admission to hospital. However, the rapid
identification of patients who are most likely
infected with SARS-CoV-2 on the basis of diag-
nostic features is important, especially in low-
and middle-income countries [4, 5], or in the
situation of an excess of hospitalized patients
with a COVID-19-like clinical presentation. In
addition, to optimize care for patients with
COVID-19 and the highest risk of a negative
disease outcome, it would be beneficial if a set of
standard laboratory parameters could be used as
an early warning sign. So far, several standard
laboratory parameters have been consistently
linked with the most severe COVID-19 outcomes
including C-reactive protein (CRP), D dimer
(DD), various complete blood count (CBC)
abnormalities and many others, such as comor-
bidities, patient’s demographics, and physical
examination factors [6–10]. However, given the
high number of reported features and at times
contradictory information, it has become
impossible to identify the most reliable set of
significant features that could serve as strong
predictors of fatal outcomes.

Therefore, artificial intelligence (AI) approa-
ches are increasingly implemented to assist with
clinical assessment in order to diagnose infec-
tions in a timely manner, to predict disease out-
comes and response to treatment, and to manage
different aspects of pandemic necessities [11, 12].
In reviews on AI models for COVID-19, the fea-
tures predicting the diagnosis frequently inclu-
ded flu-like symptoms, CRP, white blood cells
(WBC), lymphocytes (LYMPH), and imaging-
derived features. Predictive features for disease
course and outcome were most often vital signs,
comorbidities, CRP, LYMPH, lactate dehydroge-
nase (LDH), and imaging-derived features. Yet,
the predictive performance of almost all models
was too optimistic as they had a high risk of bias
due to model overfitting and unclear reporting
[13, 14]. Common limitations in modeling
approaches limiting their predictive capacity are
small sets of parameters, a small sample size,
unclear exclusion criteria for participants, lim-
ited selection of ML algorithms, missing data on
predictors and outcomes, subjective or time-
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dependent outcomes, and laboratory measure-
ments taken at only one time point.

Hence, we aimed to implement ML into clin-
ical reasoning by reducing the large number of
potential features to small and highly predictive
feature subsets. To minimize the shortcomings of
many previous ML approaches, we simultane-
ously included a more comprehensive feature
space through inclusion of different types of
parameters previously shown to be predictive,
such as blood cell counts, other laboratory mea-
surements, reported comorbidities, and medica-
tions prior to hospitalization. Additionally, we
obtained longitudinal measurements of labora-
tory parameters taken at different time points
over the course of the disease to monitor how the
dynamic changes of these features impact the
clinical outcome, which would ultimately enable
physicians to adjust the treatment accordingly.
Being aware of a rather conservative approach
amongst clinicians towards new concepts, we
created a decision tree using ML to support deci-
sion-making in everyday practice and summa-
rized the results of the ML approaches into small
consensus sets of highly predictive features.

METHODS

Patient Data Collection

The project was performed in accordance with
the Declaration of Helsinki [15], and was accepted
by the Ethical Committee of Medical University
of Lodz, Poland (Nr. RNN/126/20/KE). The
patients gave informed consent for participation
in this study. The comparative study included
515 patients hospitalized in the Maria
Skłodowska-Curie Specialty Voivodeship Hospi-
tal in Zgierz, Poland, between March and June
2020 in the first wave of the COVID-19 pandemic
caused by the SARS-CoV-2 wild-type strain. The
analyses included patients with PCR-confirmed
SARS-CoV-2 infection (n = 201), who were hos-
pitalized subsequently in the settings of COVID-
19 care and either survived (n = 129) or died
(n = 72), and patients admitted to the COVID-19
hospital with symptoms resembling COVID-19
who eventually tested negative for SARS-CoV-2
infection (n = 314), and were transferred to non-

COVID-19 hospitals or discharged home. The
outcome definition of SARS-CoV-2 positive and
negative patients was based on RT-PCR results,
and that of COVID-19 survival was discharge
from hospital after a negative RT-PCR test. Clin-
ical and laboratory data included clinical findings
on admission, symptoms prior to hospitalization,
epidemiological risk, comorbidities, and reported
medications. The laboratory parameters were
assessed at the day of admission to hospital and at
several time points during the course of the dis-
ease. The STROBE guidelines [16] were applied
regarding study design, patient recruitment, and
reporting of observational research.

Laboratory Measurements

Nasal swabs were collected from all patients on
admission to hospital. RNA was then isolated and
RT-PCR tests were performed using the
2019-nCoV Triplex RT-qPCR (Vazyme, Nanjing,
China) or the 2019-nCoV Bosphpore Novel
Coronavirus (Anatolia Geneworks, Istanbul, Tur-
key) detection kits. The time from collection of a
patient’s swabs to receiving PCR results was
between 8and 24 h. The laboratorymeasurements
were consistent with a standard clinical approach
considering the individual situationof thepatient.
A set of features was checked amongst almost all
the patients and based on the guidelines valid at
that time. Analyses of the full blood and serum
samples taken on admission to hospital and reg-
ularly throughout hospitalization were performed
in the Central Diagnostic Laboratory of the Maria
Sklodowska-Curie Specialty Voivodeship Hospital
(Zgierz, Poland) using the following systems: Sys-
mex XN-1000 (Sysmex Europe GmbH, Norderst-
edt, Germany) for the CBC parameters, ACL Top
350 (Werfen, Warsaw, Poland) for the coagulation
parameters, and Abbott Alinity (Abbott Laborato-
ries, Warsaw, Poland) for the biochemistry
parameters. The time from blood collection to
receiving the results was about 60–90 min.

Machine Learning Approaches

The detailed description on the ML approaches
is included in the appendix in the supplemen-
tary material.
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Data Pre-processing
Data were checked for consistency with removal
of characters in numerical fields. When a
numeric value was preceded by a ‘‘\’’ sign, the
entry was replaced with the mean between 0
and that value. From the existing information,
the feature ratios NEU/LYMPH, MON/LYMPH,
EOS/LYMPH, PLT/LYMPH, BASO/LYMPH, and
PLT/NEU were calculated and included in the
analyses, while excluding the following original
features: NEU, EOS, MON, platelets (PLT),
basophils (BASO), and LYMPH. Three extreme
outlier values were removed from data on the
subgroup of SARS-CoV-2 positive patients.

Model Building
The following ML algorithms were used for the
task of classification: logistic regression (Logis-
ticRegression), k-nearest neighbor (KNeigh-
borsClassifier), random forest
(RandomForestClassifier), AdaBoost
(AdaBoostClassifier), bagging (BaggingClassi-
fier), gradient boosting (GradientBoostingClas-
sifier), and support vector machines (support
vector machine classifier, SVC). After a train-
ing–test split of size 75:25 was applied, the
training data were passed to the pipeline using
Python scikit packages. In the pipeline used to
separate SARS-CoV-2 positive from negative
patients, categorical features are encoded as an
integer array and missing values are imputed
with univariate feature importance using the
‘‘most frequent’’ statistics of each respective col-
umn. Numerical features are log-transformed,
missing values are imputed using the k-nearest
neighbors method, and the features are trans-
formed to the default range of minimum 0 and
maximum 1. The pipeline used for predicting the
outcome of patients with COVID-19 in addition
uses a feature selector to remove low-variance
features with threshold 0.95 9 (1 - 0.95) for
numerical and categorical values. For the longi-
tudinal laboratory parameters, the symbolic
aggregate approximation (SAX) pipeline was
used, which in a first step uses the SAX Trans-
former package to reduce a variable number of
time-series laboratory parameters over the course
of the disease into a single parameter reflecting
the time series [17]. The single parameter used
here is a string of length n = 2 where the first

symbol represents the first half of the time series
and the second symbol the second half, and
which contains a = 2 (a, B) different symbols to
discretize the laboratory parameters where a
denotes low levels and B high levels. This results
in the four SAX-coded clusters aa, aB, Ba, and BB.
The parameter choice was based on the decision
to create the minimum number of SAX clusters
that allowed for observing differences in the
mean laboratory values between deceased and
surviving patients in each cluster upon visual
inspection of the plots. After discretization of the
longitudinal parameter patterns, missing values
were imputed with univariate feature impor-
tance using the ‘‘constant’’ strategy with fill value
‘‘missing’’, followed by encoding the categorical
features as a one-hot numeric array omitting
category ‘‘missing’’. The procedure to find the
best model was to apply a training–test split of
75:25 and to perform a grid search to find the best
hyperparameters with a fivefold cross-validation
with accuracy as score value. The best model for
each algorithm was considered to be the estima-
tor with the best mean accuracy on the held-out
cross-validation split, and was afterwards refitted
on all training data. The refitted models were
then run on the so far unseen test data using the
same estimator parameters including pre-pro-
cessing transformations and the distribution
statistics learned from the training data to
achieve the test accuracy score. This was repeated
15 times with random training–test splits and the
best hyperparameter set for each algorithm is
taken from the respective model achieving the
highest test accuracy score in these 15 runs. The
best model was then used to calculate feature
importance on the training and test data toge-
ther using the Sequential Feature Selector
method with the parameters to select 15 features,
to add features to form a feature subset in a greedy
fashion, to use fivefold cross-validation, and to
use accuracy as scoring method. The 10 highest
scoring features of each algorithm were then
assigned with a number of 1–10 to calculate the
median feature importance.

Survival Analysis
Survival analysis was based on the laboratory
measurements on admission to hospital and
patient information on comorbidities and
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reported medications. Data pre-processing exclu-
ded features with more than 40% missing values
and three patients without initial laboratory
measurements. Comorbidities with less than 5%
observations and pre-medication categories were
also excluded. Missing values were imputed using
the Multiple Imputation by Chained Equa-
tions (MICE) method in the Python implemen-
tation miceforest. To perform the survival
analysis, the following ML algorithms were used:
random survival forest with an ensemble of tree-
based learners (RandomForestSurvival), gradient
boosting with a regression tree base learner (Gra-
dientBoostingSurvivalAnalysis), and the Cox
proportional hazards model (CoxPHSurvivalA-
nalysis) from the Python scikit-survival package.
Best estimator, hyperparameter optimization,
and cross-validation were performed in a
sequential manner using a common pipeline. The
accuracy of the decision tree to separate SARS-
CoV-2 negative from positive patients was based
on the accuracy scores obtained during the ten-
fold cross-validation procedure. Feature impor-
tance was calculated using the Permutation
Feature Importance method. Best models were
determined by the highest median concordance
score during the tenfold cross-validation proce-
dure. Using the features in the best-performing
ten models, we determined feature importance by
calculating the mean weight of the features in all
of the ten models, and the feature ranking by
taking the median of the rankings in ten best
models.

RESULTS

SARS-CoV-2 Positive and Negative Patients
Did Not Differ Markedly in Demographic
Features, Symptoms, and Comorbidities
on Admission to Hospital

Clinical and laboratory data were retrieved from
the patients’ database. To reduce matrix spar-
sity, the comorbidities and self-reported medi-
cation features were combined into broader
categories (appendix). Features that still affected
less than 5% of patients were excluded from
further analyses. As some features were found to
have an imbalanced fraction of missing values

for SARS-CoV-2 positive and negative patients,
features with more than 40% missing values in
any of the groups were excluded from further
analyses (appendix, Fig. S1 in the supplemen-
tary material).

Table 1 Statistical test for differences in patient charac-
teristics and symptoms on admission to hospital or in the
week preceding hospital admission between patients that
tested positive or negative for an infection with SARS-
CoV-2

SARS-
CoV-2 (1)

SARS-
CoV-2 (2)

p value

N = 201 N = 314

Demographics

Female 99 (49.3%) 139 (44.3%) 0.88a

Male 102 (50.8%) 175 (55.7%) 0.15a

Age [years] (IQR) 70 (57–80) 69 (56–82) 0.65b

Symptoms on admission

Oxygen saturation

[%]

94 (90–97) 95 (91–97) 0.021b

Body

temp.\ 37 �C
130/194 173/306 0.012a

Body temp.

37–38 �C
44/194 92/306 0.97a

Body

temp.[ 38 �C
20/195 39/305 0.84a

Symptoms 1 week prior to hospitalization

Abdominal pain 14/173 26/299 0.65a

Chest pain 17/172 21/298 0.18a

Cough 53/172 64/298 0.017a

Deterioration 7/172 36/299 1a

Dyspnea 66/173 142/298 0.98a

Reduced physical

activity

41/172 56/299 0.12a

Vomiting 4/172 24/299 1a

For the p values, the applied statistical test is indicated by
the superscript letter: aHypergeometric test;
bKruskal–Wallis rank sum test
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Patients admitted to hospital who tested
positive for infection with SARS-CoV-2 had a
similar sex and age distribution as SARS-CoV-2
negative patients (Table 1). They had direct
contacts with confirmed SARS-CoV-2 positive
persons more frequently, and residents of
health facilities or nursing homes were dispro-
portionately more often infected with SARS-
CoV-2 (Table S1 in the supplementary material).
On admission, oxygen saturation was slightly

lower in SARS-CoV-2 positive compared to
negative patients, and a bigger proportion of
positive patients had body temperature below
37 �C. On admission to hospital, patients
reported symptoms in the week prior to hospi-
talization, and disclosed information on regu-
larly taken medication, and perceived
comorbidities. The only symptom that was
reported by a considerable number of patients
and over-represented in the SARS-CoV-2

Table 2 Laboratory parameters for all patients, and separately for SARS-CoV-2 positive and negative patients

Clinical parameter All SARS-CoV-2 (1) SARS-CoV-2 (2) p value
Median (IQR) Median (IQR) Median (IQR)

WBC [103/ll] 10.3 (7.1–14.3) 7.25 (5.48–11.0) 12.1 (8.93–16.2) 2.20E- 16

NEU [103/ll] 7.78 (4.84–11.5) 4.89 (3.38–8.15) 9.74 (6.46–14.0) 2.20E- 16

NEU/LYMPH [ratio] 6.96 (3.48–12.7) 4.1 (2.25–7.39) 9.18 (5.33–15.8) 2.20E- 16

PLT/NEU [ratio] 28.5 (18.2–45.6) 41.9 (28.8–57.6) 23 (14.6–33.4) 2.20E- 16

BASO/LYMPH [ratio] 0.024 (0.014–0.043) 0.016 (0.011–0.027) 0.031 (0.02–0.05) 2.20E- 16

MON/LYMPH [ratio] 0.58 (0.37–0.98) 0.43 (0.3–0.63) 0.76 (0.43–1.22) 1.09E- 13

BASO [103/ll] 0.03 (0.02–0.05) 0.02 (0.01–0.03) 0.03 (0.02–0.05) 3.54E- 12

AS-LYMPH [103/ll] 0.0 (0.0–0.0) 0.0 (0.0–0.03) 0.0 (0.0–0.0) 3.19E- 11

MON [103/ll] 0.73 (0.45–1.02) 0.57 (0.38–0.83) 0.82 (0.57–1.16) 9.24E- 11

PCT [lg/ml] 0.16 (0.04–0.81) 0.09 (0.04–0.31) 0.31 (0.06–2.06) 3.50E- 09

PT [s] 13.9 (12.7–16.1) 13.3 (12.3–14.8) 14.5 (13–17) 4.00E- 07

TnI [ng/ml] 0.019 (0.06–0.065) 0.011 (0.04–0.043) 0.024 (0.008–0.09) 5.60E- 06

CK-MB [lg/ml] 1.3 (0.7–2.9) 1.1 (0.6–2.1) 1.4 (0.8–3.1) 3.40E- 04

LYMPH-RE [103/ll] 0.07 (0.04–0.11) 0.08 (0.05–0.11) 0.06 (0.03–0.1) 4.20E- 04

DD [lg/ml] 1.42 (0.65–3.54) 1.06 (0.57–2.46) 1.74 (0.8–5.09) 2.50E- 03

PLT/LYMPH [ratio] 187.5 (126.3–279.7) 171.4 (113.8–242.1) 205.4 (131.9–317.2) 2.74E- 03

NEU-RE [SI] 154.9 (151.5–158.4) 155.3 (152.1–158.8) 154.2 (150.4–157.7) 6.30E- 03

LYMPH [103/ll] 1.14 (0.75–1.7) 1.22 (0.9–1.72) 1.05 (0.69–1.7) 8.40E- 03

CK [U/l] 106 (47.5–259) 81.5 (39–231) 109 (73–287) 0.015

CRP [mg/dl] 5 (1–13.5) 4.3 (0.835–9.92) 5.56 (1.19–15.1) 0.016

The values for the SARS-CoV-2 positive and negative patients were tested for significant differences using the
Kruskal–Wallis statistical test, and the laboratory parameters with p values\ 0.05 are listed
AS-LYMPH antibody-synthesizing lymphocytes, BASO basophils, CK creatine kinase, CK-MB creatine kinase-myocardial
band, CRP C-reactive protein, DD D dimer, EOS eosinophils, IQR interquartile range, LYMPH lymphocytes, MON
monocytes, NEU neutrophils, NEU-RE neutrophil reactivity, PCT procalcitonin, PLT platelets, PT prothrombin time, TnI
troponin I, WBC white blood cells
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positive group was cough (Table 1). Comor-
bidities that were significantly more prevalent
in SARS-CoV-2 positive patients were hyper-
tension and dementia (Table S2 in the supple-
mentary material), yet dementia might be
associated with its general high prevalence in
healthcare facilities and nursing homes. Medi-
cation for cardiovascular diseases was the only
reported medication category with a significant
difference between SARS-CoV-2 positive and
negative patients (Table S3 in the supplemen-
tary material), reflecting a higher prevalence of
hypertension in the SARS-CoV-2 positive group.
As patients who tested negative for SARS-CoV-2
were either transported to other hospitals or
discharged home, the duration of hospitaliza-
tion, death, and ICU data between COVID-19
positive and negative patients cannot be com-
pared. In summary, SARS-CoV-2 positive and
negative patients had rather similar demo-
graphics, clinical presentation, and medical
history on admission to hospital. Altogether,
this points to the rather limited value of
symptoms, demographics, and self-reported
data in predicting SARS-CoV-2 positivity on
admission to hospital and calls for the more
objective measurements to build the prediction
model.

Machine Learning Accurately
Distinguished SARS-CoV-2 Positive
from Negative Patients, Based on Full
Blood Count and Procalcitonin Only

On the basis of the findings above, we aimed to
assess the possibility of predicting SARS-CoV-2
infection according to the standard laboratory
parameters acquired on admission to hospital,
before PCR results become available. On the
basis of a classical statistical analysis, 20
parameters reached statistical significance with
a p value smaller than 0.05 (Table 2). Interest-
ingly, differences in WBC and NEU counts, and
in the ratios of different leukocyte cells and
platelet counts between SARS-CoV-2 positive
and negative patients reached more significant
differences than any single inflammatory mar-
ker alone. However, the high number of signif-
icantly different parameters hinders their

interpretation in everyday practice and does not
provide us with additional clinical
understanding.

Therefore, to better distinguish SARS-CoV-2
positive from negative patients, we used the ML
algorithms logistic regression, k-nearest neigh-
bor, random forest, AdaBoost, bagging, gradient
boosting, and SVC. Using initial simulation
experiments, we evaluated the optimal split
into training and test data. We found that a
test–training split size of 25:75 leads to the best
trade-off between minimizing the difference
between accuracies on the training and cross-
validation data, and maximizing test accuracy
(appendix, Fig. S2 in the supplementary mate-
rial). This 25:75 test–training split was done 15
times, and the seven algorithms were run on
this data set (Table S4 in the supplementary
material). The classifier metric here was the
accuracy score on distinguishing SARS-CoV-2
positive and negative patients. The performance
of the different models was evaluated and gave a
mean test accuracy of 0.76. The gradient
boosting algorithm achieved the highest accu-
racy (Table S4 in the supplementary material).
To overcome the rather low overlap between
sets of the most important features given out by

cFig. 1 Decisive laboratory parameters to distinguish
SARS-CoV-2 positive (orange) from negative (blue)
patients and the medical decision tree built from these
features. Box plots of the decisive laboratory parameters
that were identified with ML on the basis of their median
rank importance where the boxes represent the median
and interquartile range of the respective feature in SARS-
CoV-2 negative and positive patients at hospital admission
(a). The decision tree built from these features shows at
every decision node a histogram with the distribution of
the parameter values and an arrow that indicates the
decision threshold values with N denoting the number of
samples used to compute the split point. For the pie charts,
the diameter is proportional to the number of samples in
that leaf, and N denotes the number of samples used to
compute the predicted class in the training data set. The
percentages given below the pie charts indicate the
probabilities of identifying SARS-CoV-2 positive or
negative patients within a given decision pathway that
were calculated according to a binary prediction problem
with two classes (b)
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each algorithm, we calculated a median feature
importance over all ML algorithms (Table S5 in
the supplementary material). It enabled us to
determine the decisive laboratory parameters:
WBC, antibody-synthesizing lymphocytes (AS-
LYMPH), procalcitonin (PCT), basophils/lym-
phocytes ratio (BASO/LYMPH), platelets/neu-
trophils ratio (PLT/NEU),
monocytes/lymphocytes ratio (MON/LYMPH),
creatinine (CREAT), and CRP (Fig. 1a).

Next, we created a decision tree using these
decisive laboratory parameters to evaluate
patients with a suspected SARS-CoV-2 infection,
providing an additional diagnostic tool before
the PCR test results are available (Fig. 1b).
Patients with a WBC count lower than or equal
to 6.9 9 103 were mostly negative, if the anti-
body-synthesizing lymphocytes count was
higher than 0.01 9 103. If the AS-LYMPH count
was lower than or equal to 0.01 9 103, most
patients were still negative if the MON/LYMPH
was lower than or equal to 0.89. The majority of
patients with WBC count higher than 6.9 9 103

were positive, especially when the MON/
LYMPH was lower than 1.79 and combined with
PCT levels higher than 1.9, or when the MON/
LYMPH was higher than 1.79 and combined
with the PLT/NEU lower than 18. The decision
tree therefore reached an accuracy of up to
90–100%. In summary, mainly the counts of
various blood cells and their ratios and the
levels of PCT can provide an estimate of a
patient’s infection status, which is in contrast to
the high number of laboratory parameters that
showed significant differences using classical
statistical tests (Table 1, Table S6 in the supple-
mentary material).

Levels of Inflammatory Parameters,
Troponin I, Blood Cell Counts, and Age
Could Predict the Fatal Outcome
of COVID-19 on Admission to Hospital

After diagnosis of COVID-19 is confirmed, it is
crucial to predict the potential course of the
disease and the risk of fatal outcomes, and to
provide patients with cautious monitoring fol-
lowed by tailored diagnostic and therapeutic
strategies. To do so, we again performed

classical statistical analyses and applied ML
approaches to compare initial laboratory results
on admission to hospital and reported medica-
tions, comorbidities, and demographics
between patients who survived or died in hos-
pital. Numerous laboratory parameters were
significantly different at a 1% significance level
on admission between surviving or deceased
patients with COVID-19 (Table 3, Table S7 in
the supplementary material). Most of the labo-
ratory features were significantly elevated in
patients who later died during hospitalization,
including parameters of inflammation—PCT,
CRP, and ferritin (FER) (Fig. 2a), tissue dam-
age—CREAT, aspartate aminotransferase (AST),
troponin I (TnI), creatine kinase-myocardial
band (CK-MB), LDH, creatine kinase (CK)
(Fig. 2b), coagulation—DD, prothrombin time
(PT), activated partial thromboplastin time
(APTT) (Fig. 2c), and CBC parameters related to
an inflammatory response—WBC, neutrophil
reactivity (NEU-RE), neutrophils (NEU), and
relevant CBC ratios—neutrophils/lymphocytes
(NEU/LYMPH) and platelets/lymphocytes (PLT/
LYMPH) (Fig. 2d, e). Importantly, those patients
also had significantly lower levels of hemoglo-
bin (HGB), LYMPH, eosinophils (EOS), mono-
cytes (MON), ratios of eosinophils/lymphocytes
(EOS/LYMPH) and PLT/NEU (Fig. 2d, e). Addi-
tionally, analyzing patients’ characteristics and
reported comorbidities by hypergeometric test-
ing, we found that deceased patients were older
and more often affected with renal disorders or
anemia (Table S2 in the supplementary mate-
rial). They also more often reported hyperten-
sion or other cardiovascular diseases, which was
supported by the higher percentage of deceased
patients taking antithrombotic and anti-car-
diovascular disease medications prior to hospi-
talization (Tables S2, S3 in the supplementary
material). Nonetheless, it is important to note
that reported data on the past medical history
may be incomplete or inconsistent.

Similar to the separation of SARS-CoV-2
positive and negative patients, the high number
of significantly different variables between
patients who died or survived makes it difficult
to implement them in everyday clinical prac-
tice. Therefore, we used ML survival analysis to
determine the best set of features to predict the
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risk of dying from COVID-19 already on
admission to hospital. The feature space in the
complete survival analysis included the on-ad-
mission laboratory results, patients’ demo-
graphics, reported comorbidities, and
medications. After a 25:75 test–training split,
the training data were further divided ten times
into a training and validation set for the tenfold
cross-validation. Three different algorithms
were run with specified hyperparameter ranges
on these training validation sets. With this
cross-validation, the model with the highest
median score was evaluated, and then run on
the so far unseen test data. This was repeated for
ten different test–training splits (appendix).
Analysis of the ML results revealed that, even
though the models differed to some extent,
PCT, TnI, age, HGB, PLT/NEU, and CRP were
amongst the most important prognostic

features (Fig. 2f). This was further confirmed by
calculating the importance of all features across
the top ten models using permutation (Fig. 2g).

In conclusion, SARS-CoV-2 positive patients
who on admission to hospital were older, had
higher inflammatory parameters (PCT, CRP)
and TnI levels together with lower HGB and a
lower PLT/NEU ratio already had a high risk of
death from COVID-19.

Dynamic Changes in CRP, WBC Count,
and DD During Hospitalization Allowed
for Additional Prediction of COVID-19
Survival or Death

Providing patients with tailored diagnostic and
therapeutic strategies reflecting the dynamics of
the disease course should have an influence on

Table 3 Laboratory parameters for all patients with COVID-19, and separately for patients with COVID-19 who survived
or died

Clinical parameter COVID-19 all COVID-19 survived COVID-19 deceased p value
Median (IQR) Median (IQR) Median (IQR)

TnI [ng/ml] 0.011 (0.004–0.043) 0.006 (0.002–0.016) 0.048 (0.015–0.099) 5.66E- 13

PCT [lg/ml] 0.09 (0.04–0.31) 0.04 (0.02–0.15) 0.21 (0.09–0.76) 3.65E- 10

CRP [mg/dl] 4.3 (0.84–9.92) 1.88 (0.5–7.11) 7.18 (3.86–16) 5.57E- 08

HGB [g/dl] 13.4 (11.5–14.5) 14 (12.5–15) 12.1 (10.4–13.7) 6.00E- 07

CK-MB [lg/ml] 1.1 (0.6–2.1) 0.8 (0.55–1.4) 1.7 (1.0–3.3) 1.83E- 06

NEU-RE [FL] 47.7 (45.8–49.8) 47.05 (45.5–48.7) 49.2 (46.6–51.9) 3.32E- 05

CREAT [lmol/l] 89.6 (69.1–115) 82.9 (67.2–102) 105 (80–162) 4.98E- 04

NEU/LYMPH [ratio] 4.1 (2.25–7.39) 3.63 (2.05–6.39) 5.84 (3.03–10.9) 5.20E- 04

DD [lg/ml] 1.06 (0.57–2.46) 0.92 (0.46–1.76) 2 (0.8–4.6) 6.87E- 04

AST [U/l] 30 (22–48) 28 (20–42) 36.5 (25–71) 1.36E- 03

PLT/NEU [ratio] 41.9 (28.8–57.6) 46.7 (33.4–65.1) 34 (26.9–46.6) 1.56E- 03

LDH [U/l] 278 (235–381) 267 (223–334) 359 (261–441) 2.38E- 03

PT [s] 13.3 (12.3–14.8) 13 (12.3–14.2) 13.9 (12.9–15.4) 2.41E- 03

LYMPH [103/ll] 1.22 (0.9–1.72) 1.3 (0.96–1.82) 1.06 (0.78–1.55) 7.45E- 03

The values for the patients with COVID-19 who survived or died were tested for significant differences using the
Kruskal–Wallis statistical test, and the laboratory parameters with p values\ 0.01 are listed
AST aspartate aminotransferase, CK-MB creatine kinase-myocardial band, CREAT creatinine, CRP C-reactive protein, DD
D dimer, HGB hemoglobin, IQR interquartile range, LDH lactate dehydrogenase, LYMPH lymphocytes, NEU neutrophils,
NEU-RE neutrophil reactivity, PCT procalcitonin, PT prothrombin time, TnI troponin I
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the final COVID-19 outcomes. Therefore, we
analyzed the laboratory parameters measured
repeatedly during the hospitalization to identify
those parameters whose changes should be

most closely monitored, and serve as warning
signs to intensify the treatment.

As a result of the nature of the time-series
data with the variable number of measurements

Fig. 2 Survival analysis of patients with COVID-19 based
on features that were measured at hospital admission.
Box plot distribution of laboratory parameters related to
inflammation (a), tissue damage (b), coagulation (c),
complete blood counts (d), and blood cell ratios (e) be-
tween patients with COVID-19 who survived or died. The
boxes represent the median and interquartile range of the
respective parameters for the deceased (violet) or surviving
(green) patients. Bump chart of feature ranks in the ML

survival analysis with cross-validation on 10 different
training–test splits, where a low rank indicates high feature
importance (f). Features in bold consistently scored high in
different models. The mean weights of the different
features as assessed in a permutation feature importance
analysis confirm the importance of those features in
distinguishing deceased and surviving SARS-CoV-2 posi-
tive patients (g)
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(Fig. S3 in the supplementary material), they
needed to be parameterized before they could
be used in the ML approaches. Such parame-
terizations are usually done using clustering
methods. Yet, with the time-series data avail-
able here and their variability in the number of
observations per time-series feature (Fig. S3 in
the supplementary material), most commonly
used clustering methods would just cluster for
the length of the time series. Therefore, we used
the SAX algorithm that allows for a symbolic
representation of time-series data [17]. The
parameter used here as symbolic representation
is a string with length 2 where the first position
represents the average over the first half of the
time series and the second position the second
half, and the two different symbols a and B de-
note low and high levels, respectively. This
allows for the four different SAX clusters aa
(started low, stayed low), aB (started low,
increased), Ba (started high, decreased), BB
(started high, stayed high). The SAX-clustered

time-series data were then combined with self-
reported comorbidities, demographics, and
reported medications, and a full set of features
was subjected to the same ML algorithms as
previously on 15 different 75:25 training–test
splits (Table S8 in the supplementary material).
The classifier metric here was the accuracy score
on predicting surviving versus deceased
patients. Performance of different models was
evaluated, giving a mean test accuracy of 0.82,
which was considerably higher than the test
accuracy achieved in separating the SARS-CoV-2
positive and negative patients. We then calcu-
lated the median feature importance for all the
features over all algorithms. The features with
median scoring values smaller than 11 were the
SAX-clusters CRP BB, WBC aa, DD aa, and age
(Table S9 in the supplementary material).

The CRP SAX-cluster BB with high levels of
CRP, staying high during hospitalization pre-
dicted fatal outcomes from COVID-19 with only
20% survival rate, whereas cluster aa had a very

Fig. 2 continued
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good prognosis (Fig. 3a). Survival rate of
patients who initially had high average levels of
CRP (more than 6.95 mg/dl), which decreased
during hospitalization (SAX-cluster Ba), was
nearly two times higher than patients who
showed the opposite pattern (SAX-cluster aB).
For WBC, the most predictive cluster was aa in

which patients started with lower average levels
of WBC (less than 9.94 103/ll) that stayed low
during hospitalization, and which was associ-
ated with a survival rate over 80% (Fig. 3b).
Patients whose WBC increased (cluster aB) had
20% less chance of survival compared to those
whose WBC decreased (cluster Ba) over time.

Fig. 3 Machine learning analysis of SAX-clustered longi-
tudinal features to distinguish deceased and surviving
patients with COVID-19. The laboratory parameters
measured during the course of the disease were clustered
using SAX into the four clusters: aa—average value below
the SAX threshold in the first and the second half of the
measurements, aB—average value below the SAX thresh-
old in the first half of the measurements that increased to
an average value above the threshold in the second half of
the measurements, Ba—average value above the SAX
threshold in the first half of the measurements that

decreased to an average value below the threshold in the
second half of the measurements, and BB—average value
above the SAX threshold in the first and the second half of
the measurements. In the top panel, the mean and
standard deviation of the respective laboratory feature is
shown for all deceased and surviving patients with
COVID-19 for CRP (a), WBC (b), and DD (c), while
in the middle panel they are shown for each SAX cluster
separately. The bottom panel depicts the percentage of
surviving patients in each SAX cluster of the respective
laboratory feature
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Importantly, all the measurements in this study
were taken prior to the WHO recommendation
for standard use of steroids in the treatment of
severe or critical patients with COVID-19.
Increasing or persistently high levels of WBC
during the course of the disease that were
associated with fatal disease outcomes were
therefore unrelated to steroid therapy. Regard-
ing DD levels, a survival rate of more than 80%
was noted in patients with low average DD
levels during hospitalization (cluster aa; average
values less than 2.62 lg/ml). In patients with
DD values high and decreasing over time
(cluster Ba), the survival rate decreased to
around 70%. Interestingly, both DD starting
high and staying high (cluster BB) and DD
starting low and increasing (cluster aB) were
associated with around 40% chance of survival
(Fig. 3c). Age, the only additional non-labora-
tory feature with a low median feature rank, has
already been mentioned earlier as an important
determinant of survival. In summary, monitor-
ing the longitudinal patterns of CRP, WBC, and
DD during hospitalization together with atten-
tion to patients’ age can predict COVID-19 fatal
outcome or survival with high accuracy.

DISCUSSION

In the current work we have shown that
implementation of ML approaches allowed for
the accurate prediction of a SARS-CoV-2 infec-
tion and of COVID-19-related outcomes. First, it
enabled us to identify SARS-CoV-2 negative and
positive patients admitted to hospital with
comparable symptoms, demographics, and
medical history, based solely on the on-admis-
sion CBC values WBC and AS-LYMPH, the ratios
MON/LYMPH and PLT/NEU, and on the levels
of PCT. In contrast to the high number of lab-
oratory parameters that showed significant dif-
ferences using classical statistical tests, the ML
approach therefore selected those parameters
and their combinations that best separated
SARS-CoV-2 positive from negative patients on
admission to hospital. To assist clinicians in the
proper triage at an early stage, this subset of
features was included in an easy-to-use medical
decision tree. Compared with another decision

tree described in the literature [18], our
approach requires fewer laboratory parameters
to be measured, which makes the decision tree
more transparent and practical to use.

Interestingly, our finding that SARS-CoV-2
negative patients often had higher parameters
of infection or tissue injury such as WBC or CRP
than SARS-CoV-2 positive patients is in agree-
ment with the results from previous studies
comparing COVID-19 with other known infec-
tions of bacterial or viral origin [19, 20]. This
reflects that SARS-CoV-2 initiated a lower
inflammatory response in comparison to other
bacterial and viral infections. Even though the
individual selected laboratory parameters are
not specific for SARS-CoV-2, the usage of the
ML-selected parameter set and the medical
decision tree allow for the efficient separation of
positive patients, and for the initiation of
appropriate treatment as soon as the laboratory
data are available. This is especially useful in the
situation of healthcare overload or limited
availability of antigen and PCR tests when rapid
risk stratification can also protect SARS-CoV-2
negative patients from becoming infected in the
medical facility. In general, complete blood
counters and serum analyzers are more widely
available in hospitals of various reference levels
than facilities to test infectious patient material
for the presence of SARS-CoV-2. The time need
to acquire the standard laboratory parameters
fluctuates depending on the medical facility,
but typically takes between 15 and 90 min,
while obtaining PCR results takes 1–48 h. Ag-
RDTs, which were not available at the time of
our study, only take around 15 min, yet their
availability, sensitivity, and specificity are vari-
able, especially facing waves of new SARS-CoV-2
variants. Especially during phases with low
incidences or when new SARS-CoV-2 variants
are spreading, the clinical laboratory data would
be expected to provide more stable diagnostic
features, as the response of the organism is not
expected to differ fundamentally, and the lab-
oratory values are less prone to false positive
and false negative identifications. Therefore, we
are convinced that the subset of diagnostic
laboratory parameters identified here can be
instrumental in hospitals all over the world.
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Next, we identified the best set of on-admis-
sion laboratory parameters and demographic
features, which gave the highest prediction
score of COVID-19-related death. We have
shown that a few standard laboratory parame-
ters measured on admission to hospital (PCT,
TnI, HGB, PLT/NEU, and CRP) together with the
age of the patients distinguished between sur-
viving and deceased patients and provided early
biomarkers of poor prognosis regardless of
symptoms, comorbidities, sex, and previous
medical history. In systematic reviews and meta-
analyses in which a large number of features
were evaluated for their consistent association
with fatal COVID-19 outcomes based on labo-
ratory parameters measured at admission to
hospital, TnI and CRP were previously reported
as prognostic features [21, 22]. This supports our
ML-based approach, which allowed us to narrow
down a large set of features to a subset of diag-
nostic markers in a single-center study. Other
laboratory features included here, such as the
different blood cell ratios, are less commonly
reported in other studies, and are therefore not
covered in meta-analyses. The use of ML to
identify prognostic features hence brings the
additional advantage that new, potentially pre-
dictive laboratory parameters can be included in
the analyses. This best subset of identified
prognostic parameters should be sufficient to
alert the medical personnel, to increase the level
of care, and to enable appropriate, quicker, and
tailored medical decisions.

Finally, the concurrent inclusion of the time-
course laboratory parameters into the modelling
followed by feature selection allowed us to
identify the progression of CRP, WBC, and DD as
a small subset of significant diagnostic markers.
These parameters should be carefully monitored
during hospitalization because their alterations
could herald the change of a patient’s fate.

While previously described AI models are
often not coherent with regards to the predic-
tive potential of various laboratory parameters,
the majority outlined an important role of a
CBC in screening for an infection with SARS-
CoV-2 [13, 14, 23–27]. As our decision tree
confirms the high predictive value of the CBC,
it also emphasizes the specific impact of an
infection with SARS-CoV-2 on the immune

system that even includes changes of the
physical phenotype of blood cells [28], which is
an important aspect of its short- and long-term
pathogenicity. The inclusion of continuous
laboratory parameters that were measured at
different time points and with a variable num-
ber of measurements during the hospital stay as
features was accomplished previously, e.g., by
using the laboratory values at the first, the last,
and a random day followed by the training of
three different ML models and parameter bin-
ning [29], or by taking the laboratory values at
the first day and then two consecutive mea-
surements in defined time intervals, followed by
a logistic regression of the data at individual
time points [30]. Here, we decided to reflect the
time-course laboratory data through feature
engineering using SAX clustering, because it
allowed us to include the time-resolved devel-
opment of laboratory parameters as features
into the modelling approaches, and provided us
with thresholds for the laboratory values. The
results of our analyses corroborated with the
previously reported risk of a fatal outcome that
is associated with a specific progression of CRP
and WBC values [29, 30]. Monitoring the most
important diagnostic clinical parameters over
time can aid in adjusting therapeutic interven-
tions prior to clinical deterioration. Interest-
ingly, the most important diagnostic
parameters identified in the feature set includ-
ing the time-course data (clusters of CRP, WBC,
and DD) differed slightly from those obtained
using the feature set with the clinical parame-
ters obtained on admission to hospital (PCT,
TnI, HGB, PLT/NEU, and CRP). However, WBC
and DD are consistently associated with fatal
COVID-19 outcomes in various meta-analyses
[21, 22, 31, 32]. This emphasizes the importance
of developing separate models for addressing
different clinical questions.

Major limitations of our study, as for the
majority of ML approaches, might be the single-
center study group despite involving 515 and
201 patients in the screening and prognostic
analyses, respectively. ML approaches require a
thorough pre-processing and unification of the
reported values and parameters, which is chal-
lenging to achieve across several centers.
Nonetheless, large multicentered studies would
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be valuable here to confirm our results. A large
fraction of our study group were individuals
from long-term healthcare facilities, which
reflects the way the virus spread during the first
waves of the COVID-19 pandemic. This patient
group is a priori more vulnerable to severe
courses of the disease and potentially fatal out-
comes, which could be responsible for the pre-
viously reported high fatality rates in
hospitalized patients [33–35]. As a result of the
differences in study designs and a variety of
additional variables such as seasonal activity of
influenza viruses, changes in the predominant
SARS-CoV-2 variants, vaccination progress, and
implemented safety measures, general conclu-
sions should be drawn carefully. However, given
that the general pathophysiological aspects of
the disease have been well characterized
[36, 37], we expect that the laboratory findings
concerning the initial impact of an infection
and differences indicative of an increased risk of
a fatal disease are coherent amongst different
SARS-CoV-2 variants. Further validation of
these findings based on different ML approa-
ches applied to a large variety of different
cohort data is expected to consolidate on the
most important predictive parameters, while
revealing specific differences between different
subpopulations or virus variants.
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