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Decay and renormalization of a longitudinal mode
in a quasi-two-dimensional antiferromagnet
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An ongoing challenge in the study of quantum materials, is to reveal and explain collective
quantum effects in spin systems where interactions between different modes types are
important. Here we approach this problem through a combined experimental and theoretical
study of interacting transverse and longitudinal modes in an easy-plane quantum magnet
near a continuous quantum phase transition. Our inelastic neutron scattering measurements
of BayFeSi,O; reveal the emergence, decay, and renormalization of a longitudinal mode
throughout the Brillouin zone. The decay of the longitudinal mode is particularly pronounced
at the zone center. To account for the many-body effects of the interacting low-energy modes
in anisotropic magnets, we generalize the standard spin-wave theory. The measured mode
decay and renormalization is reproduced by including all one-loop corrections. The theore-
tical framework developed here is broadly applicable to quantum magnets with more than
one type of low energy mode.
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ARTICLE

ne of the strongest signatures of collective quantum

behavior is the spontaneous quasi-particle decay in

interacting bosonic systems, as observed in superfluids!~3
and quantum magnets4‘8. In the latter case, spontaneous magnon
decay has been studied in a growing number of lattice geometries
and model systems where large quantum fluctuations enhance
this many-body effect®10. A key finding of these studies is that the
strong decay process is accompanied by a significant renormali-
zation of the overall spectrum!!~16, This spectral renormalization
leads to measurable effects in the thermal dynamic and transport
properties!”, which are inexplicable without considering the
renormalization of the quasi-particle mass. At the same time, the
renormalization of the spectra opens an avenue to understand
quantum systems since the renormalized single-magnon disper-
sion provides a stringent test for theories that attempt to describe
magnon decay. In other words, approaches that do not fully
incorporate these many-body effects will not yield correct values
of the interaction parameters extracted from experimental
studies.

An important question is how to understand quasi-particle
decay in quantum magnets when there is more than one type of
low-energy mode, i.e. when the parent particles are not of the
same type as the daughter particles. Anisotropic magnets with
spin §21 provide a common example of this situation. The
additional fluctuations (quadrupolar for S>1, octupolar for
§23/2, etc.) can generate modes which are not captured by
standard SU(2) approaches at the linear level. Rather, the physics
is more conveniently described in terms of generalized SU(N)
spin-wave theory, where the low-energy modes are described by
N — 1 distinct bosons!®. For example, anisotropic S = 1 systems
where both transverse and longitudinal modes are expected, have
been previously treated by linear SU(3) theories!7-23. While lin-
ear SU(N) approaches to capture the correct number of low-

5 |S?=21>
B e =
|SZ:O>
>
o
5]
c
L
, lRenorma/ized
0
QPM QcpP AFM
|sz=0>" ¥ do 7 a=Jb
*-® e

Fig. 1 Schematic diagrams near the quantum critical point. The schematic
phase diagram illustrates the O(2) quantum critical point (QCP) between
the antiferromagnetic (AFM) state and the quantum paramagnet (QPM) as
a function of a :7/5 Jisa Heisenberg exchange and Disa easy-plane
single-ion anisotropy of effective S=1). The low-energy excitations of the
QPM are two degenerate S°=+1 modes (black line) with a gap, A, which
closes at the QCP. The spontaneous U(1) symmetry breaking leads to a
gapless magnon or transverse mode (T-mode), indicated with a blue line,
which is accompanied by a gapped longitudinal mode (L-mode) indicated
with the orange line. Near the QCP, the energy and the lifetime of the
L-mode are strongly renormalized (dashed orange line) due to the decay
into the continuum of two transverse modes (shaded orange region).

energy modes, they are unable to reproduce the quasi-particle
decay and renormalization generated by the interaction between
these modes. To capture these effects requires going beyond the
linear level and thus an objective of this paper is to generalize the
1/S-expansion of the SU(2) treatment to SU(3) in order to
account for the quasi-particle decay and renormalization pro-
duced by the interaction (nonlinear) terms using the quintes-
sential example of interacting longitudinal and transverse modes
for an S = 1 easy-plane quantum magnet as a test case.

In easy-plane quantum magnets, phase transitions can be driven
by either fluctuations of the phase or the amplitude of the order
parameter?4, The phase fluctuations are the transverse modes of the
order parameter (Goldstone modes in the long-wavelength limit),
whereas amplitude fluctuations correspond to the longitudinal
modes. Due to the gapless nature of the Goldstone transverse modes,
the longitudinal or “Higgs” mode is kinematically allowed to decay
into two transverse modes. This decay becomes more significant in
low-dimensional systems. Indeed, the longitudinal mode in two-
dimensional (2D) antiferromagnets was originally assumed to be
overdamped due to an infrared divergence of the imaginary part of
the longitudinal susceptibility?>2. However, more recent theoretical
work predicted that the longitudinal peak should remain visible even
in 2D?7-33, One aspect of this problem, which has not been
emphasized in previous works, is that the rather strong decay of the
longitudinal mode is accompanied by a significant renormalization
of the gap and the dispersion of the modes. As noted above, this
additional many-body effect provides a hard test for theories that
attempt to reproduce the measured decay of the Higgs mode.

As a starting point to understand the physics described above,
we focus on the quasi-2D Heisenberg square lattice with effective
S =1 with an antiferromagnetic exchange coupling (J) and a
strong easy-plane single-ion anisotropy (D). In this case, « = J/D
can be viewed as a tuning parameter that can be used to drive a
system from a quantum paramagnet (QPM) to an antiferro-
magnet (AFM) with an intervening QCP as shown in Fig. 1. Near
the QCP, spontaneous symmetry breaking produces two trans-
verse modes (one of them is a Goldstone mode) and a long-
itudinal Higgs mode. The longitudinal mode is unstable with
respect to decay into a pair of transverse modes resulting in an
intrinsic line broadening®34,

In this paper, we use inelastic neutron scattering to study the
spin excitation spectrum of Ba,FeSiO;. The high-quality neutron-
scattering data reveals a complex spectrum where transverse
modes are resolution limited, whereas a longitudinal mode dis-
plays significant Q-dependent broadening throughout the Bril-
louin zone (BZ), demonstrating the importance of quasi-particle
decay even away from the long-wavelength limit. The neutron-
scattering results further show that the longitudinal mode has a
very small gap clearly demonstrating that Ba,FeSiOy is relatively
close to a QCP. To understand the inelastic neutron-scattering
data, we implement a generalized SU(3) spin-wave
calculation7:1822 and compute the low-energy excitation spec-
trum of an effective low-energy spin S=1 model. After
demonstrating that the generalization of the well-known
1/S-expansion of the SU(2) spin-wave theory3>=4! is simply a
loop expansion®? of the SU(3) spin-wave theory, we show that the
one-loop correction is enough to account for the broadening of
the longitudinal mode and the large renormalization of the gap
and the dispersion of this mode. We further show that not
including the one-loop corrections results in Hamiltonian para-
meters that place the exact ground state of the spin Hamiltonian
for Ba,FeSi,O; on the nonmagnetic side of the QCP—contrary to
experimental fact. This provides a dramatic demonstration of the
importance of including renormalization effects, where the linear
spin-wave calculation overestimates the stability range of the
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Fig. 2 Crystal and magnetic structure of Ba,FeSi,0. a Crystal structure of Ba,FeSi,O5. Ba atoms separate layers composed of FeSi,O-, rendering a quasi-
two-dimensional structure. b In the FeSi,O5 layer, FeO, tetrahedra are connected via SiO4 polyhedra, and the adjacent two Fe2+ atoms are exchange
coupled by two oxygen ligands. The red dashed line indicates the exchange pathway J within two-dimensional square spin network. The interlayer coupling
Jis found here to be much weaker than J. Red arrows indicate the moment direction in the collinear AFM phase as determined in ref. 44. The black solid
line indicates the chemical unit cell. ¢ HK-reciprocal space with L = 0.5 in the tetragonal structure (P42;m). The blue solid line and the black circle indicate
the Brillouin zone and zone center, respectively. The coordinates (H, K, L) of the reciprocal lattice of the origin lattice are related to (k,,k,, k,) of the
magnetic lattice formed by the Fe2+ atoms through k, = n(H — K), k, = n(H + K), and k, = 2nL. d lllustration of the spin fluctuation modes. T; and T,
indicate transverse fluctuation in the ab-plane and out-of the plane, respectively. L indicates longitudinal fluctuation of spin.

magnetically ordered state. The fact that the one-loop correction
can simultaneously account for the real and imaginary part of the
self-energy of the longitudinal mode, as well as of the renorma-
lization the transverse mode dispersion, confirms that the easy-
plane quantum magnet Ba,FeSi,O, is an ideal platform for
studying many-body effects in the proximity of the O(2) QCP.

Results

Model material. Figure 2a illustrates the crystal structure of
Ba,FeSi,O; comprising layers of FeSi,O, separated by Ba atoms. As
shown in Fig. 2b, the FeO, tetrahedra of the FeSi,O; layer are
connected via SiO4 polyhedra and the two adjacent Fe?t atoms are
coupled through the superexchange interaction, J, that is mediated
by the two oxygen ligands (red dashed line in Fig. 1b). The resulting
square lattice of magnetic moments is vertically stacked along the ¢
axis, leading to a quasi-2D simple tetragonal spin lattice.

A detailed description of the single-ion state of the Fe2* ion is
given in Note 1 of the Supplementary Information. The combina-
tion of a relatively large spin-orbit coupling (A ~20 meV) and a
dominant tetrahedral crystal field (Agy), splits the free-ion levels, °D
(L=2, S=2), into several multiplets. The lowest energy S =2
multiplet has a significant orbital character due to the finite
spin—orbit coupling, that combined with the tetragonal distortion
(O'rerra) by large compression of the FeO, tetrahedra leads to a rather
strong easy-plane single-ion anisotropy*>#4, The five S = 2 energy
levels are then split into a singlet $° = 0 ground state and two
excited §° = *1 and §° = +2 doublets with energies D and 4D,
respectively (see Fig. Sla of the Supplementary Information).
Because the gap D of the $° = *1 doublet is four times smaller
than the gap of the S = +2 doublet and the dominant super-
exchange interaction J is smaller than D/4 in Ba,FeSi,O,, the low-

energy spectrum is well captured by projecting the S =2 spin
Hamiltonian into the §* = 0 and §* = +1 low-energy states.

The resultant S =1 effective spin Hamiltonian describes the
competition between a QPM (J <« D) with each spin of the lattice
having dominant §° = 0 character, and a collinear AFM state
(a =J/D > a,) with staggered magnetization in the ab plane (see
Fig. 2b). Ba,FeSi,O; turns out to be on the antiferromagnetic side
with a Néel temperature Ty = 5.2 K*4. Below Ty, the spins order
antiferromagnetically with propagation vector Q,, = (1, 0, 0.5),
corresponding to (7,7, ) as shown in Fig. 2c. The magnetic
moments are highly confined in the ab plane due to easy-plane
anisotropy, giving rise to the magnetic structure shown in Fig. 2b.
A neutron diffraction study on a powder sample revealed a
significantly reduced ordered moment of 2.95 up, which is only
63% of the full moment of 4.36 iy (g,, = 2.18) expected for an
S = 2 spin*4, suggesting the proximity to the quantum critical
point. In addition, as described in further detail below, our
analysis confirms that @ = J/D ~ 0.184 is close to the critical
value, a?® =0.18 and o’® =0.1 for 2D and 3D, respectively,
obtained from quantum Monte Carlo simulations2,

The spin excitations of Ba,FeSi,O; are generically described by
an antiferromagnetic S =2 spin Hamiltonian on a simple
tetragonal lattice:

H=] X[S5S + S, + AS:SE]
(r,x')
T2 IS 88+ 4SS )
+ DS
r

The bracket (r;')({{r,;t’))) indicates that the sum runs over
intralayer (interlayer) nearest-neighbor spins with isotropic
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Fig. 3 Inelastic neutron scattering of Ba,FeSi,07. a Contour map of the inelastic neutron-scattering (INS) data as a function of energy and momentum
transfer along the [H, O, 0.5] direction measured at T =1.6 K (<T) using the HYSPEC time-of-flight spectrometer at SNS. d Contour map of the INS data
as a function of energy and momentum transfer along [H, H, 0.5] direction measured at T =1.4 K (<Ty) using the cold Neutron Triple-Axis spectrometer
(CTAX) at HFIR. The instrumental resolutions at energy = 2.5 meV for each instrument are indicated with blue bars along the y-axis in a and d. The two
transverse modes and the longitudinal mode are labeled with T;, T,, and L, respectively. b, ¢, e, f INS intensities calculated by the generalized linear spin-
wave theory (GLSWT) and GLSWT plus one-loop corrections (GLSWT-+one-loop) with the parameter sets A and B given in Table 1, respectively. The
instrumental resolution of HYSPEC and CTAX was modeled in the calculated spectra using a Lorentzian function.

superexchange interaction J(J'). A(A’) is the intralayer (interlayer)
uniaxial anisotropy and the last term represents the easy-plane
single-ion anisotropy (D > 0).

In the large D/] limit, the § = +2 doublet is separated from the
§% = #1 doublet by an energy gap 3D. The low-energy subspace
of magnetic excitations can then be further reduced by projecting
out the §° = *2 doublet. The reduced low-energy Hamiltonian
H,q results from projecting H onto the low-energy subspace S
spanned by the triplet of states with §* =0, +1: H . = PyHP;.
The resulting effective spin S = 1 Hamiltonian is

Hp =] S lsiss +sisp + A7)

+T 3 [sisy+ s + Asisi] @)
r,r'))

((r,r
+ DY (%)

with ] =3J,] =3J,A=A/3,A" = A'/3,and D = D. As we will
see below, this simple effective Hamiltonian can explain not only
the in-plane antiferromagnetic ordering observed in Ba,FeSi,O,
(see Fig. 2b), but also the spectra of quasi-particle excitations,
including rather strong renormalization effects due to proximity to
the QCP.

Inelastic neutron scattering. To investigate the spin excitation
spectrum in Ba,FeSi,O,, we performed inelastic neutron scattering
using two instruments; the cold neutron triple-axis spectrometer
(CTAX) at the High Flux Isotope Reactor, and the time-of-flight
hybrid spectrometer (HYSPEC) at the Spallation Neutron Source at
Oak Ridge National Laboratory*>. An overview of the inelastic
neutron-scattering results is presented in Fig. 3 through contour

maps of the neutron-scattering intensity, I(Q, w), along [H, H, 0.5]
and [H, 0, 0.5]. For both spectra, strongly dispersive spin excitations
extending up to energy ~2.7 meV are observed. Whereas the dis-
persion along [0, 0, L] direction is weak with a bandwidth of
~0.5meV (see Note 4 in the Supplementary Information), which is
expected for spin excitations of a quasi-two-dimensional spin
system.

There are several distinct features in the inelastic neutron-
scattering data. An intense spin-wave excitation emanates from
the magnetic zone center (ZC), Q =(1, 0, 0.5), which arises due
to the in-phase oscillation between Fe2" spins in the plane. We
refer to this mode as T;. Along the [H, 0, 0.5] direction toward the
zone boundary (ZB) at Q= (0, 0, 0.5), the T;-mode reaches its
maximum energy of ~2.5 meV. Another weak, but sharp mode, is
visible along [H, 0, 0.5] with an energy of 2.5 meV at the ZC. We
refer to this mode as T,. These two modes are expected for a
strong easy-plane antiferromagnet, where transverse magnons
split into gapless in-plane fluctuations (T;-mode) and gapped
out-of-plane fluctuations (T,-mode). The finite value of the
energy gap of the out-of-plane fluctuation at the ZC is associated
with the strength of the easy-plane single-ion anisotropy*°.

The T and T, transverse magnon modes are also observed along
the [H, H, 0.5] direction in Fig. 3d. Noticeably, an additional sharp
mode is observed at the top of the T;-mode. This mode is visible
along the entire Brillouin zone boundary. We refer to this additional
mode as “L”-mode. The L-mode is visible in the spectra along [H, 0,
0.5] as well, however, it exhibits dramatic line broadening near
the ZC. To demonstrate more clearly the Q-dependence of the
modes, Fig. 4 shows cuts at constant momentum transfers for
multiple points along [H, 0, 0.5] and [H, H, 0.5]. Two pronounced
peaks, corresponding to the T;- and L-modes, remain sharp along
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Fig. 4 Detailed line-cuts of INS spectra. a Constant momentum cuts at
points along the [H, 0, 0.5] direction measured using HYSPEC at SNS,
integrated over H =[H—0.05, H+0.05] at selected H, K=[—0.1, 0.1], and
L=T[0.4, 0.6]. b Constant momentum cuts at points along the [H, H,
0.5] direction measured using CTAX at HFIR. Blue bars at the bottom of the
panels indicate the instrumental resolutions for HYSPEC and CTAX at the
proximate energy transfers. The blue and orange shaded regions are the
results of fitting Gaussian line shape to transverse (T;, T,) and longitudinal
(L) modes, respectively.

the ZB (Fig. 4b). As already noted, the situation is very different
near the ZC where the L-mode is significantly broadened (Fig. 4a).
We note that the L-mode remains a broad peak near the ZC, rather
than a featureless excitation. To investigate the extent of the
broadening effect, Gaussian line shapes for the T}-, T,-, and L-
modes were fit to the individual cuts in Fig. 4. The line widths
obtained from the fits are displayed in Fig. 7a-d. These results
reveal that the L-mode is three times broader than the instrumental
resolution at the ZC (see Fig. 4a), whereas it has comparable line
width to instrumental resolution near the ZB.

Generalized spin waves. In this section, we introduce a general-
ized SU(3) spin-wave calculation!”18:2247  which is required to
capture the two low-energy (longitudinal and transverse) modes of
Ba,FeSi,O;. Clearly, a linear treatment is not enough to capture the
decay of the longitudinal mode into two transverse modes. Con-
sequently, the main aim of this section is to lay the groundwork for
introducing the loop expansion*? (generalization of the 1/S-
expansion>>~41) in the section describing the nonlinear corrections.

To account for the transverse and longitudinal modes revealed
by the INS experiment, the usual SU(2) spin-wave theory (SWT)
must be generalized to SU(3)!8, by introducing the SU(3)
Schwinger boson representation of the spin operators

S/ = b{S"b,, where b, = (b, ,,, b, _1,b,)"

1 1
S'=—M+1),8 = 75@5 — A7), 8 = A, 3)

V2

NATURE C

A; are the Gel-Mann matrices and the Schwinger boson operators

satisfy the local constraint
il —

m—ZJrl 0 br mbr m = =M=1 (4)

We note that the SU(3) Schwinger boson representation of the

spin operators should not be confused with the Schwinger boson

approximation3648-30, which is qualitatively different from the

semi-classical approach that we describe below. The magnetically

ordered state of Ba,FeSi,O; can be approximated by a product
(mean-field) state of normalized SU(3) coherent states

e, (5)

where Q,, = (w, 7, m) ((1, 0, 0.5) in the chemical lattice) is the
AFM ordering wave vector. Although a general SU(3) coherent
state is parameterized by four independent parameters for
degenerate representations®!, the two independent parameters 0
and ¢ are enough to describe the collinear order under
consideration. The three basis states |m)(m =0, £1) are
represented by creating a boson with the quantum number m
from the vacuum: |m) = bJr ml®)-

As in the usual spin- wave theory, we introduce an SU(3)

ly,) = cosB|0) 4 (sinfcos¢g|1) 4 sinbsing| — 1)

transformation that rotates the boson operators, b =U,b,, to a
local basis that includes the coherent SU(3) state (5) as one of its
three elements. This local transformation allows us to align the
quantization axis with the direction of the local SU(3) order
parameter. The spatial dependence of U, can be removed by
working in a twisted frame, where the original AFM order
becomes a FM one. This can be done by rotating the spin
reference frame of one of the two sublattices of the tetragonal
lattice by an angle 7 along the z axis: sZ — s, and s;” — —s;”. In
the new reference frame, the effective Hamiltonian (2) becomes

_] Z a51/1/+] Z bysr’/z—{—DE(Sz)v (6)

(r,y'),v (r,y'),v

with a, =a,=b,=b,=—1, a,=A and b, = A/, and the

SU(3) transformation reads

—sing cos¢ 0
U = | cosOcos¢ cosfsing —sinf |. )
sinfcos¢  sinfsing  cosf

The bosonic representation of ﬂeﬁ is

Hy=] % a,b.8"b,6.8b,
(r,y'),v
7Y 0,585,6.8b, (8)

(r,y'),v
+DX(1 - b Aby),

where 8" = US"U', A = UAU', and Ap = 84003, Note that
the unitary transformation (7) is chosen in such a way that the FI;LO

boson is macroscopically occupied, namely (b, ) = (b:o) ~ /M.
According to the constraint (4), M =1 for the case of interest.
However, we will keep using M because 1/M is the parameter of the
perturbative expansion that will be introduced below. Note that M =

2§ for the usual SU(2) spin-wave theory. The main assumption

behind the 1/M expansion is that (bjflbrﬁ_l) (b:+1br+1> < M.

Under this assumption, we can expand the spin operators $ and the
quadrupolar operator (§%)* in powers of 1/M (see Note 5 in
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the Supplementary Information). The resulting expansion of ﬁeﬁ is
I}j{eﬂ = M*H©® + MH® + M'/2H® 4+ MOH® + O(Mfl), 9)

where the linear term H") vanishes because the parameters 6 and ¢
in Eq. (5) are determined by minimizing the mean-field energy

HO = (2]A +7’Z’)Sin40c0522¢

- % (2] + J')sin®26(1 + sin2¢)) 4+ Dsin®6. (10)

Since the AFM order is invariant under time reversal followed
by one lattice translation, the states $° = +1 must have equal
weight in the mean-field state (5), implying that ¢ = /4. By
minimizing H® with respect to 6, we obtain

1 D
x=sinff=-———— .
2 82J+))

The quadratic term H® represents the generalized linear spin-
wave (GLSW) Hamiltonian. After Fourier transforming the
bosonic operators,

(11)

~ 1 ~ .
brrx = 72 bkaelk‘rv
N, k

VN,

where N, is the number of sites, H® can be brought into a

(12)

compact form by introducing the Nambu spinor
- ~ o~ o~ ~t T
bk = (bk,+17 bk,—l? bfk,+1v b—k,—l) >
§
HY =% ¥ by HO(K) by, (13)
k af=+1
with
Aygk) Ak
H(z)(k) _ otﬁ( ) aﬁ( ) . (14)
Aga(k)  Ap(K)
The matrix elements are
AWISEDY [(2a,] + b7 /(S 5S00 — (Sp0)0,p)
+(Ja, > cosk,+]'b, cos kZ)SZOSSﬁ] (15)
V'=xy
D - -
- E(Aaﬁ — AgoBap),
Ap(k) = EI;S':OS;O Ja, yziy cos k, +J'b, cos k,|.  (16)

The collinear mean-field state (5) has a residual Z, symmetry
associated with a m-rotation along the direction of the ordered

~ . . U .
moments (local z axis). The bosonic operator b_ | picks up minus
sign under this Z, symmetry because it creates the state with
< . =t o
S” = —1. In contrast, the bosonic operator b_, remains invariant
because it creates the state with S = 0. This symmetry analysis

implies that the b 41 and 571 bosons must be decoupled in H®
because a non-vanishing hybridization term would otherwise
break this Z, symmetry:

S B - - e
HO = % [Agobyobion — % (byobiea + Brob )] (17)

ka=+1 2
with ) = cos(k,) + cos(k,), yi = cos(k;) and the expressions
for Ay, and By, are given in Note 5 of the Supplementary
Information.

The diagonal form of HP,
1
H(Z) = Z Wy o ﬁltaﬁkoc—i__ (18)
koa=+1 ’ ’ ’ 2

is then obtained by applying an independent Bogoliubov
transformation for each bosonic flavor,

b s1 =t e P er + Vk,tl/'))ikil? (19)
with
1 (1A 1l )
U =4/z —+1
kot 2 ( Wk, +1 7
B 1/ 1A
ney =2t L (Bl ) (20)
” |Bk,i | 2 wkil
The operators ﬂl . Create quasi-particles with energy
wk,il:\/Ai,tl_Blzgil? @1

where wy ,,(wy ;) is the dispersion relation of the transverse
(longitudinal) modes. The neutron-scattering intensity I(Q, w) is
related to the spin-spin correlation function through

I(Q, w) ofH(Q X <6W - Qg?”)
w (22)
1 N

X

e Q(r;—r))
dt iwt—iQ-(r;—r 514 s’ (0 ,
| e ) ($/(8)5/(0)

where Q is the momentum vector transfer, and f(Q) is the
magnetic form factor of Fe?*. In the Discussion section, we will
show that although the GLSW approach discussed in this section
can reproduce the dispersion relations of all observed low-energy
modes in Ba,FeSi,O,, it cannot account for various interaction
effects that are revealed by the INS experiments. To capture these
effects, we must then include the next order terms in the
1/M-expansion.

Nonlinear corrections. In this section, we demonstrate that the
generalization of the 1/S-expansion is simply a loop expansion.
Based on this result, we compute the one-loop corrections to the
linear theory presented in the previous section. As we explain in
the next section, the one-loop correction accounts for both the
broadening and the energy renormalization of the longitudinal
mode near the zone center.

After Fourier transforming and applying a Bogoliubov
transformation, the cubic contributions to the generalized spin-
wave theory become

HO =HD + 1Y, (23)
with
HY =— 5 5 o(q, +4,+5)
c ot 9 T9 79
s i YiT =
1
X [5 V£3)(q1.2,3’ 0‘1,2,3)ﬁq17a,ﬁqz,azﬁqyog (24)

16 ‘r i
+ E Vd )(%,2,3, (x172’3)ﬁ‘i1ﬁalﬂ(]zﬁazﬂ‘hs% + h.C.] ,
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and

@ _ 1
Hl _‘/Ns%(x:zil

=V Ns MEI[VL,aﬁg,—I + I’lC]

Here VS) and V® are the decay and sink vertices, respectively.
The symmetry-allowed cubic vertices are depicted in the second
and third lines of Fig. 4. Note that, unlike the SU(2) case, collinear
magnetic ordering does not preclude cubic terms in the
expansion (9) of the generalized SU(N) spin-wave theory with
N > 2. For the SU(3) case under consideration, the residual Z,
symmetry (7-rotation along the local z-axis) only requires that

[Vgs)(% 07 q; «, -1, “)ﬁgﬁ,l + ]’lC]
(25)

the b, | boson must appear an even number of times (e.g., b, b,

or bL bL) in the cubic terms. Hf) is a linear term that originates
from the normal ordering of the cubic vertices. This term
renormalizes the optimal value 6 that was obtained from the
minimization of H®. The integral of V;s)(q;oc7 —1) over the entire
Brillouin zone is the so-called cubic-linear vertex, which is
nonzero only for the longitudinal boson at the ordering wave

vector q = 0 (in the twisted frame). The explicit forms of Vﬁz and

Vf) are derived in Note 7 of the Supplementary Information.
We will now describe the construction of a systematic
perturbative field theory that is controlled by 1/M. This scheme
can be applied to study anharmonicities starting from any
generalized spin-wave theory based on a Schwinger boson
representation of the generators of SU(N). The well-known
1/S-expansion will be recovered for the particular case N = 2 and
M = 2S. As we will demonstrate below, the 1/M-expansion is
just a particular example of the loop expansion that is commonly
used to describe spontaneous symmetry breaking in particle
theory#2. The connection is more evident after noticing that M
becomes an overall prefactor of the rescaled Hamiltonian (Eq.
9), H= Heﬂ /M, once we also rescale the bosonic fields

according to b,, =~r_’l,/«/M. Since the original interaction

vertices VW(n=3) scale as VW ~ (M)*2,

rescaled Hamiltonian H(b, ,, bl,,) become of order M, while the
propagator is still of order 1/M. Thus, the order p of a particular
one-particle irreducible diagram is V — I, where V is the number
of vertices and I is the number of internal lines (note that the
frequency w is of order M° because the quadratic contribution
(H®) is independent of M). Since the number of loops is
L=I—-V+1 (Every vertex introduces a delta function that
reduces the number of independent momenta by one, except for
one delta function that is left over for overall energy-momentum
conservation), we obtain the desired result: p =1 — L.

Let us rederive this result without rescaling the fields and the
Hamiltonian. As we already mentioned, Eq. (9) tells us that the
interaction vertices V" (n > 3) scale as V(" ~ (M)*"2. The quasi-
particle propagator

all vertices of the

Goolk, iw) = (—iw + wy ) a = 1 (26)

where @ is the Matsubara frequency, scales as G (k) ~ M~
because wy , is of order M (see Eq. (9)). The dressed single-
particle propagator is obtained from the Dyson equation,

G (k,iw) = G, ' (k, iw) — 2(k, iw), (27)

where 2(k, iw) is the single-particle self-energy. At a given order
in M, the dressed propagator includes two external legs, L
independent loops, I internal lines (bare propagators G;) and V,,
interaction vertices of the type V(. After a summation over the

+ ........... » .......... o~ M71
\—P— 4

.......... 1/2

> » £ 1‘. > o MY
\—1— “

>4 A '@nangsss x M1/2
B L

v s o M2

O x M°
anaPera@lann [N

Fig. 5 Basic ingredients of the perturbative field theory in 1/M for
Ba,F.Si;07. Solid (dash) lines represent the bare propagator of the
transverse (longitudinal) boson. The symmetry-allowed cubic vertices are
shown on the second and third lines. The red (blue) dot represents a decay
(sink) vertex. The cubic-linear vertices are listed on the fourth line. The last
line represents the normal vertex V(" from H®,

Matsubara frequency w ~ M', each loop gives a contribution of
order M'. Hence, the order p of a particular one-particle
irreducible diagram contributing to 2(k, iw) is

p:L—1+n§3Vn[z—g} (28)

Since each internal line connects a pair of vertices, we have

> nV, =2I+2,

nz3 (29)
where >, .;nV,, is the total number of lines. Furthermore, the
number of loops is equal to the number of independent
momentum integrals. From the conservation of momentum at
each vertex, we have

L=I—[Z V,,—l}. (30)
nz3
By combining the above results, we obtain
nV
p=1+ YV, - ey, (31)

nx3 n=3 2

implying that the order of a given diagram is determined by the
number of loops.

The lowest-order O (M°) Feynman diagrams are shown in
Fig. 6. Since the inverse of the bare boson propagator is of order
O (M), the remaining diagrams of order O (M?) give a relative 1/
M-correction to the poles of the bare propagators. The real part of
the new poles corresponds to the renormalized single-particle
energy, whereas the imaginary part corresponds to the decay rate,
which is responsible for the broadening of the quasi-particle
peaks measured with INS.

The contributions to the self-energy from the decay and from
the source diagrams shown in Fig. 6 are

1 V(3)l_(,k—|—"7 T,y o))
sqin)=—— ¥ Vi'( Q9 9, % )|7

- (32)
2N, ke, a=%1 0 — Wy — Werka,
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Fig. 6 Diagrammatic representation of the Dyson equation. a One-loop
diagrams that contribute up to the order M° for the transverse boson.

b One-loop diagrams that contribute up to the order M° for the longitudinal
boson. The dressed propagator is denoted by a thick line, whereas the bare
propagator is denoted by a thin line.

and
1 VOK, k + q,q; o, ay, a)?
(g, i) = — —— | s‘( 9,99, %, 9 . (33)
2Nikojap=+1 0+ @ + Og i
respectively.

Finally, the diagrams that appear in the last line for both panels
of Fig. 6 arise from the normal ordering of the quartic term H*
in Eq. (9). These contributions simply renormalize the quadratic
Hamiltonian:

H§3>O: V(4N)[3 Pow TVSB_Bow +HEN (34)

where ng;f”(vﬁ,‘f,;f‘)) represents the normal (anomalous) con-

tributions. Since Hx% is of order MY, only the diagonal normal

contribution arising from the normal vertex Vf;f,;f\])(saﬁa, gives a
relative correction of order 1/M to the bare single-particle energy
given in Eq. (21) (the anomalous terms in Eq. (34) give a relative
correction contribution order 1/M?). The derivation of VAN is
included in Note 7 of the Supplementary Information.

We note the parallel between the decay, sink, and quartic
diagrams that give the 1/M-correction to the single-particle self-
energy and the ones that appear in the 1/S-expansion of the
standard SU(2) spin-wave theory of non-collinear Heisenberg
magnets!!. The main difference is that the SU(3) theory includes

Table 1 Parameter sets of GLSWT and GLSWT+one-loop
models.

Theory Label J (meV) D (meV)
GLSWT A 0.245 (7) 1.61 (6)
GLSWT+-one- B 0.266 (6) 1.42 (4)

loop

The parameters of the effective S =1 model extracted by fitting the Gaussian-peak centers of

the experimental dispersion with the GLSWT and GLSWT + one-loop calculated energies at the
zone center Q, = (1, 0, 0.5) In both cases, we assume J/ =0.1,and A= A" =1/3,ie. A=
A = 1for the S = 2 model (Heisenberg model without exchange anisotropy). The parameter set
is referred to by its label (A or B) in the text.

an extra bosonic flavor that enables more symmetry-allowed
decay channels. In addition, the cubic-linear diagram exists even
in absence of magnetic field because the magnitude of the ordered
magnetic moment can be renormalized by changing the
variational parameter 6. These diagrams, shown in the third line
of Fig. 6a and the fourth line of Fig. 6b, are obtained by
contracting one of the legs of the decay vertex with the
cubic-linear vertex shown in Fig. 5. By using the Feynman rules,
the cubic-linear diagrams are calculated as

_([Vg)(ov (_17 g, -1, “)] VLJX + hC)

0,—1

Tl =— (35)

By applying the analytic continuation ®+id" — iw and
adopting the so-called on-shell approximation @ = w, for Eq.
(32) and Eq. (33), the renormalized pole of the dressed
propagator g is calculated as

a‘lvo‘ - irqv"‘ = w + VE?OEZ) + chl(q) + fo(q’ wq,a) + Zi(‘L wqpc >

where the imaglnary part of the pole fk‘a arises from the decay
term XY, that accounts for the observed broadening of the
longitudinal mode in most regions of the BZ (see Fig. 3¢, f) (the
calculations are summarized in Note 9 of the Supplementary
Information and ref. >2). Moreover, the shift in the real part of the
pole implies a corresponding renormalization in the model
parameters. By fitting the neutron-scattering data with the
renormalized dispersion peaks wg , at the ZC, we obtain the set
of optimal Hamiltonian parameters listed as set B in Table 1 and
discussed further below.

Discussion

Comparison between experiment and theory. To understand
the spin excitation spectrum of Ba,FeSi,O, and demonstrate the
importance of using the one-loop corrections, we start the com-
parison between experiment and theory with the GLSWT (ie.
without one-loop corrections). Figure 3b and e shows contour
plots of I(Q, w) (Eq. (22)) calculated with the GLSWT along the
[H, 0, 0.5], and [H, H, 0.5] direction, respectively. The Hamil-
tonian parameters (see set A in Table 1) are extracted by fitting
the measured positions of the quasi-particle peaks (Gaussian-
fitted peak centers of the experimental data) at the ZC. The
GLSWT reproduces the dispersion of the observed two transverse
modes T; and T, along the [H, 0, 0.5] and [H, H, 0.5] directions
(Fig. 3b, e). Noticeably, the calculated longitudinal mode closely
reproduces the experimental dispersion of the “L”-mode, which
demonstrates that the SU(3) spin-wave theory describes the
quasi-particles in Ba,FeSi,O;.

Notably, the GLSWT does not reproduce the broadening and
renormalization of the longitudinal modes observed in the
inelastic neutron-scattering data. This is because the effect arises
from the decay of a longitudinal mode into two transverse modes
that is induced by the cubic term H® of the expansion (Eq. (9)).
To capture this effect, the 1/M-correction from the one-loop
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Fig. 7 Comparison between measured and calculated spectrum. Comparison of the measured and calculated dispersion along the [H, O, 0.5] (a, b) and
[H, H, 0.5] (¢, d) directions. In all panels of this figure, the theoretical results are obtained for the parameter set B in Table 1. a-d Blue and orange filled
circles indicate the measured transverse and longitudinal modes, obtained from the Gaussian fitting to the data shown in Fig. 4a. Dots and error bars

indicate peak centers and full width at half maxima (FWHM) of the observed modes, respectively. Lines indicate the calculated dispersions obtained from
the GLSWT and GLSWT+one-loop corrections. The red-shaded region in b and d depict the decay (line broadening) of the longitudinal mode given by the
one-loop corrections. e-g Comparison between the measured (blue dots) and calculated (orange and black lines) INS intensities at three high-symmetric
Q-points at (1, 0, 0.5), (0, 0, 0.5), and (0.5, 0.5, 0.5). All the experimental data were measured using CTAX with fixed E; =3 meV. For GLSWT, two

transverse and longitudinal modes are denoted with T;, T,, and L.

expansion (see “Nonlinear correction” section) must be included.
The GLSWT+one-loop correction can then describe the
broadened spectrum of the longitudinal mode. The new
Hamiltonian parameters, which are determined via the same
procedure that is described above (see set 3 in Table 1), allow us
to reproduce the observed spectrum (see Fig. 3¢, f).

A more in-depth comparison between theory and experiment
is shown in Fig. 7a and b. These figures show the quasi-particle
dispersions along the [H, 0, 0.5] direction calculated with the
GLSWT and GLSWT plus one-loop corrections compared to the
measured dispersion. Near the ZC, Q,,, = (1, 0, 0.5) the energy of
longitudinal mode obtained from the GLSWT is noticeably higher
than the peak center of the measured “L”-mode (orange dots).
The discrepancy in the dispersion is resolved by introducing the
one-loop corrections. The real part of the self-energy renorma-
lizes the energy of the longitudinal mode, leading to a better
agreement with the observed peak positions near the ZC. At the
same time, the imaginary part of the self-energy obtained from
the decay diagrams, 2¢, leads to an intrinsic line broadening of
the longitudinal mode that is missing in the GLSWT. In Fig. 7b
and d, the lower (upper) boundary of the red-shaded region is
given by 6k‘_1(:|:)i:k1_1, representing theoretical line broadening
of the longitudinal mode that is compared against the experi-
mental FWHM (orange error bars). In particular, the above-
mentioned effects are most striking at Q,, = (1, 0, 0.5), therefore
we present a comparison of the intensity line-cut at this
momentum transfer in Fig. 7e. It is interesting to note that the
energy shift of the transverse mode is also captured by the one-
loop corrections.

After verifying that the one-loop corrections can simulta-
neously capture the broadening of the longitudinal mode and the
energy shift of both the transverse and the longitudinal modes at
the magnetic ZC, it is natural to ask if this also holds true far away
from the ZC. Figure 7f, g is the intensity cuts for two
representative points on the ZB. At a first glance, the peak
centers of both modes are reasonably reproduced by the one-loop

corrections. A more detailed analysis reveals that the experi-
mental FWHM of both peaks is equal to the instrumental
resolution. However, as illustrated in Fig. 8a, since the long-
itudinal modes are still inside the two-magnon continuum, the
one-loop correction predicts an intrinsic broadening (black
curves) in Fig. 7f, g.

To understand the origin of this discrepancy, we trace back the
decay channel of the longitudinal mode on the zone boundaries.
The two-magnon continuum at the zone edge starts at an energy
equal to the sum of the single-magnon energies at the zone center
and the zone boundary. Due to the U(1) symmetry of the effective
Hamiltonian, the magnons are gapless at the zone center, implying
that the onset of the two-magnon continuum coincides with the
single-magnon branch (see Fig. 8). In absence of U(1) symmetry,
the magnon modes become gapped and the longitudinal mode
does not need to lie inside the two-magnon continuum for
arbitrary values of the wave vector (see Fig. 8b). A small magnon
gap pushes the onset of the two-magnon continuum to be above
the energy of the longitudinal mode at the zone boundaries. This
modification of the two-magnon spectrum precludes the decay of
the longitudinal mode near the zone boundary and explains the
experimental observation. We then conjecture that the single-
magnon dispersion is indeed gapped.

Unfortunately, it is difficult to extract the size of this gap from
our INS data because of the large quasi-elastic scattering.
Nevertheless, the analysis presented in Note 2 of the Supplemen-
tary Information indicates that our data are indeed consistent
with a finite spin gap. We note that the gap can be captured by
working with the original spin § = 2 Hamiltonian (Eq. (1)). The
tetragonal symmetry allows for a single-ion anisotropy term of
the form H, = AY,[(S)* + (S )", which breaks the global U(1)
symmetry, generating a finite gap for the transverse mode.
However, when we project the original § = 2 Hamiltonian onto
the low-energy space to obtain the effective spin S=1
Hamiltonian (Eq. (2)), the term H, simply renormalizes the
single-ion anisotropy, implying that the low-energy model
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Fig. 8 Kinematic constraints for the decay of the longitudinal mode. The
blue (orange) curve shows the calculated transverse (longitudinal) band
dispersions along [H, O, 0.5] with the GLSWT (using parameters set B in
Table 1). The light blue-shaded areas indicate the two-transverse mode
continuum, whose lower edge is indicated with a black solid line (E';“i“).

a Results of the effective S = 1 model. b Same as a but for a gapped branch
of transverse modes (an ad hoc gap has been added to Eq. (21)).

acquires an “emergent” U(1) symmetry that is absent in the
original high-energy model. Lastly, we note that the energies of
the longitudinal mode on the zone boundaries after the one-loop
corrections are slightly lower than the measured values. This level
of discrepancy can be attributed to the missing second-order

corrections O<3]—ZD) to the low-energy model (2) or to missing

terms in the original Hamiltonian (1). A simple analysis shows
that a second nearest-neighbor AFM interaction with 72 ~0.2]
can account for this discrepancy. For simplicity, J, is not included
in our calculation. Except for the discrepancy near the zone
boundaries, the effective S = 1 model with one-loop corrections
successfully captures most features of the INS data inside the BZ.

Finally, we emphasize that the loop expansion preserves the
Goldstone mode that results from the spontaneous breaking of
the emergent U(1) symmetry group of H;. More specifically, the

(M) correction to the real part of the self-energy vanishes for

the Goldstone mode (see Note 8 in the Supplementary Informa-
tion), although the individual contributions from the diagrams
shown in Fig. 5 diverge as 1/q in the long-wavelength limit. We
note that previous attempts of computing the decay of the
longitudinal mode3* have not accounted for the renormalization
of the single-particle dispersion arising from the 1/M-correction
to the real part of the self-energy. This correction leads to a
significant change in the extracted ratio & = J/D of Ba,FeSi,0,
cf. agrswr = 0.152, and aGrgwr4one—toop = 0-187. This change is
a direct consequence of the substantial renormalization of the
energy @, (Q,,) of the longitudinal mode at the ZC. In fact, an
accurate calculation that goes beyond the one-loop approxima-
tion estimates that the critical o required to close the gap w;(Q,,)

forJ/ =0.1],and A = A’ = 1/3 is around 0.158. In other words,
the Hamiltonian parameters extracted from fitting the experiment
with the GLSWT place Ba,FeSi,O; on the quantum paramagnetic
side of the phase diagram shown in Fig. 1, which obviously
contradicts the experimental evidence. In contrast, the set of
parameters obtained from the GLSWT+one-loop correction
(AGLSWT-one—loop) Place the material at the magnetically ordered
phase of the exact phase diagram. Furthermore, the calculated
ordered moment is very close to the measured value 2.95 y;, (see
Note 12 of the Supplementary Information for discussion of the
reduction of the ordered moment). In general, nonlinear
corrections become increasingly important upon approaching
the QCP and logarithmic corrections due to multi-loop vertex
renormalizations become relevant very close to this
point28:31,53.54 The fact that one-loop correction is enough to
reproduce the spectrum of Ba,FeSi,O; indicates that this material
is still far enough from that critical regime.

In summary, Ba,FeSi,O; provides a natural realization of a
quasi-2D easy-plane antiferromagnet in the proximity of the QCP
that signals the transition into the QPM phase. Previous examples
of low-dimensional easy-plane quantum magnets in the proxi-
mity of this QCP were typically located on the quantum
paramagnetic side of the quantum phase transition!7:20:21.23,
Ba,FeSi,0; then allows us to explain the strong decay and
renormalization effects of the low-energy transverse and long-
itudinal modes of the AFM state. Furthermore, the distance to the
O(2) QCP could be in principle controlled by chemical
substitution, while the application of an in-plane magnetic field,
that gaps out the transverse modes, can be used to control the
decay rate of the longitudinal mode.

Here, we have used the INS data of Ba,FeSi,O; as a platform to
test a loop expansion based on an SU(3) spin-wave
theory!7:18:20.55  that captures the longitudinal and the transverse
modes at the linear level. This loop expansion, which generalizes
the well-known 1/S-expansion of the SU(2) spin-wave theory,
allows us to reproduce the measured width and renormalization
of the longitudinal and transverse modes near the zone center by
just including a one-loop correction. Small discrepancies near the
zone boundary are attributed to limitations of the effective low-
energy S = 1 model that we adopted for this work.

The loop expansion that we have described in this manuscript
provides a general scheme for treating quantum magnets with
more than one type of low-energy mode. In general, quantum
magnets that exhibit low-energy modes with N — 1 different
“flavors” can be treated semi-classically using an SU(N) spin-
wave theory. The parameter of the semi-classical expansion is the
number of loops in the Feynman diagrams that contribute to the
single-particle propagator.

Methods

Sample preparation. A single crystal of Ba,FeSi,O; was grown using an optical
floating zone melting method#4. Polycrystalline Ba,FeSi,O; feed-rods were
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prepared using the solid-state reaction method. The stoichiometric powders of
BaCO; and Fe,0;, and SiO, were mixed, ground, pelletized, and sintered with
intermediate heating in a reduced gas atmosphere. Ba,FeSi,O; single crystal was
grown using a floating zone furnace in the same gas environment.

Inelastic neutron-scattering measurement. Inelastic neutron-scattering measure-
ments were performed using the cold neutron triple-axis spectrometer (CTAX) at the
High Flux Isotope Reactor (HFIR) and the hybrid spectrometer (HYSPEC) at the
Spallation Neutron Source (SNS) at Oak Ridge National Laboratory®>. A 2.15-g single
crystal was aligned with the (H, H, L) and (H,0, L) in the horizontal scattering plane
for CTAX and HYSPEC experiments. A liquid helium cryostat was used to control
temperature. At CTAX, the initial neutron energy was selected using a PG (002)
monochromator, and the final neutron energy was fixed to E; = 3.0 meV by a PG (002)
analyzer. The horizontal collimation was guide-open-40’—120’, which provides an
energy resolution with a full width half maximum (FWHM) = 0.1 and 0.18 meV for
AE =0 and 2.5 meV, respectively. For the HYSPEC experiment, E; = 9meV and a
Fermi chopper frequency of 300 Hz were used, which provides an energy resolution of
FWHM = 0.28 meV and 0.19 meV at AE =0 and 2.5 meV, respectively. Measurements
were performed at T = 1.6 K and 90 K by rotating the sample from —50 to 170° with 1°
steps. Data were symmetrized over positive and negative H and integrated over K =
[-0.1, 0.1] and L = [0.4, 0.6]. In Fig. 3a, there appears to be quasi-elastic scattering
below 0.5 meV in low Q-region. This scattering arises from the incompletely blocked
direct beam due to the oscillating collimator. All of the datasets were reduced and
analyzed using MANTID?® and DAVE?’.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding authors on reasonable request.
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