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Abstract: Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes and can potentially 
develop into end-stage renal disease. Its pathogenesis is complex and not fully understood. Podocytes, glomerular endothelial cells 
(GECs), glomerular mesangial cells (GMCs) and renal tubular epithelial cells (TECs) play important roles in the normal function of 
glomerulus and renal tubules, and their injury is involved in the progression of DN. Although our understanding of the mechanisms 
leading to DN has substantially improved, we still need to find more effective therapeutic targets. Autophagy, pyroptosis and 
ferroptosis are programmed cell death processes that are associated with inflammation and are closely related to a variety of diseases. 
Recently, a growing number of studies have reported that autophagy, pyroptosis and ferroptosis regulate the function of podocytes, 
GECs, GMCs and TECs. This review highlights the contributions of autophagy, pyroptosis, and ferroptosis to DN injury in these cells, 
offering potential therapeutic targets for DN treatment. 
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Introduction
With the development of society and changes in lifestyle, the prevalence of diabetes has been steadily rising in recent 
years.1,2 The statistics from the International Diabetes Federation show that in 2021, the number of diabetic patients 
worldwide reached 536 million.3 The prevalence of diabetic complications is also increasing. As one of the most 
common microvascular complications of diabetes, the prevalence of diabetic nephropathy (DN) in the late stages of 
diabetes is almost 50%.4,5 Due to these trends, DN has become a serious public health problem in the world.6

DN is a complex and chronic disease characterized by glomerular hyperfiltration, hyperperfusion, thickening of the 
glomerular basement membrane, glomerular capillary injury, mesangial expansion, and microalbuminuria.7,8 In the early 
stages of DN, the volume of the kidney increases and the glomerular filtration rate increases. As the disease progresses to 
the middle stages, the basement membrane thickens and the mesangial matrix increases. This leads to glomerular nodular 
and diffuse lesions, arteriolar hyaline degeneration, further thickening of the glomerular basement membrane, and 
progressive stenosis of the glomerular capillary cavity. In the late stages, glomerular and tubulointerstitial fibrosis 
occurs, resulting in glomerular atrophy and ultimately renal failure. Multiple studies have shown that the regulation of 
inflammation, endoplasmic reticulum stress (ERS), oxidative stress and other related proteins plays crucial roles in the 
progression of DN.8–13 Furthermore, certain regulatory factors can promote the transformation of endothelial cells into 
mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT). This process plays a significant role in 
the development of renal fibrosis in DN. Additionally, recent studies have highlighted the dysfunction of cell junction 
proteins in podocytes, glomerular endothelial cells (GECs), glomerular mesangial cells (GMCs), and renal tubular 
epithelial cells (TECs) as key players in DN pathogenesis.14–17 Despite ongoing research, the pathogenesis of DN 
remains incompletely understood due to its complexity. Therefore, elucidating the underlying mechanisms of DN and 
identifying therapeutic targets have both emerged as crucial strategies for effective DN treatment.
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Autophagy, an intracellular degradation process, plays a pivotal role in maintaining cellular homeostasis.18,19 It is 
involved in the pathogenesis of numerous diseases, including diabetes,20 DN,9 and cardiovascular disease.19 Pyroptosis, 
a distinct form of programmed cell death, differs from apoptosis both morphologically and mechanistically. It is 
characterized by the formation of inflammasomes and the production of pro-inflammatory caspases.21–23 Pyroptosis 
has been implicated in a range of diseases, including atherosclerosis, diabetes, and DN.10,24 Ferroptosis, another type of 
programmed cell death, is characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels.25

The role of inflammation in the onset and progression of DN is well-documented.7,12 Inflammation markers such as 
C-reactive protein, kidney injury molecule-1, serum uric acid, monocyte/lymphocyte ratio in hemogram, systemic 
inflammatory index, and uric acid/HDL cholesterol ratio have been associated with DN.25–29 Autophagy, a cellular process 
that maintains homeostasis, has been shown to suppress inflammation, thereby protecting the kidney.30 On the other hand, 
both pyroptosis and ferroptosis are forms of programmed cell death that are associated with inflammation.31 Diabetes 
mellitus and its microvascular complications are associated with high burden of inflammation.32,33 Given the central role of 
inflammation in DN, it is logical to investigate autophagy, pyroptosis, and ferroptosis in the context of this disease. 
Elucidating the contributions of these cellular processes in DN may offer valuable insights into potential therapeutic 
strategies for managing this condition. Besides, recent studies indicate that autophagy, pyroptosis, and ferroptosis of 
podocytes, GECs, GMCs, and TECs are involved in the occurrence and development of DN. A thorough examination of the 
uniqueness and correlation among autophagy, pyroptosis, and ferroptosis in the injury pathways of these cell types could 
lead to the identification of novel therapeutic targets for the prevention and treatment of DN.

Autophagy and DN
The autophagy process is essential for maintaining the homeostatic balance of cellular components, as it regulates their 
synthesis, degradation, and recirculation. This multistep regulation is orchestrated by various signaling pathways, 
including phosphatidylinositol 3-kinase (PI3K) -AKT-mTOR signal pathways, AMP-activated protein kinase (AMPK) 
signal pathway and nuclear factor kappa-B (NF-κB) signal cascades.18 Under physiological conditions, an appropriate 
amount of autophagy maintains the stability of its structure and function. However under pathological conditions, 
autophagy dysregulation can lead to cellular dysfunction and contribute to the development of various diseases, 
including DN,9 cardiovascular disease,19 diabetes20 and others.

The main pathological features of DN are podocytes, GECs, GMCs, TECs injury, which eventually develops into 
glomerular and tubulointerstitial fibrosis.10 These injuries are driven by various mechanisms such as glucolipotoxicity, 
inflammation, apoptosis, oxidative stress, and mitochondrial dysfunction.7,10 Autophagy plays a crucial role in main
taining intracellular homeostasis, and its dysfunction has been implicated in the pathogenesis of DN. Notably, glucagon 
like peptide-1 (GLP-1) has been shown to alleviate kidney damage in DN rats by promoting autophagy through the 
activation of the PI3K/AKT/mTOR pathway.34 Similarly, oral butyrate has been found to alleviate damage in diabetic 
rats, possibly by enhancing autophagy via the AMPK/mTOR signaling pathway.35 These studies provide evidence that 
autophagy plays a key role in the progression of DN and that modulating autophagy may offer therapeutic potential for 
reducing renal damage. Therefore, in this section, we aim to review and discuss the recent research progress on 
autophagy in podocytes, GECs, GMCs, and TECs. We focus on elucidating the role of autophagy in the progression 
of DN and exploring potential therapeutic targets.

Autophagy and Podocytes
Podocytes, as highly specialized glomerular epithelial cells, play a crucial role in maintaining glomerular structure and 
function. The initial pathological manifestation of DN often involves a decrease in podocyte number, followed by their 
detachment, which further exacerbates glomerular injury. It is reported that autophagy dysfunction is one of the important 
mechanisms causing homeostatic imbalance in podocytes. Regulating podocyte autophagy can protect against glomerular 
injury and improve renal function.36,37 SPAG5-AS1 gene knockout can inhibit apoptosis and induce autophagy via 
suppressing AKT/mTOR pathway, reducing podocyte injury induced by high glucose (HG).38 Adipose-derived stem cell- 
derived exosomes enhance the expression of miR-486, thereby inhibiting the Smad1/mTOR signaling pathway, and 
enhancing autophagy flux to reduce podocyte damage.39 Besides, studies have shown that multiple drugs can improve 
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DN by promoting podocyte autophagy. Exogenous spermine ameliorates podocyte autophagy by regulating the AMPK/ 
mTOR signaling pathway, alleviates podocyte injury, and improves serum creatinine, urea and urinary albumin excretion 
in diabetic rats.36 Curcumin and ursolic acid induce podocyte autophagy and alleviate renal oxidative stress through 
PI3K/AKT/mTOR pathway, thereby improving renal function in diabetic rats.37,40 Astragaloside-IV via the SIRT1/NF- 
κB pathway induces autophagy to inhibit glucose-induced EMT of podocytes and to improve function in DN mice.41 

Collectively these studies suggest that improving podocyte autophagy can serve as an important target for the treatment 
of DN.36,37

Autophagy and Glomerular Endothelial Cells
GECs, as a crucial component of the glomerular filtration barrier, play a pivotal role in maintaining renal health. Upon 
injury, GECs exhibit an elevated level of proteinuria, indicating compromised glomerular function. This injury further 
exacerbates autophagy and senescence, leading to dysfunction of GECs. Such dysfunction has been implicated in the 
pathogenesis of renal microvascular disease and may promote the development of DN.

The electron microscopy findings indicate that in streptozotocin-induced diabetic rats, there is a significant decrease 
in both the volume and numerical densities of autophagic vacuoles in proximal tubular cells compared to the control 
group.42 Yoshibayashi et al suggest that autophagy-deficient mice can lead to GECs injury and severe proteinuria.43 In 
ATG5-deficient diabetic mice, proteinuria levels are significantly elevated compared to controls. The electron microscope 
results show that the cytoplasmic structure of GECs is disordered and vacuolized, which further proves that GECs 
autophagy deficiency aggravated the DN process.44 Inhibition of autophagy diminishes GEC viability. Additionally, heat- 
aggregated gamma globulin inhibits GECs autophagy through the AKT/mTOR pathway, further compromising cell 
survival and exacerbating renal injury.45 Cinacalcet elevates intracellular Ca2+ concentration and activates Ca2+/calmo
dulin-dependent protein kinase β, leading to the phosphorylation of liver kinase B1 and downstream signaling. This 
cascade ultimately enhances autophagy, reduces oxidative stress and apoptosis, and protects GECs and DN in mice 
exposed to HG.46 Spironolactone mitigates podocyte adhesive capacity damage induced by mechanical stress by 
blocking the PI3K/AKT/mTOR pathway and restoring autophagy activity.47 These findings collectively underscore the 
crucial role of autophagy in maintaining the structural and functional integrity of GECs.

Autophagy and Glomerular Mesangial Cells
The death and aging of GMCs indeed exacerbate the progression of DN. HG can stimulate human GMCs proliferation, 
extracellular matrix accumulation, and oxidative stress.48 Astragaloside-IV, a compound that targeting the silent informa
tion regulator 1 (SIRT1)-NF-κB pathway, has been shown to induce autophagy and enhance GMCs viability, improving 
glomerular morphology and renal fibrosis in DN mice.49 On the other hand, aging can inhibit autophagy and promote 
GMCs senescence through the RAGE/STAT5 pathway.50 Metformin effectively ameliorates glycolipid metabolism and 
renal damage in diabetic rats by activating the AMPK/SIRT1-FOXO1 pathway. This activation not only alleviates 
oxidative stress but also enhances autophagy, slowing down the abnormal proliferation of HG cultured GMCs.51 

Fibroblast growth factor 21 ameliorates autophagy levels, thus preventing mesangial cells overproliferation via the 
AMPK/mTOR pathway.52 Trigonelline induces autophagy to protect mesangial cells in response to HG via activating the 
miR-5189-5p-AMPK pathway.53 Ginkgetin alleviates HG-induced GMCs oxidative stress injury, inflammation, and 
extracellular matrix deposition through AMPK/mTOR signal pathway mediated autophagy.54 Collectively, these findings 
suggest that targeting autophagy and its associated signaling pathways may provide therapeutic strategies for mitigating 
GMCs death and the progression of DN.

Autophagy and Renal Tubular Epithelial Cells
Oxidative stress, inflammation, ERS and hypoxia can cause TECs damage, leading to renal interstitial fibrosis and the 
decline of renal function.55–60 This damage is further exacerbated by the dysregulation of autophagy, as observed in the 
proximal tubules of streptozotocin-induced diabetic models and HG-induced Human renal glomerular endothelial cells 
(HRGECs) HK-2 cells.61 ATG7 knockout mice, which exhibit defective autophagy in renal proximal epithelial tubular 
cells, result in increased renal cell damage.62 In HG-cultured NRK-52E cells and DN mice, the inhibition of ATF4 can 
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ameliorate DN tubulointerstitial fibrosis by improving autophagy flux and decreasing collagen type-IV levels.14 

Cotreatment with molybdenum and autophagy inhibitor 3-methyladenine (3-MA) significantly increase lactate dehydro
genase release, reactive oxygen species (ROS) level, and cell injury, indicating that autophagy inhibition can exacerbate 
TECs damage and further worsen renal function.63 Metformin promotes autophagy of TECs through AMPK, thereby 
reducing tubular interstitial fibrosis.64 Besides, traditional medicine Red Ginseng has been shown to reduce the 
expression of TGF-β1 and kidney injury molecule-1 by inducing autophagy, and then alleviate renal inflammation and 
fibrosis caused by hyperglycemia.65 Collectively, these findings suggest that autophagy plays a crucial role in maintaining 
TEC health and preventing renal fibrosis. Therapeutic strategies aimed at restoring or enhancing autophagy may offer 
new avenues for treating renal damage and dysfunction.

Podocytes, GECs, GMCs and TECs damage are all involved in DN progression. Damage to these cell types plays 
a significant role in the development and progression of DN. These studies indicate that inhibition of autophagy 
aggravates renal injury and promotes the progression of DN. Fortunately, some drugs have shown that regulating 
autophagy can improve renal function in DN. For instance, Metformin can improve renal function by promoting 
autophagy.51,64 GLP-1 analog liraglutide can upregulate autophagy in vivo and in vitro through the AMPK/mTOR 
signaling pathway.66 Subcutaneous injection of insulin with liraglutide alleviates oxidative stress and activates autophagy, 
which not only restored renal morphology but also significantly improved renal hemodynamics.67 Given the substantial 
interest in developing therapies that enhance autophagy as means of treating DN, further study of autophagy in this 
setting may lead to fruitful results.

Pyroptosis and DN
Pyroptosis can be activated by Caspase-1 and induce an inflammatory response, leading to cell membrane rupture and 
dissolution. The molecular mechanisms of pyroptosis21 mainly include classical cell pyroptosis mediated by Caspase-1, 
non-classical pyroptosis mediated by Caspase-11/-4/-5 and by Caspase-3. The activation of Caspase-1 is the core of the 
classical pyroptosis pathway, a defence mechanism against pathogenic microbial infection, and an important part of the 
natural immune system. Caspase-11/-4/-5 can directly recognize and bind lipopolysaccharide (LPS) and act on GSDMD 
(gasdermin d) to release active N-terminal domain (GSDMD-N); In addition, Caspase-11 also activates the inflamma
somes of nod like receptor protein-3 (NLRP3) and downstream caspase-1, resulting in the release of inflammatory factors 
and promoting pyroptosis. Caspase-1 mediates pyroptosis by activating GSDMD. Inflammasomes are produced during 
pyroptosis, which can induce tumor pyroptosis and inhibit tumor cell proliferation. Pyroptosis is a physiological state that 
can promote the immune response against infection, but excessively activate pyroptosis leads to GSDMD activation and 
numerous inflammatory cytokines such as interleukin (IL)-1β and IL-18 release, which can cause cell death, tissue 
damage, organ failure, and even cause diabetes, cause irreversible damage to the body.11,21–24

Pyroptosis has been implicated in a wide range of diseases such as diabetes, DN and infectious diseases.11,21,24 The 
expression of Caspase-1 and GSDMD in renal tissue of DN mice increased significantly.68 A series of researches have 
indicated that inhibiting pyroptosis can reduce the damage to podocytes,68 GECs,69 GMCs70 and TECs.71

Pyroptosis and Podocytes
Podocyte injury plays a crucial role in the early stages of DN. The expression of Caspase-11, Caspase-4 and GSDMD-N 
in podocytes is increased significantly in DN mice, the loss and fusion of podocyte foot processes, and elevated 
inflammatory cytokines IL-1β and IL-18, suggesting increased podocyte pyroptosis in DN.72,73 Similar results are 
obtained in vitro models of DN.72 Knockout of Caspase-11, Caspase-4 or GSDMD gene can attenuate the above changes 
in diabetic mice, proposing that inhibiting pyroptosis can ameliorate podocyte damage in DN.73 Moreover, studies have 
shown that multiple drugs can improve DN not only by promoting podocyte autophagy but also by alleviating podocyte 
pyroptosis. High-glucose can induce mouse podocyte line MPC5 cells pyroptosis and oxidative stress.74 Further, 
atorvastatin protects MPC-5 cells from pyroptosis and downregulates the level of renal oxidative stress through 
MALAT1/miR-200c/NRF2 signal pathway.75 Carnosine can significantly reverse the albuminuria and histopathological 
lesions damage of the DN mouse model and reduce renal inflammation and pyroptosis via the targeting of Caspase-1.68 

The administration of geniposide to DN mice through AMPK/SIRT1/NF-κB pathway inhibits podocyte pyroptosis, 
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oxidative stress and inflammation, and reduces glomerular basement membrane thickening and inflammatory cell 
infiltration, thereby inhibiting the development of DN.75 In vitro studies have shown that high fat can induce NLRP3 
dependent pyroptosis of podocytes. Ginsenoside Rg1 inhibits pyroptosis through the mTOR/NF-κB/NLRP3 axis and 
protects podocytes from damage induced by hyperlipidemia.76 Total flavones of Abelmoschus Manihot (TFA) have been 
widely used to treat DN. Further research reveals that TFA can ameliorate podocytes pyroptosis under diabetic conditions 
by regulating METTL3-dependent methyladenosine modification and downregulating NLRP3-inflammasome formation 
and PTEN/PI3K/AKT axis.77 All these results suggest that podocyte pyroptosis is involved in the development of DN.

Pyroptosis and Glomerular Endothelial Cells
The whole process of DN is accompanied by GECs injury. Hyperglycemia, inflammation, ERS and oxidative stress can 
lead to endothelial cell injury. High-glucose can induce pyroptosis of human endothelial cells, accompanied by an 
increase in NLRP3 inflammatory bodies.78 This finding is further supported by another study, which demonstrates that 
high-glucose/LPS and ATP enhance the release of pyroptosis-related factors IL-18 and IL-1β in GECs.69 Besides, the 
deletion of GSDMD reduces pyroptosis and kidney injury both in-vivo and in-vitro.69 Gu et al reported that high-glucose 
increases GSDMD-N and IL-1β, IL-18, which induces GECs pyroptosis.79 And sodium butyrate can improve GECs 
pyroptosis under diabetic conditions through Caspase1-GSDMD typical pyroptosis pathway.79 Hirudin has been found to 
ameliorate renal injury in DN. Further studies show that Hirudin significantly ameliorates the GECs injury by inhibiting 
GSDMD-mediated pyroptosis.69 Collectively, these findings suggest that GEC pyroptosis plays a pivotal role in the 
pathogenesis of DN. Therapeutic strategies that target GEC pyroptosis may offer promising avenues for the treatment of 
this debilitating disease.

Pyroptosis and Glomerular Mesangial Cells
Another study shows that streptozotocin-induced diabetic rats exhibit increased expression of Caspase-1, NLRP3, and 
IL-1β.70 This is consistent with the latest findings that high-glucose promotes the expression of Caspase-1, NLRP3, and 
IL-1β in GMCs.70,80 Sodium butyrate, through the NF-κB signaling pathway, reduces LPS and high-glucose-induced IL- 
1β expression in GMCs.79 These results suggest that GMCs pyroptosis is involved in the development of DN.

Pyroptosis and Renal Tubular Epithelial Cells
Hyperglycemia, proteinuria and oxidative stress can aggravate renal tubular injury.7,81,82 Changes such as apoptosis and 
interstitial fibrosis of TECs further lead to the decline of renal function and aggravate the process of DN.10 In diabetic 
rats, renal function is significantly impaired, accompanied by NLRP3-dependent pyroptosis, while high-glucose-induced 
expression of TECs pyroptosis-related proteins is increased.11,83 Reducing the expression of pyroptosis-associated 
protein can reduce the damage to renal function.11 High-glucose increases the expression of NLRP3, Caspase-1 and 
IL-1β and IL-18 in HK-2 cells, promotes TECs pyroptosis and induces renal tubular injury.71 Another study is verified 
that high-glucose could induce NLRP3, Caspase-1, and IL-1β expression in HK-2 cells. In addition, high-glucose also 
induced the expression of pyroptosis-related executive protein GSDMD.84 Inhibition of ROS/NLRP3/Caspase-1 
mediated pyroptosis can reduce cadmium-induced apoptosis of duck TECs, suggesting that inhibition of pyroptosis 
can reduce TECs injury.85 Selective Caspase-1 inhibitors VX-765 ameliorates ballooned cell membrane, decreases the 
expression of GSDMD cleavage, and the release of inflammatory cytokines in high-glucose induced HK-2 cells. On the 
other hand, VX-765 treatment can improve renal function, inhibit inflammatory cell infiltration and pyroptosis-related 
protein expression. Therefore VX-765 can downregulate collagen I and fibronectin deposition in DN mice to alleviate 
tubulointerstitial fibrosis.15 Pyroptosis upregulated TECs adhesion protein 1 (VCAM1) expression under high-glucose, 
while disulfiram treatment abrogating pyroptosis inhibited VCAM1 expression, inflammation and fibrosis in HK-2 cells. 
Disulfiram might improve fibrosis in DN by targeting renal tubular pyroptosis and VCAM1 expression.16 The above 
studies show that pyroptosis is closely related to TECs injury, and inhibition of TECs pyroptosis is expected to become 
an important target for reducing DN, suggesting that pyroptosis can be an important target for treating DN.

In summary, the pyroptosis of podocytes, GECs, GMCs and TECs is significantly activated in the diabetic state, and 
inhibiting pyroptosis can prevent the progression of DN, it can effectively inhibit the development of DN. The specific 

Diabetes, Metabolic Syndrome and Obesity 2024:17                                                                          https://doi.org/10.2147/DMSO.S450695                                                                                                                                                                                                                       

DovePress                                                                                                                       
1293

Dovepress                                                                                                                                                                 Li et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


targets of action and related pathways have yet to be further explored, and the mechanism of pyroptosis itself also needs 
to be explored. In the future, we may be able to find a cure for diabetic nephropathy with pyroptosis as the target.

Ferroptosis and DN
Ferroptosis is a new type of programmed cell death which has attracted widespread attention in recent years. It mainly 
refers to cell death caused by excessive accumulation of lipid peroxides under iron-dependent overload. Multiple factors 
are involved in the occurrence of ferroptosis including iron metabolism disorders, Cystine/glutamate reverse transporter/ 
glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway abnormality, oxidative stress, lipid peroxidation, tumor 
suppressor p53 targeted induction.

Ferroptosis is involved in many diseases such as diabetes,86 diabetic cardiomyopathy,87 DN88 and diabetic 
retinopathy.89 HG and palmitate trigger ferroptosis in mouse pancreatic β cells and mouse islets through decreased the 
level of expression of GPX4 and increased the level of expression of anti-acyl-CoA synthetase long-chain family 
member 4(ACSL4) while metformin is effective in inhibiting pancreatic β cells and mouse islets ferroptosis through 
regulation of the GPX4/ACSL4 axis.86 Palmitate induces cardiomyocytes ferroptosis, astragaloside IV ameliorated 
myocardial injury and improved contractile function, attenuated lipid deposition, and decreased the expression level of 
ferroptosis-related factors in DCM rats and cellular ferroptosis.87 Ferroptosis is increased in HG-treated HK-2 cells. 
ACSL4 is increased in kidney tissues of DN mice.88 HG stimulation increased those of MDA, ROS, GSSG, and Fe in 
HRECs.89 Mounting studies suggest that ferroptosis plays an important role in kidney cells injury and is one of the key 
mechanisms to induce DN, supporting that ferroptosis could be a potential therapeutic target for DN.90,91 The marker of 
ferroptosis, GPX4, is decreased in db/db mice and T2D patients, which means ferroptosis plays a pathophysiologic role 
in DN,68 which means ferroptosis might serve as a target for treating DN. In this section, we mainly separately discuss 
the role of ferroptosis in podocytes, GECs, GMCs and TECs.

Ferroptosis and Podocytes
HG induces podocytes injury by stimulating podocyte ferroptosis.92 Besides, high fructose feeding and intraperitoneal 
injection of STZ is helpful for establishing DN model.93 High fructose consumption induces podocyte ferroptosis in 
glomerular injury (main features include low-expression of ferroptosis protein markers SLC7A11 and GPX4, lipid 
peroxidation accumulation and cell death).94 Accumulating evidence suggests that some medicines can modulate 
ferroptosis in podocytes and show great potential for improving DN. Ginkgolide B alleviates ferroptosis in palmitic acid- 
high-glucose induced podocytes and DN mice through inhibiting GPX4 ubiquitination to improve DN.95 Germacrone 
possesses anti-inflammation, anti-apoptotic and antioxidative effects. Germacrone plays a pivotal role in the progression 
of DN. Recent study reveals that germacrone mediates the improvement of DN through regulating ferroptosis by 
targeting miR-188- 3p/GPX4 signaling axis.96

Ferroptosis and Glomerular Endothelial Cells
More and more studies have shown that HG induces ferroptosis of endothelial cells participates in diabetes retinopathy,89 

diabetes atherosclerosis,97 diabetic wounds,98 and diabetes-related limb ischemia.99 Previous studies have shown that 
glomerular endothelial cells ferroptosis plays an important role in the pathophysiological process of DN.100–102 HG 
induced ferroptosis in an in vitro model of DN by increasing iron concentration in HRGECs. Traditional Chinese 
medicine, Schisandrin A attenuates ferroptosis in HG induced HRGECs.100 Another study also suggests that high 
glucose-induces ferroptosis in HUVECs, as evidenced by the protective effect of the ferroptosis inhibitors, deferoxamine 
and ferrostatin-1, resulting in increased lipid ROS and decreased cell viability.101

Ferroptosis and Glomerular Mesangial Cells
Previous study has shown that ferroptosis activated in DN patients and in mesangial cells in response to HG.102 The 
research results indicate that the release of serum ferritin, LDH and ferroptosis-related proteins ACSL4, GPX4 are 
elevated in DN patients and HG-induced renal mesangial cells.102 Besides, galactose deficient IgA1 leads to ferroptosis 
in human mesangial cells by inhibiting PPARα and FABP1 expression. Levels of GPX4 were decreased in 
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immunoglobulin A nephropathy renal tissue, which means ferroptosis plays a key role in the processes of IgA 
nephropathy.103 Senescence is closely related to DN.104,105 Aging causes iron overload in renal tubules. Salidroside is 
a phenylpropanoid glycoside and acts as an anti-oxidative, anti-inflammatory, anti-aging, and alleviates renal interstitial 
fibrosis. Studies have suggested that salidroside delays renal aging and inhibits aging-related glomerular fibrosis by 
inhibiting ferroptosis in SAMP8 mice.106 Ferroptosis inhibitor ferrostatin-1 increased the expression of GPX4 in the 
mouse kidneys.106

Ferroptosis and Renal Tubular Epithelial Cells
HG injures rat renal tubular epithelial NRK-52E cells by triggering ferroptosis as demonstrated by the accumulation of 
iron content and down-regulation of GPX4, SLC7A11, indicators of ferroptosis.107 Another study also suggests that the 
GPX4 protein expression and GSH activity levels are decreased in HG induced HK-2 cells. Circular ASAP2 through 
SLC7A11 decreases the inflammation and ferroptosis in DN.108 Traditional Chinese Medicine glabridin ameliorates DN 
via suppressing ferroptosis in diabetic rats’ kidney and HG-induced NRK-52E cells.107

The above studies have explained the important role of ferroptosis regulated by related signaling pathways in the 
occurrence and development of DN at different cellular levels, indicating that the interaction between different cells in 
kidney tissue may provide clues to the pathogenesis of DN and targeting ferroptosis could provide a new way to prevent 
and treat DN.

Conclusions
In recent years, autophagy, pyroptosis and ferroptosis have attracted increasing attention, and have become a research 
focus in DN and other diseases. Besides, some drugs such as metformin and a large number of Chinese herbal medicines 
can improve DN by regulating autophagy, pyroptosis and ferroptosis, further proving that autophagy, pyroptosis and 
ferroptosis can be used as a star target for treating DN. However, the specific mechanism still needs to be further studied. 
Therefore, seeking targets that can act on autophagy and pyroptosis of podocytes, GECs, GMCs and TECs at the same 
time is expected to become a breakthrough in the treatment of DN.
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VCAM1, vascular cell adhesion protein 1; 3-MA, 3-methyladenine.
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