
1SCientifiC REPOrTS | 7: 14074  | DOI:10.1038/s41598-017-14320-0

www.nature.com/scientificreports

Antitumor activities of Liver-
targeting peptide modified 
Recombinant human Endostatin 
in BALB/c-nu mice with 
Hepatocellular carcinoma
Ma Yan1, Bao Dongmei2, Zhang Jingjing1, Jin Xiaobao1, Wang Jie1, Wang Yan1 & Zhu Jiayong1

In our previous study, a liver-targeting peptide CSP I-plus modified recombinant human Endostatin 
(rEndostatin, endostar) (rES-CSP) was constructed and showed potent antiangiogenic capability and 
could specifically bind to human hepatocellular carcinoma cells to make a direct inhibition in vitro. In 
this study, the biological activities of rES-CSP in vivo were evaluated by subcutaneous and orthotopic 
xenograft nude mice model of human hepatocellular carcinoma cells HepG2. We found that rES-
CSP significantly decreased tumor volume to 54.9% in the nude mice with subcutaneous xenograft 
compared with the control. In orthotopic xenograft model, rES-CSP not only decreased tumor volume 
(to 39.6% compared with the control) and tumor weight, it also increased its biodistribution in the liver 
tissue and hepatoma tissue. Moreover, lower microvessel density (MVD) and higher apoptotic index 
(AI) were also observed in the tumor tissues. It had no significant side-effects on the heart, liver, spleen, 
lung and kidney of mice. Results indicated CSP I-plus modified Endostar may be a potential candidate 
for a targeting therapy on hepatocellular carcinoma.

Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed cancer worldwide, and it is the second 
and sixth leading cause of cancer death in men and women, respectively1,2. Surgical resection and liver trans-
plantation are the most effective method of treating HCC. HCC has a long latent period, coupled with the high 
recurrence rate after surgery, in which chemotherapy is often the only option3,4. However, chemotherapy is often 
with a low response rate and some severe side-effects. Therefore, the 5-year overall survival rate is poor5. HCC 
has an abundant blood vessels, which has been identified to play a critical role in tumor growth, invasion, and 
metastasis6,7. Inhibition of angiogenesis may be an effective strategy to improve the overall survivals.

Endostatin (ES) has been proved to inhibit the proliferation, migration, and tube formation of endothelial 
cells, thus eventually interrupting angiogenesis and tumor growth8,9. Aside from its antiangiogenic activity, ES 
exerts a direct anticancer action in certain tumor cells. It could bind to cells with alpha5 integrin, inhibit cells 
migration, invasion and induced apoptosis, and reduced the development of highly vascularized mammary tum-
ors through down-regulation of VEGF expression10–12. The latest researches suggest ES also inhibits cell growth 
and migration by skewing macrophage polarity from a pro-tumorigenesis (M2) phenotype to a pro-immune 
(M1) phenotype13,14. Recombinant human Endostatin (rEndostatin, endostar), by the linkage of MGGSHHHHH 
to the N terminus stabilizes ES and has achieved favourable results combined with radiotherapy or chemotherapy 
in experimental and clinical research15–17.

It was reported that the therapeutic agents accumulating in the tumor could be as little as 5–10% of the dose 
accumulated in normal organs18. Limited accumulation of active therapeutic agents in the HCC site resulted in 
drug concentration too low to be efficacious for HCC. As such, there is a desperate need for a better treatment 
approach or drug delivery system to improve the therapeutic effect. Based on these, site-specific and targeted 
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drug delivery system for HCC treatment are proposed, in which the HCC-specific ligands or antibody modified 
carriers are utilized. Although monoclonal antibodies have shown clinical potential as tumor targeting agents, 
they are limited by their large molecular size and poor tumor penetration19. These limitations can be overcome by 
using peptide ligands, which are smaller, less immunogenic molecules, and easier to produce and manipulate20.

Circumsporozoite protein (CSP) is the major coat protein on the Plasmodium sporozoite that displays highly 
specific and highly efficient targeting to liver, and is required for sporozoite development and invasion of hepat-
ocytes21,22. CSP I-plus is N end of the CSP and could specifically bind to the liver which overexpress the highly 
sulfated heparan sulfate proteoglycans (HSPGs)23,24. In our previous study, the fusion protein was constructed 
with introducing the CSP I-plus sequence into the C-terminus of Endostar through bioengineering methods, and 
expressed in Escherichia coli. The biological activity tests showed that CSP I-plus modified Endostar (rES-CSP) 
inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) and showed 
potent antiangiogenic capability on HUVECs tube formation assay and chick embryo chorioallantoic mem-
brane(CAM) assay25. Meanwhile, rES-CSP could specifically bind to the hepatocellular carcinoma cells HepG2 
and made a direct inhibition on tumor cells in vitro26. But the biological activities of rES-CSP on homing to hepa-
tocellular carcinoma tissue and anti-HCC in vivo have unknown.

In order to study the effect of rES-CSP, subcutaneous xenograft and orthotopic xenograft of human hepa-
tocellular carcinoma cells HepG2 were established in remale BALB/c nu/nu nude mice. The antitumor effect 
of rES-CSP was measured. The biodistribution of rES-CSP was analyzed by ELISA and immunofluorescence. 
Meanwhile, the microvessel density (MVD) and apoptotic index (AI) of the tumor tissues were detected by 
anti-CD31 immunohistochemistry and the transferase mediated deoxyuridine triphosphate (dUTP)-digoxigenin 
nick end-labeling (TUNEL) assay. Finally, the influence on the morphology of the heart, liver, spleen, lung and 
kidney of mice was test by hematoxylin and eosin (H&E) staining. Those data further support that a liver-targeting 
peptide CSPI-plus modified Endostar may be a potential approach for the targeting treatment of hepatocellular 
carcinoma.

Results
Antitumor activity of rES-CSP in subcutaneous xenograft models.  Subcutaneous xenograft tumors 
of HepG2 human hepatocellular carcinoma were treated in the vicinity for four weeks, the tumor growth curve 
and tumor weight as shown in Fig. 1, tumors treated with rES-CSP grew very slowly, the tumor volume and tumor 
weight of the rES-CSP group was significantly different from that of the control group. Tumors of the Endostar 

Figure 1.  Inhibition of rES-CSP on HepG2 subcutaneous xenograft in nude mice. (A) Tumor size of xenograft 
tumor; (B) the growth curve of xenograft tumor; (C) statistics of tumor weight in different groups. (n = 8, 
mean ± SD, *P < 0.05. vs NS, ΔP < 0.05. vs Endostar).
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group also grew slower than the control group, but Endostar inhibitory effect was obviously weaker than rES-CSP, 
their inhibition rate of tumor size were 16.94% and 49.05% compared with the control, respectively.

Antitumor activity of rES-CSP in orthotopic xenograft models.  rES-CSP inhibited hepatocellular 
carcinoma growth in subcutaneous xenograft models of nude mice. We further analyzed the role of rES-CSP on 
hepatocellular carcinoma growth in orthotopic xenograft models. The results showed that rES-CSP also signifi-
cantly inhibited the growth of hepatocellular carcinoma compared with Endostar and the control (Fig. 2a). The 
tumor inhibition rates of rES-CSP and Endostar were 39.6% and 3.8%, respectively (Table 1).

HE staining showed that the tumor cells grew vigorously, arrangement irregularly, and they were large 
with more chromatin and blood vessels in the control group. Extensive necrosis and sparsely arranged nas-
cent tumor cells were mainly observed in rES-CSP treated group, whereas there was moderate necrosis in the 
Endostar-treated group and mild necrosis in the control group (Fig. 2b). These results indicate that rES-CSP has 
the inhibitory effect on the growth of hepatocellular carcinoma.

Figure 2.  rES-CSP inhibits tumor growth in nude mice bearing orthotopic xenograft tumor. Tumor size of 
orthotopic xenograft tumor. Pathological changes by HE staining (arrows show cancer necrosis; a: HE × 100, b: 
HE × 400),
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rES-CSP inhibited tumor angiogenesis and induced tumor cell apoptosis.  To further confirm the 
role of rES-CSP on angiogenesis in hepatocellular carcinoma, we stained the tumor tissues with anti-CD31 anti-
body. The immunohistochemistry staining indicated that the number and diameter of vascular networks treated 
with rES-CSP were fewer and smaller compared with those treated with Endostar or saline. MVD of hepatocellu-
lar carcinoma was determined by the vessel counts and calculated as illustrated in Fig. 3A. In tumors treated with 
saline and Endostar, MVD were (63.0 ± 9.32) and (47.1 ± 6.92) respectively, while MVD of those treated with 
rES-CSP was only (36.0 ± 5.37).

To evaluate the extent of apoptosis in tumor tissues, apoptotic cells were stained using the TUNEL method. A 
notable increase of apoptotic-positive cells was observed in the rES-CSP treated tumor compared with Endostar 
group and the saline control (Fig. 3B). Data of apoptotic indexes of the three groups were shown as follows: con-
trol group (2.48 ± 1.34%), Endostar group (4.76 ± 2.40%) and rES-CSP group (18.63 ± 4.77%) (Fig. 3D). These 
data suggested that CSP I-plus modified Endostar (rES-CSP) increased tumor cell apoptosis, supporting the 
notion that CSPI-plus modified Endostar had a synergistic effect in hepatocellular carcinoma.

rES-CSP accumulates to liver and HCC tissue in nude mice bearing orthotopic xenograft 
tumor.  To determine targeting efficacy of CSPI-plus modified Endostar (rES-CSP) in vivo, the concentration 
of human endostatin were measured by ELISA. Results showed that Endostar was nonspecific distribution all 
over the body, and the concentration of Endostar decreased rapidly. The concentration of rES-CSP was high in 
the kidney and blood within 5 min post injection and gradually decreased as the time elapsed, too. However, 
there was a significant increase in the liver and tumor tissue compared with Endostar (7.5 times and 6.7 times) at 
60 min after injection, indicating that rES-CSP accumulated to liver and HCC tissue.

Immunofluorescence detection of rES-CSP assessed its tissue distribution and revealed its binding speci-
ficity in mice bearing orthotopic xenograft tumor. As shown in Fig. 4, high levels of rES-CSP were detected in 
the normal liver tissue and tumor tissue, but not in lung tissue. At the same time, Endostar was no significant 
difference in the liver, tumor and lung tissues. Consistent with the above results of ELISA, CSPI-plus modified 
Endostar(rES-CSP) could accumulated to the liver tissue and HCC tissue.

rES-CSP has no potential side effects in the tumor bearing mice.  The toxicity of the therapeutic 
argent is evaluated according to the change of the body weight of the animal, which is the non-toxic reaction 
when the ratio of the end weight/the initial body weight is more than 0.8. The results showed that the ratio was 
no significant difference between the Endostar group and rES-CSP group (P > 0.05), and they were greater than 
0.8(Fig. 5A).

Visceral toxicity is the most common side effect of drugs. Next, we sought to determine whether rES-CSP 
exerted cardiotoxicity, epatotoxicity, spleen cell toxicity as well as nephrotoxicity in tumor-bearing mice by H&E 
staining. Myocardial filaments were dense and neatly arranged. The hepatocytes underwent no damage as the 
cytoplasm displayed no vacuolation. In addition, spleen nodules was clearly visible, alveolar and glomerular mor-
phology was normal. The kidney tissues displayed no tubular dilation and epithelial cell damaged. In a word, 
rES-CSP treatment had no obvious side effects.

Discussion
Research and Development of targeted drugs is leading in the field of drug development27. Hepatocellular car-
cinoma (HCC) has a fairly high morbidity and is notoriously difficult to treat due to long latent period before 
detection, multidrug resistance and severe drug-related adverse effects from chemotherapy. Liver-targeting 
drug modified through the liver-specific ligands that can selectively deliver into HCC sites, which could be uti-
lized to resolve the limitations of conventional chemotherapy. For example, N-lactosyl-dioleoyl phosphatidyl 
ethanolamine (Lac-DOPE) is a liver-specific targeting ligand via asialoglycoprotein receptors (ASGP-R), that 
a glycoprotein presents largely only on the liver cell surface. Lactosylated liposomes encapsulating doxorubicin 
(Lac-L-DOX) has significantly stronger tumor inhibitory activity compared with L-DOX and free doxorubicin, 
along with a higher accumulation of drug within the hepatocellular carcinoma site and greater cellular uptake by 
hepatocellular carcinoma cells28. Albert Lo used phage display to identify a novel peptide (SP94), which binds spe-
cifically to hepatocellular carcinoma cells in vitro. In vivo homing experiments show that PC94 has homing ability 
to tumor tissues, with a binding activity >8-fold higher than that of the control phage. With the conjugation 
of SP94 and liposomal doxorubicin, the targeted drug delivery system enhance the therapeutic efficacy against 
hepatocellular carcinoma xenografts through enhancing tumor apoptosis and decreasing tumor angiogenesis29.

The circumsporozoite protein (CSP) is the predominant surface antigen of Plasmodium sporozoites, a micro-
organism that displays highly specific and highly efficient targeting to liver, and is required for sporozoite devel-
opment and invasion of hepatocytes. CSP region I-plus containing the conserved region I amino acids (KLKQP), 
plus the basic amino acid domain upstream from region I is proposed to be responsible for Plasmodium targeting 
in vivo by binding to the highly-sulfated heparan sulfate proteoglycans (HSPG’s) found in liver30,31. Liposomes, 

Tumor 
Volume(mm3)

Tumor 
Weight(g)

Inhibition 
Ratio (%)

NS 216.34 ± 102.17 0.19 ± 0.06 —

Endostar 208.19 ± 113.17 0.18 ± 0.10 3.8

rES-CSP 130.73 ± 43.82*,Δ 0.09 ± 0.03*,Δ 39.6

Table1.  The effect of rES-CSP to the tumor value and tumor weight. (n = 8, mean ± SD, *P < 0.05. vs NS, 
ΔP < 0.05. vs Endostar).
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containing the amino acid sequence of CSP region I-plus that binds to hepatic heparan sulfate glycosaminogly-
can, show effective targeting to liver23,24. Furthermore, these liposomes can deliver doxorubicin selectively to liver 
and HCC in vivo32.

Our previous study suggest that CSP I-plus modified recombinant human Endostatin (rEndostatin, Endostar) 
could specifically target to hepatocellular carcinoma cells, to achieve higher local concentrations and showed 
higher anti-angiogenic capability on HUVECs tube formation assay and chick embryo CAM assay, when com-
pared with unmodified rEndostatin given at similar doses25. Furthermore, CSP I-plus modified rEndostatin also 
specifically targeted to hepatocellular carcinoma cells and made a direct inhibition on tumor cells in vitro26. In the 
present study, CSP I-plus modified recombinant human Endostatin (rES-CSP) gradually decreased as Endostar 
in the kidney, spleen tissue, blood, but increased significantly in the liver and hepatocellular carcinoma tissues, 
which demonstrated that CSP I-plus modified Endostar(rES-CSP) improved the accumulation in liver and HCC 
cells, and significantly enhanced the inhibitory effects on tumor growth in nude mice with subcutaneous and 
orthotopic xenograft models of hepatocellular carcinoma HepG2. The latter effect was supported by the massive 

Figure 3.  The effects of rES-CSP on tumor MVD and cell apoptosis. (A) MVD measurement by 
Immunochemical staining. Yellow color of the tumor tissues is positive CD31 (×400); (B) Cell apoptosis by 
TUNEL staining (×200). Green color is apoptotic cell stained by TUNEL; blue color is the cell nucleus stained 
by DAPI. (C) Comparision of MVD count after treatment among three groups. (D) Quantification of cell 
apoptosis from conditions in (B) (n = 8, mean ± SD, *P < 0.05.vs NS; ΔP < 0.05 vs Endostar).
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tumor cell necrosis, significantly declined tumor MVD, and increased tumor cell apoptosis. This may be due to 
the specific binding of CSP I-plus to the HSPGs receptor in hepatocytes and HCC cells. rES-CSP was further 
transported into the HCC cells through a receptor mediated active targeting, demonstrating the advantage for 
the treatment of HCC.

The mostly causes of death of cancer patients are liver or kidney failure. Meanwhile current clinical use of 
anti-tumor chemotherapy drugs have intrinsically toxic of different levels to the heart and lung and kidney, which 
significantly accelerated cancer patients functional organ failure and limit the dose of chemotherapy drugs and 
even the use of. Besides toxicity, chemotherapy can lead to side-effects like fatigue, hair loss and weight loss. We 
evaluated the toxicity of rES-CSP according to the changes of the body weight and the visceral organ histomor-
phology, and confirmed that rES-CSP has no significant side effects, can be as a safe candidate drug for anti-HCC. 
The results in this study were consistent with previous reports16,33.

In summary, rES-CSP increased antitumor activity, improved selectivity and had no significant side-effects 
in BALB/c nude mice with hepatocellular carcinoma. Experiments are ongoing in our laboratory to determine 
whether CSP I-plus could increase other antitumor domains (e.g. interferon α, interleukin-24, tumor necrosis 
factor α, etc) homing to hepatocellular carcinoma cells and their biologic activity. In addition, the detailed mech-
anisms for homing to liver and the directly efficacy of CSP I-plus-rEndostatin in treatment of hepatocellular car-
cinoma may need further studies. rES-CSP may be a potential therapeutic agent for human HCC, and CSP I-plus 
thus has significant clinical potential to improve the targeting treatment of of the liver diseases.

Materials and Methods
Materials.  Recombinant human endostatin (Endostar) was purchased from Shandong Simcere-Medgenn 
Bio-Pharmaceutical Co.,Ltd and dissolved in phosphate buffered saline(PBS) at a concentration of 3.0 g/L. The 
fusion proteins (rES-CSP) were prepared after expressing and purification by our laboratory and diluted in PBS 
at a concentration of 3.0 g/L. Reagents were sterilized by passing through a 0.22 µm filter and stored at −20 °C. 
Human Endostatin ELISA kit was purchased from RayBiotech. Antibodies to CD31 and Endostatin were pur-
chased from Abcam. The in situ cell death detection kit was purchased from Roche.

Figure 4.  Tissue distribution comparison in mice bearing orthotopic xenograft tumor. (A) The concentration 
of human endostatin were measured at 5, 30 and 60 min time points after intravenous administration of 
rES-CSP and Endostar by ELISA. (B) Biodistribution of rES-CSP and Endostar were taken in lung, liver and 
hepatoma as indicated by representative endostatin immunostaining images. Red color is staining for anti-
endostatin with PE.
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Animals and cell culture.  Female athymic BALB/c nu/nu mice(body weight 18–22 g, 4–6 weeks old) were 
obtained from the Guangdong Medical Laboratory Animal Center(GDMLAC). Mice were raised under specific 
pathogen-free conditions. Principles of laboratory animal care were followed and all procedures were conducted 
according to the guidelines established by the Institutional Animal Care and Use Committee at the Chinese 
Academy of Medical Science and National Institutes of Health. Every effort was made to minimize suffering. This 
study was approved by the Animal Experiment Committee of Guangdong Pharmaceutical University. Human 
hepatocellular carcinoma cell HepG2 was purchased from Shanghai Cell Biology Institutes of China and cultured 
in DMEM (supplemented with 10% fetal bovine serum, 100 µg/ml streptomycin and 100 U/ml penicillin) in 
humidified air containing 5% CO2 at 37 °C

Tumor growth assays in subcutaneous xenograft nude mice models.  Briefly, approximately 1 × 107 
HepG2 cells were collected and suspended in 0.1 ml PBS, and injected subcutaneously into the beneath flank of 
BALB/c nude mice. The subcutaneous tumors were allowed to grow up and tumor volumes were measured with 
caliper. When the maximum diameter of tumor was reached approximately 5 mm, mice were treated with 15 mg/
kg Endostar or rES-CSP in the vicinity of the tumor once a day for four weeks. Equal volume of saline was injected 
in the control mice. The longer (L) and the width (W) of the tumor were measured every 6 days in period. The 
tumor volume was calculated via the formula V = (LW2)/2. Mice were sacrificed on the third day after the last 
administration. Tumors were excised, weighed and photoed.

Tumor growth assays in orthotopic xenograft nude mice models.  When the maximum diameter 
of subcutaneous xenograft tumors were reached approximately 1 cm, tumors were removed, minced into small 
pieces about 2 mm3 and surgically implanted in the livers of 24 nude mice. The animals were randomly divided 
into three groups (n = 8). On day 7 to 37 after surgery, 15 mg/kg Endostar and rES-CSP were injected into mice 
once a day by tail vein respectively, and the mice were injected saline as negative control. All mice were sacrificed, 
and tumors were excised, weighed and photoed on day 38. And the weights of the tumors were measured to eval-
uate the anti-tumor effects. The inhibition rates of tumors with the formula:

Figure 5.  Side effects of rES-CSP was evaluated in the tumor bearing mice. (A) The growth state of the nude 
mice. (B) HE staining pictures of visceral tissue after rES-CSP treatment (a: HE × 100, b: HE × 400).
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Histopathology.  The heart, liver, spleen, lung, kidney and tumor tissue of mice bearing orthotopic xenograft 
tumor were respectively harvested at the end of the experiment on day 38 post-surgery. Samples were excised, 
fixed with 10% neutral phosphate-buffered formalin and embedded in paraffin. Continuous sections (5 µm) were 
obtained and stained with hematoxylin and eosin (H&E) for histomorphometric analyses.

Tumor microvessel density (MVD) measurement.  To investigate the effects of the fusion protein on 
tumor angiogenesis, tumor microvessel density (MVD) was quantified using anti-CD31 immunostaining. Tumor 
sections were incubated with monoclonal rabbit anti-CD31 antibody (Abcam) at a dilution of 1:50 overnight at 4 
°C and then rinsed three times, followed by HRP- conjugated anti-Rabbit lgG(H + L) for 1 h. Immuno-reactivity 
was detected by the standard avidin–biotin immunoperoxidase method. Counterstaining with Meyer’s hematox-
ylin was then performed for 5 min. Images were photographed under light microscope (Olympus, Japan). Tumor 
microvessel density was measured using Image-Pro Plus 6.0 software.

In situ cell death detected by TUNEL assay.  Apoptosis-induced DNA fragmentation was determined 
by the transferase mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end-labeling (TUNEL) assay in 
accordance with the manufacturer’s instructions. Briefly, tumor sections were dewaxed and rehydrated according 
to standard protocols, and permeabilized with 0.1% Triton X–100 in 0.1% sodium citrate for 8 min. TUNEL stain-
ing was done using the in situ cell death detection kit (Roche) and the nuclei were stained with DAPI for 10 min. 
The numbers of TUNEL-positive cells and the total cells were captured with fluorescence microscope (Olympus). 
Cell apoptosis was measured using Image-Pro Plus Software.

Detection of biodistribution by ELISA.  The biodistribution of rES-CSP in vivo was determined using 
human Endostatin ELISA kit (RayBiotech). Orthotopic xenograft models were established for four weeks, serum 
and the supernatant of five internal organs were collected at 15, 30, 60 min after single-dose tail vein injection, and 
measured by ELISA following the manufacturer’s instructions. In brief, 100 µl of diluted serum or supernatant 
samples were loaded in pre-coated 96-well strip microplate and incubated at RT for 2 h. Diluted HRP-Streptavidin 
solution was added to each designated well at 37 °C for 1 h. TMB substrate buffer was added to each well, and 
stopped after 10 min by treating with 100 µl of stop solution. The ELISA results were expressed as the OD values 
measured at 450 nm by a microplate reader.

Detection of binding specificity by immunofluorescence.  Internal organs of orthotopic xenograft 
mice were collected at 60 min after single-dose tail vein injection, embedded in O.C.T.and cut into 5 µm frozen 
sections. The sections were treated with 10 mM citrate buffer (pH 6.0) at 95 °C to retrieve antigens and blocked 
with 10% BSA (Albumin from bovine serum), stained with anti-ES polyclonal antibody, and then PE-conjugated 
anti-mouse lgG antibody. Red fluorescent protein-positive foci were analyzed by fluorescence microscopy. The 
integrated absorbance was quantitated by Image-Pro Plus software.

Statistical analysis.  Statistical analysis of data was processed with SPSS13.0 software. All quantitative data 
were presented as mean ± SD and analyzed by one-way ANOVE for multiple comparisons. Results with p < 0.05 
were considered statistically significant.
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