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Abstract
Purpose of Review To highlight and review the application of artificial intelligence (AI) in kidney stone disease (KSD) for 
diagnostics, predicting procedural outcomes, stone passage, and recurrence rates. The systematic review was performed 
according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) checklist.
Recent Findings This review discusses the newer advancements in AI-driven management strategies, which holds great 
promise to provide an essential step for personalized patient care and improved decision making. AI has been used in all 
areas of KSD including diagnosis, for predicting treatment suitability and success, basic science, quality of life (QOL), and 
recurrence of stone disease. However, it is still a research-based tool and is not used universally in clinical practice. This 
could be due to a lack of data infrastructure needed to train the algorithms, wider applicability in all groups of patients, 
complexity of its use and cost involved with it.
Summary The constantly evolving literature and future research should focus more on QOL and the cost of KSD treatment 
and develop evidence-based AI algorithms that can be used universally, to guide urologists in the management of stone 
disease.

Keywords Machine learning · Artificial intelligence · Endourology · PCNL · Ureteroscopy · ESWL

Introduction

Artificial intelligence (AI) refers to the computational capa-
bility of the machine to mimic and perform human cognitive 
tasks. Substantial amounts of data are available from the 
electronic medical records (EMRs) which provide important 
information, which aids clinicians in shared decision-making 
and patient counseling [1••]. Machine learning, a subfield of 
AI, has most readily been applied to clinical research, with 
techniques including deep learning (DL), artificial neural 

networks (ANN), natural language processing (NLP), and 
computer vision being applied across various subfields of 
urology to aid in the diagnosis as well to predict treatment 
outcomes [2••].

In the last two decades, there has been a rapid transition 
in the analysis, treatment, and monitoring of cases with kid-
ney stone disease (KSD). The most recent example being 
the use of AI in radiomics to identify the stone dimensions 
from computed tomography (CT) and ultrasound (US) 
images, detecting stone composition, predicting spontaneous 
stone passage, and predicting outcomes of endourological 
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procedures. The present systematic review aims to give a 
comprehensive summary of the contemporary applications 
of AI in the field of urolithiasis.

Search Strategy and Article Selection

A review of all English language literature published in the last 2  
decades (2000–2020) was conducted in October 2020 using MED-
LINE, Scopus, CINAHL, Clinicaltrials.gov, EMBASE, Cochrane  
library, Google Scholar, and Web of Science. The search strategy  
was conducted according to the PICO (Patient–Intervention– 
Comparison–Outcome) [3] criteria where patients with KSD 
(P) were managed with AI models (I) or traditional biostatistical 
models (C), and these were examined to evaluate the efficacy of 
AI models (O). A dedicated search string was then created based 
on a combination of the following keywords: “Artificial intelli-
gence,” “AI,” “Machine learning,” “ML,” “ANN,” “convolutional 
networks,” “CNN,” “deep learning,” “DL,” “urolithiasis,” “kidney 
stone disease,” “ureteric stones,” “nephrolithiasis,” “renal calculi,” 
“kidney calculi,” and “bladder stones.”

The systematic review was performed according to the 
Preferred Reporting Items for Systematic Reviews and Meta-
analyses (PRISMA) checklist [4]. Only original articles in 
the English language were included.

Inclusion criteria:

1. Articles on KSD and AI
2. Full-text original articles on all aspect of diagnosis, 

treatment, and outcomes of stone disease

Exclusion criteria:

1. Editorials, commentaries, abstracts, reviews, or book 
chapters

2. Animal, laboratory, or cadaveric studies

The literature review was performed according to the inclusion 
and exclusion criteria. The titles and abstracts were evaluated and 
after the screening, analysis of the full article text was conducted 
for selected articles that met the inclusion criteria. The references 
list of the selected articles was individually and manually reviewed 
to screen for additional articles of interest. Disagreements about 
eligibility were resolved by discussion for a consensus decision.

Results

Evidence Synthesis

The initial search identified a total of 557 unique articles. 
From this list, 113 articles remained following the initial 
screening, with 92 remaining after a further screening of 
the abstracts. After additional review of the full-text articles, 

a total of 58 articles were identified that met our inclusion 
criteria and were subsequently included in the final review as 
per PRISMA (Fig. 1). A summary of the included studies is 
reported in two different tables (Tables 1 and 2) and the AI 
models used in each study are depicted in Fig. 2.

Applications of AI

Imaging of KSD

Ten studies evaluated the role of AI in KSD imaging for 
the diagnosis of stone disease. Langkvist et al. [5] used a 
deep learning convolutional neural network (DCNN) to 
distinguish ureteric stones from phleboliths based on the 
thin-slice CT images from the database of 465 patients. The 
model was tested on 88 scan images. The results showed a 
sensitivity of 100% with a mean false positive rate of 2.68 
per patient [5]. Parakh et al. studied the diagnostic perfor-
mance of the CNN on CT images for detection of urinary 
stones in 535 adult patients assumed to have renal calculi 
using two scanners. The first scanner identified the urinary 
tract and the second detected the stone. Using nine differ-
ent variation models, it achieved an accuracy of more than 
90%. The study concluded that the efficiency of CNNs can 
be improved by the use of transfer learning with datasets 
augmented with labeled images [6].

De Perrot et al. developed an ML model to distinguish 
kidney stones and phleboliths based on the radiomics feature 
extraction from low-dose CT (LDCT) images. The model 
reached an AUC of 0.902, an accuracy of 85.1%, and PPV 
and NPV of 81.5% and 90.0% respectively [7•]. Jendenber 
et al. (2020) trained and developed a CNN model to distin-
guish distal ureteric calculi and phleboliths based on the 
features of non-contrast CT (NCCT) images and compared 
these results with assessments reported by seven expert radi-
ologists. The CNN model achieved a significantly higher 
accuracy of 92%, compared to 86% by the radiologists. The 
sensitivity, specificity, and AUC of the model to differentiate 
the distal ureteric calculi and phleboliths were 94%, 90%, 
and 0.95 respectively [8].

Racine et al. applied novel deep learning image recon-
struction (DLIR) methods to check its impact on dose reduc-
tion in abdominal CT and compared the results with partial 
model-based iterative reconstruction (ASiR-V) and filtered 
back-projection (FBP). In terms of results, DLIR outper-
formed ASiR-V in all simulated clinical scenarios and at all 
dose and contrast levels [9].

Krishna et al. proposed a field programmable gate array 
(FPGA)-based computer-aided detection (CAD) algorithm 
on US images for detecting abnormality in the kidney, by 
extracting intensity histogram and Haralick features from 
the segmented region of interest and trained support vector 
machine (SVM) and multilayer perception (MLP) classifiers, 
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to classify between renal stones and cyst. The proposed algo-
rithm gave an accuracy of 98.1%, sensitivity of 100%, and 
specificity of 96.8% in detecting the exact abnormality pre-
sent on the renal US images. The proposed algorithm and its 
hardware could help diagnose renal pathology in absence of 
radiologists and internet connectivity [10].

Li et al. [11] trained a back-propagation ANN to evaluate 
the best method for localizing renal stone on PCNL between 
B-mode US and X-ray. Data from 208 patients were used 
for training while data from 47 patients were used for test-
ing. The results showed that the B-mode US with X-ray was 
preferred for puncture localization of complex and small 
renal stones while X-ray was preferred as a single modality 
in case of simple and larger calculi [11].

Selvarani and Rajendran [12] used the meta-heuristic 
support vector machine for identifying renal stones on US 
images. The algorithm was trained with 250 US images (150 
with stones and 100 without stones) and achieved an accu-
racy of 98.8% [12].

Ishioka et al. (2019) used a CNN (ResNet) algorithm for 
CAD of urinary tract calculi using more than 1000 X-ray 
KUB images from 3 different hospitals. Eight hundred and 
twenty-seven images were used as training data and 190 
images as test data. In the test dataset, the positive predictive 
value, sensitivity, and F-measure were 0.49, 0.72, and 0.58, 
respectively [13].

Nithya et al. developed an ANN model for the detection of 
kidney stones based on the US images using a multi-kernel 

Fig. 1  PRISMA flowchart of the literature selection process for articles
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1 3

k-means clustering algorithm. The algorithm mainly clas-
sified the image as abnormal or normal using the classifier 
and then the abnormal images were further segmented for 
the detection of kidney stones. The study showed that the 
linear and quadratic based model achieved an accuracy of 
99.6% [14].

Detecting Stone Composition

Nine studies looked at the role of AI in the detection of 
stone composition. Kreigshauser et al. predicted the stone 
composition from the CT images by using ML-based algo-
rithms. For stone sizes > 5 mm, they achieved an accuracy 
of 100% for distinguishing stones containing uric acid (UA) 
from others. Furthermore, they achieved an accuracy of 75% 
in distinguishing non-uric acid (non-UA) subtypes [15].

Kazemi and Mirroshandel collected information from 
936 patients and derived an ensemble learning model for 
predicting renal stone composition based on various param-
eters such as uric acid levels; serum calcium levels; gender; 
associated symptoms like loin pain, nausea, and vomiting; 

urinary tract infection; and co-morbidities like hypertension 
and diabetes. An accuracy of 97.1% was achieved with this 
model and it showed that these results could be applied in 
future research activities for predicting stone composition 
and for recurrence prevention [16•].

Aldoukhi et al. and Black et al. trained a DCNN model to 
detect stone composition based on the images. Sixty-three 
stones were taken in the study and the results displayed 
accuracy of identifying the stone composition of nearly 
94%, 90%, 75%, and 86% for uric acid, calcium oxalate, 
cysteine, and triple phosphate stones respectively. The over-
all accuracy was 85% in the detection of stone composi-
tion. These results have laid a foundation for future research 
on the detection of the stone composition directly from the 
endoscopic images and could automate the laser settings for 
treatment [17, 18•].

Bejan et al. developed StoneX, a natural language pro-
cessing (NLP) algorithm for mining kidney stone composi-
tion in a large-scale electronic health record (EHR) of > 125 
million notes. Overall, the system achieved a positive pre-
dictive value > 90% for all stone types except for uric acid 

Fig. 2  A descriptive summary of number studies on artificial intelligence in endourology and the models used under each field
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(PPV = 87.5%). Survival analysis from second stone surgery 
showed statistically significant differences among stone types 
(P = 0.03). Several phenotype associations were also found 
such as uric acid—diabetes mellitus type 2; struvite—UTI 
and neurogenic bladder; hydroxyapatite-neurogenic bladder 
and pulmonary collapse; and brushite—hypercalcemia or cal-
cium metabolism disorder. This showed that these tools will 
enable high fidelity kidney stone research from the EHR [19].

Hokamp et  al. used dual-energy CT (DECT) images 
of 200 kidney stones with known composition to train the 
ML model and predict the main stone composition, in the 
pure (n = 116) and mixed (n = 84) kidney stones of sizes 
3–18 mm. Both normal-dose and low-dose CT protocols 
were used for image acquisition. Accuracy was calculated 
based on stones and voxel both. While the model achieved 
an accuracy of nearly 90% in predicting the key component 
of the stone, the lowest accuracy was achieved while detect-
ing the key component of struvite stones [20].

Sacli et al. applied the k-nearest neighbor ML algorithm 
to classify the renal calculi into cystine, calcium oxalate, 
and struvite stones based on the dielectric properties of the 
renal calculi. It achieved an accuracy of 98.1% in detecting 
the stone composition and classifying correctly based on the 
Cole–Cole parameters [21].

Cui et al. applied the radiomics algorithm to the NCCT 
images to distinguish between infective and non-infective 
stones. Twenty-seven radiomic features from CT images 
were finalized based on the LASSO algorithm. The model 
was trained with images of clinically confirmed infective 
(n = 98) and non-infective (n = 59) patients. The algorithm 
could differentiate with an accuracy of 90.7%. The sensitiv-
ity, specificity, PPV, and NPV were 85.8%, 93.9%, 91%, and 
91% respectively [22].

Zhang et al. trained SVM classifiers to assess the accu-
racy of computed tomography texture analysis (CTTA) in 
differentiating non-uric acid stones from uric acid stones on 
NCCT in patients with urinary calculi using commercially 
available software, with ex vivo Fourier transform infrared 
spectroscopy (FTIR) as the reference standard. The average 
SVM accuracy ranged from 88 to 92% (after tenfold cross-
validation) with an AUC of 0.965 ± 0.029 with a sensitiv-
ity of 94.4% and specificity of 93.7%, thereby concluding 
that CTTA can be used to accurately differentiate UA stones 
from non-UA stones in vivo using NCCT images [23].

Extracorporeal Shockwave Lithotripsy (ESWL)

Twelve studies looked at the role of AI in ESWL. Poulakis 
et al. used ANN to predict the outcomes of ESWL used for 
the treatment of lower calyceal stones using the retrospective 
dataset of 680 patients, achieving an accuracy of 92%. The 
predictors of stone clearance included the pattern of dynamic 
urinary transport, followed by infundibuloureteropelvic 

angle, body mass index (BMI), caliceal pelvic height, and 
stone size [24].

Hamid et al. took data of 60 patients in whom ESWL was 
successfully used to fragments stones and used it to train 
ANN and subsequently applied it to 22 patients for predict-
ing the number of shockwaves for adequate fragmentation. 
The overall prediction accuracy was 75% and showed that 
ANN could identify patients who were not likely to gain 
any advantage from ESWL and that further studies could 
improve the prediction accuracy [25•].

Gomha et al. used ANN models to improve the predic-
tion of stone-free status after ESWL for ureteral stones and 
compared them to a logistic regression (LR) model using a 
dataset of 984 patients (70% training: 30% test). The sensi-
tivity and specificity of the LR and ANN models were 100%, 
0.0%, and 77.9%, 75% respectively with an overall accuracy 
of 93.2% and 77.7% [26].

Goyal et al. compared the accuracy of ANN and multivari-
ate regression analysis (MVRA) for renal stone fragmenta-
tion by ESWL. A total of 276 patients were included, 196 for 
training the ANN, and 80 for testing it. ANN proved to have 
a better coefficient of correlation (COC) (power = 0.8343, 
number of shocks = 0.9329) than MVRA (power = 0.0195, 
number of shocks = 0.5726), thereby suggesting a better tool 
to analyze the stone fragmentation by ESWL [27]. Moorthy 
and Krishnan applied first-order statistical methods and ANN 
to NCCT images for predicting stone fragmentation using 
ESWL. The model had accuracy, sensitivity, and specificity 
of 90%, 80.7%, and 98.4% respectively [28].

Handa et al. developed a method to quantify the hemor-
rhagic injury to kidneys post ESWL using a Multi-Spectral 
Neural Network (MSNN) classifier for segmentation and 
classification of MRI images. The model achieved a high 
accuracy (79%) and the prediction values correlated very 
well (R = 0.96) with the morphology [29].

Seckiner et al. and Choo et al. used ANN and machine 
learning methods to accurately predict the outcomes post 
ESWL for renal calculi and ureteral calculi respectively. 
Seckiner et al. achieved an accuracy of 88.2%, after ANN 
trained data of 139 patients and testing it on 32 patients. 
Choo et al. achieved an accuracy of 92% in their study of 
791 patients [30, 31]. Mannil et al. used 5 different AI mod-
els and predicted the success rate of ESWL in patients with 
5–20 mm kidney stones based on 224 3D-texture analysis 
features obtained from the CT images. The three features 
which were found to be significant in predicting the success 
of ESWL were BMI, skin stone distance, and stone size. 
The random forest classifier (RF) was found to be the most 
accurate with an overall AUC of 0.79 [32].

Singla et al. proposed a computer vision algorithm to 
improve stone targeting during ESWL treatment. The model 
was trained using a retinanet algorithm on annotated fluoro-
scopic images of 90 patients and then tested on 12 patients, 
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using a total of 2413 images. The average precision (AP) 
was 0.7 ± 0.1 while the average detection time (± stdev) was 
63 ± 1 ms [33].

Yang et al. used ML methods such as random forest (RF), 
extreme gradient boosting trees (XGboost), and light gra-
dient boosting method (LightGBM) to predict the success 
rate of ESWL and also assess the factors affecting the out-
comes using a dataset of 358 patients in the ratio of 80:20 
as training and test dataset. In predictions for stone-free, 
LightGBM yielded the best accuracy (87.9%) with AUC 
0.84–0.85 and sensitivity and specificity of 0.74–0.78 and 
0.92–0.93 respectively [34].

Seltzer et al. applied DL techniques to develop a predic-
tion algorithm to provide better care and improve shared 
decision making using a dataset from 75/25 randomized split 
of 46,891 treatments sampled from the International Stone 
Registry (ISR). The prediction accuracy of stone clearance 
was 88% with an AUC of 0.95 while predicting complica-
tions yielded an accuracy of 77% and an AUC of 0.73 on the 
validation set [35].

Percutaneous Nephrolithotomy (PCNL)

Four studies looked at the role of AI in PCNL. Aminsharifi 
et al. developed an ANN algorithm to predict outcomes of 
PCNL by training the machine with data of 200 patients 
and later applied it on 254 study subjects. The algorithm 
was able to achieve a sensitivity and accuracy range of 
81 to 98.2%. Aminsharifi et al. studied data of 146 adult 
patients in whom PCNL was done to validate the efficiency 
of a machine-based learning algorithm for predicting the 
outcomes after PCNL and to compare results with CROES 
(Clinical Research Office of Endourological Society) nomo-
gram and Guy’s Stone Score (GSS). This program predicted 
the PCNL results with an accuracy of up to 95% [36, 37••].

Shabaniyan et al. developed a decision support system 
(DSS) using ML techniques to predict the outcomes of surgi-
cal treatment for renal calculus. The algorithm was trained 
with a dataset of 254 patients and 26 parameters which 
comprised variables from patient’s history, stone composi-
tion, and laboratory investigations. This model achieved an 
accuracy of 94.8%, 85.2%, and 95% in predicting outcomes, 
stent requirement post-procedure, and the need for blood 
transfusion respectively [38].

Taguchi et al. developed a renal phantom model using 
automated needle targeting with an X-ray system and com-
pared the feasibility of AI-driven robot-assisted fluoroscopy-
guided (RAG) puncture using the US. Seventeen surgeons 
participated and parameters such as the number of needle 
punctures, device setup time, fluoroscopic time, and total 
procedural time were recorded for the analyses. The RAG 
group was better across all parameters with a statistically 

significant difference (p < 0.001) with a single puncture suc-
cess rate of 100% in the RAG group [39].

Ureteroscopy (URS)

Inadomi et al. developed a Random Forest ML model to 
predict the requirement of stent insertion post-URS to help 
improve patient counseling and shared decision making 
using registry data of 3224 patients who underwent stent 
insertion. The researchers divided the dataset randomly into 
training and testing sets at a ratio of 2:1. The variables used 
were age, prior stent placement, BMI, stone location, proce-
dure acuity, and history of stone surgery The model achieved 
an AUC of 0.70 on the test set [40].

Prediction of Outcomes of Endourological 
Procedures

Alger et al. developed a neural network using pre-and post-
procedural data to predict stone-free status for patients 
treated with ESWL, PCNL, or URS. The model was trained 
on data from 821 patients and could predict the stone-free 
rate (SFR) with sensitivity, specificity, PPV, and NPV of 
70%, 61%. 61.4, and 72.3 respectively. The model achieved 
a ROC-AUC of 0.73 [41].

Kadlec et al. designed a model that could predict out-
comes of various endourological procedures (PCNL, URS, 
SWL) and studied the input and outcome variables of 382 
renal units. The model predicted stone-free status (defined as 
stone-free on X-Ray KUB or < 4 mm on CT) with sensitiv-
ity and sensitivity of 75.3% and 60.4% respectively. It also 
predicted the need for a secondary procedure with 98.3% 
specificity but only 30% sensitivity. This study laid the foun-
dation for the development of similar predictive nomograms 
in the future [42].

Zhao et al. used Bayesian network meta-analysis (NWA) 
to assess the efficacy and safety of various minimally inva-
sive procedures for 10–20 mm pediatric renal stones and 
found that ESWL was inferior to RIRS, mPCNL (mini 
PCNL), and PCNL for 10–20 mm pediatric renal stones, 
among which SMP (supermini PCNL) was the most ideal 
option, associated with the least possibility of complications 
and highest probability of stone clearance [43].

Prediction of Spontaneous Stone Passage (SSP)

Five studies looked at the role of AI in SSP. Cummings et al. 
designed the ANN model to predict the passage of ureteric 
calculus based on patient, clinical, and laboratory variables. 
Out of 181 patients, data from 125 were used to train the 
model. Of the test dataset of 55 cases, the model correctly 
predicted SSP in 76% [44].
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Parekattil et al. designed and validated a neural net-
work model to predict outcomes and duration of stone 
passage for ureteral/renal calculi using 6 mm as a cut-off. 
The model was also evaluated using a 6 mm largest stone 
dimension cut-off and was tested on 384 patients from 6 
different external institutes (other than the design insti-
tute). It provided an accuracy of 88% with ROC-AUC 0.9 
and duration of passage accuracy of 80% with ROC of 
0.8 [45].

Moro et al. applied support vector machines (SVM) to 
predict the spontaneous passage of ureteric calculi. The 
machine was trained with a dataset of 1163 patients and 
the results were compared with those obtained with LR and 
ANN. The SVM-based approach yielded a sensitivity and 
specificity of more than 84%. It also suggested the most 
important factors responsible for SSP in descending order 
as calculus size, its location, and the duration of symptoms 
[46].

Kim et al. used LR and MLP-ML models to predict the 
spontaneous ureteral stone passage using a dataset of 833 
patients. AUCs for ROC curves for MLP and logistic regres-
sion were 0.859 and 0.847 for stones < 5 mm and 0.881 
and 0.817 for stones between 5–10 mm, respectively [47]. 
Solakhan et al. used the ANN model to estimate the SSP and 
to determine the effectivity of predictive factors in patients 
with ureteral stones. A total of 192 patients included a train-
ing group (n = 132), the validation group (n = 30), and a test 
group (n = 30). The accuracy rate achieved was 99.1% in the 
training group, 89.9% in the validation group, and 87.3% 
in the test group. It was revealed that certain criteria (stone 
size, body weight, pain score, erythrocyte sedimentation rate 
(ESR), and C-reactive protein (CRP)) were relatively more 
significant for saving treatment cost and time, thereby avoid-
ing unnecessary treatment [48•].

Various Other AI Applications in Diagnosis 
and Prediction in Urolithiasis

Chiang et al. predicted the association of stone diseases 
with genetic polymorphisms as well as dietary, drinking, 
and exercise habits of the patients using tools like discrimi-
nant analysis (DA) and ANN. Four different genes vascu-
lar endothelial growth factor, urokinase, cyt-p450c17, and 
E-cadherin were compared between 151 and 105 patients 
with and without KSD respectively. Beverages and water 
consumption and outdoor exercise activities were also con-
sidered. The results showed that DA classified 74% and 
ANN classified 89% correctly. ANN was also proven to be 
better than DA when all the factors were pooled together 
[49].

Tanthanuch and Tanthanuch developed an ANN model 
to identify upper urinary tract calculi prediction using data 
of 168 patients, divided into 6 categories and 20 variables. 

The results of testing data showed 100% accuracy with out-
put data between 0–0.38, 0.38–0.65, and 0.65–1 suggestive 
of being calculi free, probable calculi, and prone to having 
calculi respectively [50].

Dussol et al. used ANN models to compare 11 clinical 
and biochemical parameters in 119 males who were idi-
opathic calcium stone formers and 96 males in the control 
group. With ANN, supersaturation (ROC = 0.73) and urea 
(ROC 0.72) were the most discriminants while the other 
variables such as family history and urinary calcium, citrate, 
oxalate, urate, sodium, and calcemia, age, and BMI were not 
statistically different between the two groups. In addition to 
high supersaturation, the negative impact of protein intake 
was confirmed [51].

Dussol et al. [52] used ANN models to compare the risk 
factors (age, BMI, calcemia, calcium oxalate supersatu-
ration, and 24h calciuria, oxaluria, uricosuria, citraturia, 
urea, and sodium) for idiopathic calcium nephrolithiasis in 
119 males and 59 females with and without a family his-
tory of renal stones. For men without and with a positive 
family history, the most discriminant variable was 24h urea 
(ROC = 0.76) and supersaturation (ROC = 0.67) respectively. 
For women without and with positive family history, the 
most significant discriminant was calcemia (ROC = 0.67) 
and supersaturation (ROC = 0.70) respectively [51].

Eken et al. [53] applied ANN, logistic regression analysis 
(LR), and genetic algorithm (GA) on data of 227 patients for 
the diagnosis of renal colic. ANN demonstrated 94.9% and 
78.4% sensitivity and specificity respectively. The likelihood 
ratios were 4.4 (positive) and less than 0.1 (negative). These 
results can be extrapolated in emergency settings for diag-
nosis and prediction of colicky pain due to renal calculi and 
can also help in making clinical decisions [52].

Cauderella et  al. applied the ANN model as well as 
applied conventional statistics (one-way ANOVA and three 
discriminant analyses: standard, backward stepwise, and for-
ward stepwise) to predict recurrence episodes within 5 years 
after first clinical diagnosis and metabolic evaluation of real 
stone based on dataset available from 80 patients with idio-
pathic calcium stone disease. The model correctly predicted 
90% of all cases [54].

Jahantigh et al. developed a fuzzy expert system, as a 
computer-aided system for the diagnosis of KSD. Results 
indicated that by examining 21 indicators in the diagnosis 
of seven cases of kidney disease, KSD was ascertained in 
63% and this was compatible with kidney physicians [55]. 
Chen et al. tested a big data approach to infer and validate 
a “multi-domain” personalized diagnostic acute care algo-
rithm for KSD combining demographic, clinical, and labora-
tory variables using statistical and ML models with feature 
selectors. Data of 38,579 adult patients of which 217 were 
diagnosed with renal calculi, and 7446 with acute pain (but 
no renal calculi) were studied. The multi-domain approach 
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using logistic regression yielded an AUROC of 0.86 and a 
sensitivity/specificity of 0.81/0.82 in cross-validation [56].

Sreelatha and Ezhilarasi also proposed a computer-aided 
diagnostic tool useful in the automatic classification of kid-
ney images. They divided it into normal, simple cysts, kid-
ney stones, and the less investigated complex cystic renal 
cell carcinoma (RCC) using SVM classifier and reduced 
feature set of 18 from the original size of 163 using prin-
cipal component analysis, achieving an overall accuracy of 
96.7% [57].

Li and Elliot assessed the accuracy of NLP in identify-
ing a group of patients positive for ureteric stones on CT 
KUB reports (n = 1874). The accuracy of NLP was 85% 
with a sensitivity and specificity of 66% and 95% respec-
tively. The low sensitivity and high specificity were due to 
the lack of feature extraction tools tailored for analyzing 
radiology text, the incompleteness of the medical lexicon 
database, and the heterogeneity of unstructured reports 
[58]. Chen et al. used ML methods to study the risk factors 
(hypertension, increased protein content in stones, decreased 
calcium oxalate supersaturation, and old age) causing renal 
stones > 20 mm using demographic variables, 24-h urine 
profile, and stone profile data of 277 patients. This model 
yields sensitivity and specificity of 83% and 56% respec-
tively [59].

Jungmann et al. developed an NLP algorithm that was 
trained on manual feedback and used to analyze 1714 nar-
rative LDCT reports to automatically capture clinical infor-
mation and positive hit rates. Urolithiasis was affirmed in 
72% of the reports. In 38%, at least one stone was described 
in the kidney and in 45% at least one stone was described 
in the ureter. Previous stone history and the combination 
of obstructive uropathy and loin pain had the highest asso-
ciation with positive urolithiasis (p < 0.001) [60]. Luo et al. 
developed the Wisconsin stone quality of life (WISQOL) 
machine learning algorithm (WISQOL-MLA) to predict 
patients QOL based on demographic, symptomatic, and 
clinical data collected for the validation of WISQOL. The 
dataset of 3206 patients was split into 70/10/20% training/
validation/testing ratio. Gradient boosting obtained a test 
correlation of 0.622 while DL and multivariate regression 
obtained a correlation of 0.592 and 0.437 respectively. Quin-
tile stratification on all WISQOL patients obtained an aver-
age test AUC of 0.70 for the 5 classes. The model performed 
best in distinguishing between the lowest (0.79) and highest 
quintile (0.83) [61]. Kletzmayr et al. used an image-based 
machine learning approach to screen chemically modified 
myo-inositol hexakisphosphate (IP6) analogues, which ena-
bles the identification of a highly active divalent inositol 
phosphate molecule, which can completely inhibit the crys-
tallization process thereby representing a new treatment 
option for CaOx nephropathies [62].

Strengths, Limitations, and Areas of Future 
Research

The use of a wide variety of AI models and algorithms did 
not allow us to pool the data together. However, we have 
included all AI-related endourology articles and summarized 
its current clinical use and role within endourology.

AI has been used in all areas of KSD including diagno-
sis, for predicting treatment suitability and success, basic 
science, QOL, and recurrence of stone disease. However, 
it is still a research-based tool and is not used universally 
in clinical practice. This could be due to a lack of data 
infrastructure needed to train the algorithms, wider appli-
cability in all groups of patients, complexity of its use, and 
cost involved with it. Future AI studies should also focus 
more on QOL and the cost of KSD treatment and come 
up with common algorithms that can be used universally  
[63••, 64••].

Conclusion

The application of AI in KSD and its various subfields 
appears promising. It is being used for diagnostics, predict-
ing procedural outcomes, stone passage, and recurrence 
rates. AI-driven management strategies hold great promise 
for the future and provide an essential step forward in pro-
viding more personalized patient care and improving shared 
decision making. Although not in routine clinical practice 
currently, we will see a shift in the clinical paradigm as AI 
applications will find their place in the guidelines and all 
aspects of KSD management.
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