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Abstract: Food safety is one of the most important and widespread research topics worldwide.
The development of relevant analytical methods or devices for detection of unsafe factors in foods
is necessary to ensure food safety and an important aspect of the studies of food safety. In recent
years, developing high-performance sensors used for food safety analysis has made remarkable
progress. The combination of carbon-based nanomaterials with excellent properties is a specific type
of sensor for enhancing the signal conversion and thus improving detection accuracy and sensitivity,
thus reaching unprecedented levels and having good application potential. This review describes
the roles and contributions of typical carbon-based nanomaterials, such as mesoporous carbon,
single- or multi-walled carbon nanotubes, graphene and carbon quantum dots, in the construction
and performance improvement of various chemo- and biosensors for various signals. Additionally,
this review focuses on the progress of applications of this type of sensor in food safety inspection,
especially for the analysis and detection of all types of toxic and harmful substances in foods.
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1. Introduction

Food safety is usually defined as the scientific discipline that describes the preparation, treatment
and storage of food products in ways which can prevent foodborne illness. In recent years, food safety
and quality have received widespread attention [1,2]. Food insecurity, such as pesticide residues, illegal
additives, allergens, pathogens and other unsafe factors, not only seriously affects people’s health, but
also limits the rapid development of the food industry to a certain extent [3,4]. The development of
analytical methods or equipment that meet the requirements of modern detection of various hazardous
substances in foods is an important and crucial aspect of food safety studies. Due to the complex matrix
of food samples and the presence of trace amounts of hazardous agents, high-throughput, low-cost,
accurate, sensitive and convenient analytical methods or devices are becoming the mainstream of
food safety testing [5–7]. A sensor composed of an identification element and a signal transducer
characterized by simple structure, high portability and low price can compensate for disadvantages of
expensive and universal popularity of the existing instrumental methods [8–10]. Such a sensor may
be suitable for on-site and real-time qualitative and quantitative analysis of harmful substances in
foods and thus inhabit a wider research and development space. In recent studies, various chemical or
biological sensing devices based on various working principles have been developed for the detection
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of various hazardous substances in foods, thus becoming a focus of research in the field of food
safety [11,12].

Carbon-based nanomaterials have attracted considerable interest of scientists since their discovery.
According to their spatial dimensions, carbon-based nanomaterials can be roughly divided into
fullerenes (zero-dimensional), carbon nanotubes (one-dimensional), graphene (two-dimensional),
graphene coil (multidimensional), etc. [13,14]. In Table 1, a variety of properties of the carbon
nanomaterials were presented.

Table 1. Comparison of the characteristics of typical carbon-based nanomaterials.

Category Diameter Dimension Parameters Reference

Carbon nanotubes 0.7–100 nm one
Thermal conductivity: 3500 W m−1 K−1

(SWCNT); 3000 W m−1 K−1 (MWCNT);
Young’s modulus: 1 TPa

[13–16]

Ordered mesoporous carbon 2–50 nm — Specific surface area: 500–2500 m2 g−1;
Pore volume: 1.5 cm3 g−1 [17–20]

Graphene — two

Specific surface area: 2630 m2 g−1;
Specific capacitance: 100–230 F g−1;
Carrier mobility: 15,000 cm2 v−1

·s−1;
Thermal conductivity: 5300 W m−1 K−1

(Single layer); Young’s modulus: 1 TPa
(theoretical); Resistivity: 10−6 Ω·cm

[14,15,21–25]

Carbon dots <10 nm zero — [26,27]

In recent years, numerous studies on the preparation, modification or application of carbon-based
nanomaterials have been actively published. Carbon-based nanomaterials of various morphologies
(needle, rod, barrel, etc.) have been prepared and successfully applied in various research areas [28–30].
Generally, the heterocyclic state of the C-C bonds in the carbon-based nanomaterials determines their
unique spatial structure resulting in the remarkable chemical and electronic properties. Characteristic
features of the carbon-based nanomaterials include small-size, interface, surface, dielectric confinement,
macroscopic quantum tunneling effects, etc.; their advantages include ease of preparation, stability
and high heat and electronic conductivity [15,16]. These merits promote wide use of this type of
nanomaterial in several areas, including environmental monitoring, energy storage, life science,
etc. [31,32]. Carbon-based nanomaterials have been used in the development of high-performance
sensing devices for food safety inspection to produce, identify and enhance the sensing signals.
In particular, in-depth studies of new carbon materials, such as graphene and carbon dots, enhanced
the potential of carbon-based sensors and their application prospects in the development of food
safety inspection devices characterized by high precision, high protection from interference, and
convenience [33–35].

This paper reviews various characteristics of carbon-based nanomaterials and their relevant
applications in food safety inspection. The latest studies on the fabrication and construction of new
high-performance sensing devices for food safety detection are introduced in special detail. This paper
summarizes the status of research and development trends of chemo- and biosensors based on
carbon-based nanomaterials used in the detection and analysis of residual pesticides, veterinary drug,
illegal food additives, allergens and other major toxic and harmful substances, thus promoting the
further study of carbon-based nanomaterials, especially in developing new types of high performance
sensing devices to meet the requirements of food safety detection and to improve the detection levels
with certain theoretical guidance.
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2. Carbon-Based Nanomaterials

2.1. Ordered Mesoporous Carbon (OMC)

Mesoporous carbon materials (diameter between 2 and 50 nm) are a new type of non-silica
mesoporous materials that were discovered and have attracted considerable attention in recent
years [17,18]. Compared with mesoporous silicon materials, mesoporous carbon materials have several
special excellent properties, such as high specific surface area and porosity, adjustable pore size,
controllable pore wall composition and structure, simple synthesis, and a lack of physiological toxicity.
At the same time, high thermal and hydrothermal stability and extremely large specific surface area and
pore volume can be obtained by optimizing and controlling the synthesis conditions, thus making this
type of material very promising for a wide range of applications, including in adsorbent carriers [20,36],
catalyst supports [37–39], hydrogen storage materials [40–42], and electrode materials [43–45].

Mesoporous carbon materials can be divided into disordered mesoporous carbon and OMC based
on the regularity of pores [46]. Disordered mesoporous carbon is usually obtained by the catalytic
activation of metal ions [47], carbonization of polymers, and carbonitriding or oxidation of silica
templates by organic aerogels, resulting in lower regularity and uniformity of the pore structure [48,49].
Thus, the disordered carbon materials can be applied as an excellent anode for sodium ion exchange
batteries and other energy storage devices [50–52]. Compared with disordered mesoporous carbon,
OMC materials are composed of highly ordered and macroporous carbon nanorods [53,54] that
have better electrochemical stability and unique properties that other materials do not possess,
such as a highly ordered pore structure, an easily controlled mesoporous structure, narrow pore size
distribution, and larger specific surface area (2000 m2 g−1) and specific pore volume (1.5 cm3 g−1) [19,20].
The synthesis of OMC is usually performed by the hard template method using mesoporous silica
molecular sieves as a template, selecting a suitable precursor and carbonating the precursor in the
pore of the mesoporous template with subsequent etching of the mesoporous silica template using
NaOH or HF solutions [55,56]. Mesoporous carbon materials have a wide range of applications in
material synthesis [57], catalyst carrier, adsorption separation [42,58,59], and electronic devices [60].
Cui and coworkers fabricated a novel aptasensor using a sulfur nitrogen codoped OMC (SN-OMC) and
thymine-Hg2+-thymine mismatch structure, which has a fine linear correlation for Hg2+ (0.001–1000
nM) with a detection limit (LOD) of 0.45 pM [61] (Figure 1a).
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Figure 1. Application of OMC nanomaterials in the fabrication of sensors. (a) Assembly diagram of
electrochemical aptasensor based on the OMC nanomaterials for Hg2+ detection. Reproduced with
permission from reference [61]. Copyright American Chemical Society, 2018; (b) modification of OMC
nanomaterials to enhance the conductivity and stability of sensors. (b-A) The ECL behavior of luminol
at PANI/CMK/GCE in PBS solution; (b-B) the process of luminol react with the ROSs. Reproduced with
permission from reference [62]. Copyright Elsevier, 2012.

OMC nanomaterials have excellent electrochemical capacitance performance and have become
an ideal material for electrochemical capacitors [63]. Dai et al. constructed a highly porous
three-dimensional sensing interface on a glassy carbon electrode (GCE) using OMC and polyaniline.
This polyaniline/OMC composite-modified electrode is an efficient electrochemiluminescence platform
for luminol due to the attractive features of excellent electrical conductivity, extremely well-ordered
pore structure and high specific pore volume. Electrolyte ions can freely migrate in the regular pore of
mesoporous carbon to rapidly form an electric double layer and weaken the dispersion effect of the
capacitor resulting in strong charge-discharge capacity (Figure 1b). Pharmacologically, ractopamine
(RAC) is a TAAR1 and β-adrenoreceptor agonist that stimulates β1 and β2 adrenergic receptors. As a
result, RAC is an illegal active growth-promoting ingredient in the products used in food animals,
such as swine and cattle. Yang et al. constructed an electrochemical sensor using OMC for sensitive
detection of toxic RAC in swine samples [64]. OMC-modified electrode showed remarkably enhanced
electrocatalytic activity toward RAC oxidation with a great increase in electrochemical current to achieve
favorable detection sensitivity and selectivity. Moreover, OMC has been combined with Prussian blue
(PB) for signal enhancement. A three-dimensional molecularly imprinted electrochemical sensor was
developed for ultra-sensitive and specific quantification of metolcarb (a carbamate pesticide). The
introduced OMC material aimed to enhance the electrochemical response by improving the structure
of the modified electrodes to facilitate the charge transfer of PB (inherent probe) [65].

2.2. Carbon Nanotubes (CNTs)

CNTs are hollow tubular one-dimensional nanomaterials composed of hexagonal carbon atoms
identified for the first time by Iijima in 1991 [66,67]. Because of their unique spatial structure, physical
and chemical properties, and simple preparation methods, CNTs have become one of the most widely
studied carbon materials, and remarkable progress has been achieved in several research areas [68].
Usually, the main C atoms in CNTs have sp2 hybrid orbitals; when the spatial topology is formed,
sp3 hybrid orbitals can be formed. A certain degree of bending is present between the grid structures,
which are composed of hexagons. Due to the formation of the chemical bonds in the hybrid and due to
overlapping, a highly delocalized π bond in the outer layer of CNTs becomes a chemical basis for its
noncovalent binding to certain macromolecules such as proteins, nucleic acids and carbohydrates [69].
Depending on the arrangement of their graphene cylinders, CNTs can be divided into single-walled
CNTs (SWCNTs) and multiwalled CNTs (MWCNTs). In general, SWCNTs with high chemical inertness
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are relatively simple and have a defect-free structure and surface, while MWCNTs often have small
hole-like defects, which can be easily captured between the layers during their initial formation
making the chemical properties of MWCNTs extremely active. Various electrochemical properties of
SWCNTs and MWCNTs, such as catalytic activity [70,71], stability [72,73], electrical conductivity [74,75]
and biocompatibility [76–78], have very important applications in the construction of chemical or
biological sensors for food safety [79,80]. Chen et al. used MWCNTs to develop an acetylcholinesterase
(AChE)-based electrochemical sensor for a sensitive and cost-effective pesticide assay in environmental
and food samples [81] (Figure 2a). The MWCNTs were designed to play dual enhancement roles.
The first role is to significantly increase the surface area, facilitating the electrochemical polymerization
of PB; the second role involves the effective maintenance of the enzymatic activity of AChE decreasing
Michaelis-Menten constant (Km). The developed MWCNT-based electrochemical sensor exhibited
stable, reproducible and rapid response towards a series of pesticides in real samples.
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Figure 2. Significant performance of electrochemical sensors based on MWCNT materials.
(a) AChE/PB/MWNT electrochemical sensor for pesticide detection. Reproduced with permission from
reference [81]. Copyright Royal Society of Chemistry, 2008. (b) Characterization of MoS2/MWCNTs
nanocomposite: SEM, TEM and EDX. Reproduced with permission from reference [82]. Copyright
Elsevier, 2017.

A hybrid material that consists of molybdenum disulfide nanosheet (MoS2) coating of the
MWCNT surface was prepared for the determination of chloramphenicol (CAP), a broad-spectrum
antibiotic acting by interfering with bacterial protein synthesis [82] (Figure 2b). The MoS2/MWCNT
nanocomposite had great electrochemical property and displayed remarkable catalytic ability to
CAP. The MoS2/MWCNT-modified electrode responded linearly in the CAP concentration range
from 0.08 to 1392 µM and achieved a low LOD of 0.01502 µM.

CNT materials with good catalytic activity and conductivity greatly reduce overpotential and
efficiently accelerate the electron transfer in electrochemical reactions. Compared with ordinary
materials, a sensor with CNTs as modifiers usually has great sensitivity, wide linear detection
range and fast response [83,84]. Bhardwaj and coauthors utilized the Ab-SWCNT bioconjugates to
develop a convenient, low-cost paper-based electrochemical immunosensor for label-free detection
of S. aureus [85]. The anti-S. aureus Abs were covalently attached onto SWCNTs and immobilized
on the working electrode surface to recognize the analyte, causing the changes of peak current.
This remarkable sensor showed a good linearity (R−2 = 0.976) between an increase of peak current and
logarithm of S. aureus concentration (10–107 CFU mL−1) with less time (30 min) and a limit of detection
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of 13 CFU mL−1 in milk, indicating high sensitivity of the immunosensor. A multijunction sensor
was designed by Kara et al. using SWCNT for multiplexed detection of foodborne pathogens [86].
The SWCNTs and polyethylenimine were coated on gold tungsten wires and formed a 2 × 2 junction
array functionalized with streptavidin and biotinylated Abs. The introduction of SWCNTs aimed
to reduce the background noise and to emphasize the response of biorecognition reactions between
Ab and Ag. A MWCNTs/sol-gel-derived silica/chitosan nanobiocomposite was used to immobilize
cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto indium-tin-oxide (ITO) glass [87].
This new nanobiocomposite maintains the activity and stability of ChEt and improves the sensitivity
(3.802 µA mM−1) while reducing the response time to 1002 s. Parveen et al. developed a fiber-optic
probe coated by silver and CNT/copper nanoparticle (CuNPs) nanocomposite for nitrate sensing [88].
The target nitrate was reduced during interaction with CuNPs and formed NH4

+ to change the
dielectric properties of the CNT/CuNP nanocomposite, measured as a shift of resonance wavelength.

Molecularly imprinted polymers (MIPs) have the binding sites for specific recognition of a
template molecule allowing for specific recognition in complex and difficult environments [89,90].
Therefore, MIPs have been extensively studied in purification, separation and detection of matrices in
food, medical or environmental samples in recent years [91,92]. Molecularly imprinted electrochemical
sensor is a new type of biomimetic sensors that uses MIPs as a recognition element, having high
sensitivity and selectivity, excellent stability, ease of preparation, low cost, miniaturization and easy
automation [12,93,94]. An MIP electrochemical sensor for cholesterol detection was constructed on a
GCE modified with MWCNTs and Au nanoparticles (AuNPs) [95] (Figure 3a). The MIP membrane
was electropolymerized onto the electrode surface in a solution containing p-aminothiophenol,
HAuCl4, tetrabutylammonium perchlorate and cholesterol. The Au-S bonds and hydrogen-bonding
interactions were used to enhance the stability of sensor detection. The MWCNT material introduced
into the molecular imprinting crosslinking system was used to overcome internal electron transport
barriers and to further improve the detection sensitivity of molecularly imprinted biomimetic sensors.
This feature is very important in the analysis of trace substances in the matrix of complex food products.
Yang and coworkers synthesized 3-hexadecyl-1-vinylimidazolium chloride (C16VimCl) to improve the
dispersion of MWCNTs, and to obtain MWCNTs@MIP of CAP on the MWCNT surface [96] (Figure 3b).
Furthermore, the MWCNTs@MIP was applied as a coating on a mesoporous carbon and porous
graphene (GO)-modified GCE to construct an electrochemical sensor that offers an excellent response
to CAP and satisfactory results in real samples.
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Figure 3. Application of MWNTs in molecularly imprinted biomimetic sensors. (a) The preparation
procedure of AuNPs/MWNTs/GCE@MIP membrane. Reproduced with permission from reference [95].
Copyright 2015 Elsevier. (b) Scheme of the construction procedure of a MWCNTs@MIP-CAP-based
sensor. Reproduced with permission from reference [96]. Copyright Elsevier, 2015.

Yin and Li synthesized polydopamine (PDA) by monomeric self-polymerization in water and
used it to modify the surface of MWCNTs to prepare an MIP for sunset yellow [97]. The prepared
imprinted electrochemical sensor showed remarkably selective and ultrasensitive response to the
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template. The improved behavior is caused by the highly matched imprinted cavities on the excellent
electrocatalytic matrix of MWCNTs and the electronic barrier of the non-imprinted PDA. This study
proposed a convenient and efficient imprinting strategy with great potential application value in
designing other PDA-based MIP sensors. Other nanomaterials, such as metal NPs and transition
metal complexes, can be efficiently modified on CNT surfaces to obtain composite nanomaterials,
which can improve the detection performance of biomimetic sensors in food samples [98–101]. Fu et al.
were the first to electropolymerize Hg2+ imprinting poly (2-mercaptobenzothiazole) films on
the GCE surface modified by AuNPs and SWCNT nanohybrids for electrochemical detection
of Hg2+ [102] (Figure 4a). Huang and coworkers successfully prepared novel chitosan-silver
nanoparticle (CS-SNP)/graphene-MWCNTs composite-decorated Au electrode [103] (Figure 4b).
The electropolymerized molecularly imprinted film of neomycin has high binding affinity and
selectivity, and good reproducibility and stability in practical application. Pan et al. used MWCNTs
and Salen-Co(III) to sensitize a new MIP for the recognition element of a sensor for methimazole
determination [104]. This is the first report of using MWCNTs and Salen-Co(III) in MIP systems to
improve the conductivity and catalytic activity in the electrochemical oxidation process, demonstrating
that the prepared electrode has good stability and sensitivity in methimazole determination (linear
range: 0.5–6.0 mg L−1; LOD: 0.048 mg L−1).
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Figure 4. Application of CNTs in MIP-based sensors. (a) Fabrication of MWCNT@MIP-PDA
sensor for sunset yellow. Reproduced with permission from reference [97]. Copyright 2018 Elsevier.
(b) Schematic diagram of Hg(II)-imprinted PMBT/AuNPs/SWCNTs/GCE. Reproduced with permission
from reference [102]. Copyright Elsevier, 2012. (c) Preparation of CS-SNP/graphene-MWCNTs
composite-decorated gold electrode. Reproduced with permission from reference [103]. Copyright
Elsevier, 2013.
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2.3. Graphene (GR) and Its Derivatives

GR is a two-dimensional carbon material with a honeycomb lattice structure closely packed by
single-layer carbon atoms [21,22]. Its discovery disproved the prediction that isolated two-dimensional
crystals could not truly exist, thus arousing great concern in the scientific community [23]. The discovery
of GR also triggered a new wave of research on carbon materials after CNTs. The C atoms in GR are sp2
hybridized; the hybrid orbital forms the σ bond with the adjacent C atoms to form a regular hexagonal
network structure. GR possesses a super highly specific surface area (approximately 2630 m2 g−1),
and the specific capacitance of GR prepared by the chemical method can reach 100–230 F g−1 [24,25].
The GR sheet has a fold structure with the superimposition effect between the layers thus forming
nanosized holes and pores, which are conducive to the diffusion of an electrolyte. Thus, GR is an
ideal electrode material for a supercapacitor [105–107]. A flexible GR-based thin film supercapacitor
was fabricated using CNT as current collectors and GR as electrodes. Due to the combination of the
high capacitance of the thin GR film and the high conductivity of the CNT film, the fabricated devices
obtained high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1) [108]. GR with
good electrical conductivity, unique quantum Hall effect at room temperature, and extremely fast
electron mobility is an ideal material for the formation of nanoelectronic devices [109,110]. Cheng et al.
reported the enhanced performance of suspended GR-field effect transistors (GR-FETs) in aqueous
solutions. Significantly, the transconductance of GR-FETs in the linear operating modes increases by
1.5 and 2 times when the power of low-frequency noise decreases by 12 and 6 times in the case of the
hole and electron carriers, respectively [111].

On the other hand, GR materials have a relatively complete structure and stable surface, resulting
in poor dispersibility and solubility. Additionally, a strong Van der Waals force between the layers
of GR may predispose it to agglomeration, thus inhibiting the widespread use of this type of
materials [112–114]. Therefore, various inorganic and organic materials or polymers have been
used to improve the properties of GR in sensing applications. These GR composite materials have
various properties and play various roles in the construction of new food safety sensors [115,116].
Inorganic nanomaterials can be dispersed on the surface of a GR sheet to obtain GR-inorganic
nanocomposites [117–119]. Inorganic NPs can increase the spacing between the layers of GR and
reduce the force between the layers to retain the structure and properties of the monolayer GR.
This synergistic effect is important for the applications [120,121]. Liu and coworkers examined the
influence of two inorganic NPs, namely, SiO2 and Al2O3, on the adsorption of 17 β-estradiol onto
GR oxide using batch adsorption experiments [122]. The results demonstrated that the presence of
inorganic NPs significantly inhibits adsorption, and increases the time required to reach adsorption
equilibrium for the adsorption of an analyte onto GR. Thus, this study provides new insight into the
fate and transport of GR and pollutants in natural aquatic environments.

The large specific surface area of GR makes it an ideal carrier for metal NPs [123–125]. The loading
of metal NPs onto the surface of graphite sheets avoids the agglomeration of the GR sheets and
the NPs; prepared composite materials generally exhibit unique or superior properties. GR/metal
NP composites have shown tremendous value in various applications, such as energy, sensor and
optoelectronics [126,127]. Zhang’s research group designed three single-stranded DNA probes for
Hg2+ detection. GR and AuNPs were electrodeposited on the GCE surface to improve the electrode
conductivity and functionalize it with the thymine-rich DNA probe. This sensor can detect Hg2+ ranging
of 1.0 aM–100 nM with LOD of 0.001 aM, demonstrating its feasibility in developing ultrasensitive
detection strategies [128,129] (Figure 5a).
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Another study has reported the application of GR-Pt nanocomposites for measuring H2O2 release
from the living cells. Electrochemical study demonstrated that the modified GR-Pt nanocomposites on
the GCE surface have a high peak current and low overpotential towards H2O2 reduction. The sensitivity
of the fabricated system was substantially higher than that of the PtNPs-or GR-modified electrodes [130]
(Figure 5b). Ma and Chen reduced HAuCl4 to AuNPs through cyclic voltammetry on the GR-modified
GCE. A good catalytic performance was obtained using GR/AuNPs/GCE for electrochemical oxidation
of diethylstilboestrol with good selectivity and stability in food samples [131]. A GR and CNT
nanocomposite was directly reduced onto the screen-printed electrode and electrochemically deposited
AuNPs for bisphenol A detection in aqueous solution [132].

GR can form more stable composite materials with PDA [133,134], polychitosan [135],
polyallylamine [136,137] and other polymers [138,139], thus combining the excellent performance of GR
and polymeric materials for extensive applications in food safety [140,141]. Zhang et al. successfully
applied the synthesized AgNPs to functionalize PDA-GR nanosheets (AgNPs-PDA-GNS) with uniform
and high dispersion. The PDA layer was used as a nanoscale guide to form a uniform AgNPs-PDA-GNS
surface. The resultant AgNPs-PDA-GR hybrid material was demonstrated to have strong antibacterial
properties against gram-negative and gram-positive bacteria due to the synergistic effect of GR
nanosheets and AgNPs [142]. Wang et al. were the first to prepare the poly (sodium 4-styrenesulfonate)
(PSS)-functionalized GR through simple one-step reduction of exfoliated GR in the presence of PSS.
The isopropanol-nafion-PSS-GR composite-modified GCE has superior electrocatalytic activity towards
the oxidation of clenbuterol and was successfully applied for clenbuterol determination in pork [143].
The GR/inorganic/organic nanocomposites can fully utilize the synergistic effect of various materials
and have better performance further expanding the application of GR [144–146]. Zhou and coworkers
electrodeposited the composite membrane of GR/conductive polymer/AuNPs/ionic liquid onto the
electrode surface to achieve good stability; GR and AuNPs can ensure an efficient rate of electron
transfer. This fabricated electrode was applied for aflatoxin B1 detection achieving LOD of 1 fmol L−1,
concentration range of 3.2 fmol L−1–0.32 pmol L−1, and recovery of 96.3–101.2% in food samples [147]
(Figure 6a). Nitrogen-doped GR with dispersed CuNPs was successfully prepared by one-pot synthesis
and applied to construct an amperometric nonenzymatic sensor of glucose with high selectivity and
reproducibility and acceptable recovery in complex foods [148].
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The combination of GR with MIPs and ionic liquids further enhances the performance of
molecularly imprinted biomimetic sensors and expands their applications in food safety [150]. A new
molecularly imprinted electrochemical sensor for carbofuran detection was constructed by decorating
reduced GR oxide and AuNPs (rGO@AuNPs), which has high adsorption capacity and good selectivity
in the detection process of vegetable samples [151]. Thiol GR and AuNPs were introduced to increase the
specific surface area to enhance the signal of a probe (PB-AuNPs) immobilized molecularly imprinted
electrochemical sensor for selective detection of tebuconazole in vegetable and fruit samples [149]
(Figure 6b). Room-temperature ionic liquids are highly conductive and stable and have good solubility
in several inorganic salts and organic substances; they are widely used in electrochemistry and organic
synthesis [152–154]. Zhao et al. were the first to develop a MIP-ionic liquid-GR composite film of methyl
parathion. The ionic liquid-modified GR oxide was electrochemically reduced and MIP suspension
followed. The developed sensor displayed high selectivity and stability in determination of methyl
parathion in the samples (recovery: 97–110%, LOD: 6 nM) [155]. For the determination of carbaryl, an
imprinted poly (p-aminothiophenol) (p-ATP) film sensor was constructed with chitosan-AuPt alloy NPs
and GR-ionic liquid-Au with Fe(CN)6

3−/Fe(CN)6
4− as electrochemical probe. The chitosan-AuPtNPs

and GR-ionic liquid-Au composites were responsible for immobilization of p-ATP monomer and
improvement of electrochemical response [156].

The outstanding fluorescence of GR quantum dots (GR-QDs) is an important property [157–159].
Currently, GR-QDs that emit fluorescence at various wavelengths can be prepared by controlling the
experimental conditions. Compared with traditional QDs, GR-QDs are chemically inert and have low
toxicity, good biocompatibility, water solubility photo-bleaching, unique structure and excellent GR
characteristics [160,161]. The surface of GR-QDs usually contains oxygen-containing groups, such as
–OH and –COOH, which are beneficial to further functional applications. Therefore, GR-QDs are of
great potential value in biological imaging, drug targeting transportation, sensors, photoelectrocatalysis,
electroluminescence and other areas [162–164]. Wang et al. developed a fluorescent method
for ochratoxin A (OTA) detection using iron-doped porous carbon and aptamer-functionalized
nitrogen-doped GR-QDs as the probes, which can detect concentrations of OTA in the range of
10–5000 nM with LOD of 2.28 nM [165]. Gondim et al. developed an electrochemical method based on an
assembly of GR-QDs for the detection of sulfonamide residues, which demonstrated to have a significant
increase in detection sensitivity [166]. A sensitive electrochemical sensor based on GR-QDs/riboflavin
was constructed and utilized for the determination of persulfate (S2O8

2−). The electron transfer
coefficient (α) and the heterogeneous electron transfer rate constant (Ks) for riboflavin redox reaction
on GR-QDs/riboflavin-modified GCE achieved 0.52 and 6.59 s−1, respectively. This material exhibited
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an excellent electrocatalytic activity for S2O8
2− reduction with LOD of 0.2 µM, concentration calibration

range from 1.0 µM to 1 mM and sensitivity of 4.7 nA µM−1 [167].

2.4. Carbon Dots (CDs)

Fluorescent carbon NPs or QDs (CDs) are a new class of carbon nanomaterials that have emerged
recently and have attracted considerable interest as competitors to conventional semiconductor
QDs [26,168,169]. In addition to comparable optical properties, desired advantages of CDs have
desired advantages of low toxicity, environmental friendliness, low cost and simple synthetic routes.
The surface passivation and functionalization of CDs also allow their physicochemical properties to be
controlled [27,170–172]. These characteristics have led to numerous applications of CDs in the areas of
chemo- and biosensing, bioimaging, photocatalysis and electrocatalysis [173–176].

Costas-Mora et al. have reported the ultrasound-assisted synthesis of CDs and its application as
optical nanoprobe in the detection of methylmercury [177] (Figure 7a). The application of high-intensity
sonication achieves simultaneous the synthesis for fluorescent CD and the selective recognition of the
target methylmercury. The assay can be finished within 1 min, with a LOD of 5.9 nM and repeatability
expressed as RSD of 2.2% (n = 7). Li et al. designed a label-free bioplatform for organophosphorous
pesticide (OP) detection through dual-mode (fluorometric and colorimetric) channels based on
AChE-controlled quenching of CD fluorescence [178] (Figure 7b). This dual-output assay has good
sensitivity, with a LOD of 0.4 ng mL−1 (paraoxon), potentially indicating a promising candidate for OP
detection. Wang et al. synthesized fluorescent CDs and used them as the signal probes in conventional
ELISA to improve the sensitivity. In this strategy, the enzymatically formed products of HRP/alkaline
phosphatase efficiently quench the fluorescence of CDs. In the application of detection of residual
amantadine in chicken muscle, this fluorescent immunoassay obtains a LOD of 0.02 ng mL−1 [179]
(Figure 7c).

The core of the quantum-sized CDs includes carbon atoms stabilized by proper ligands. The main
obstacle to development of CD-based sensing devices is fixing CDs in a suitable matrix to maintain
their properties and to ensure effective penetration of the analyte while preventing CDs from
leaching [26,180,181]. The carboxylic CDs functionalized with citric acid and malic acid were reported
to be applied as a nanoquencher for nucleic acids detection in a homogeneous fluorescent assay.
For these two types of CDs, a superior detection range of at least 3 orders of magnitude was achieved.
These findings provided a valuable insight into the use of CQD in the fabrication of future DNA
biosensors [182] (Figure 8a).
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Figure 7. Application of CDs fluorescence quenching for the detection of harmful substances. (a) The
mechanism involved in the CD fluorescence quenching for methylmercury detection. Reproduced with
permission from reference [177]. Copyright 2014 American Chemical Society. (b) The principle of inner
filter effect-based fluorescence quenching of CDs. Reproduced with permission from reference [178].
Copyright Elsevier, 2018. (c) Scheme of the CD-based fluorescent ELISA for amantadine detection.
Reproduced with permission from reference [179]. Copyright Elsevier, 2019.
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carbon quantum dot (CQD)-based fluorescent detection of DNA. Reproduced with permission from
reference [182]. Copyright 2016 American Chemical Society. (b) Schematic illustration of pattern
recognition of bacteria based on three different receptor-functionalized CDs. Reproduced with
permission from reference [183]. Copyright Elsevier, 2019.

The identification and quantitative analysis of bacteria is a crucial issue in food safety.
Conventional methods require long culture time, highly skilled operators, or specific recognition
elements to each type of bacteria. The sensor arrays offer a rapid, cost-effective and simple approach
using multiple cross-reactive receptors. Facile construction of a fluorescence sensing array based
on CDs functionalized with different receptors was reported for identification of various bacteria.
Three types of receptors (boronic acid, polymixin and vancomycin) yielded CDs that are able to bind to
various bacteria due to variable physicochemical nature of various bacterial surfaces [183] (Figure 8b).

CD-embedded MIP materials have become an ideal strategy. Xu et al. were the first to synthesize
highly blue luminescent CDs followed by a nonhydrolytic sol-gel process for MIP layer formation on
the surface. CDs acted as antennas for signal amplification and optical readout and MIP provided
specific target-binding sites. Compared with the non-imprinted polymer, CD@MIP-based assay was
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demonstrated to have excellent selectivity and sensitivity for sterigmatocystin in grains [184] (Figure 9a).
In another case, the quantification of tetracycline (TC) in milk, honey and fish samples was achieved
using effective luminescence of CDs and specific adsorption of MIPs [185–187] (Figure 8b,c). These CD
and MIP-involved assays for food safety have revealed two key points of design of luminescent
nanomaterial-based MIPs. Specifically, the intense and stable fluorescence signal should be able to pass
through the polymer crosslinking layer and further produce a signal readout through the interaction
with the target analyte. Additionally, the sufficient cavities in the imprinting polymers are critical for
specific recognition to the targets.
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Various nanoscale carbon-based materials are excellent materials for the construction of the 
sensors due to their outstanding performances. A considerable number of theoretical and practical 
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carbon-based nanomaterials in the food testing-related field. Substantial progress has been achieved, 
thus fully demonstrating the prospects of carbon-based nanomaterials as a new sensor construction 
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Figure 9. Application of MIP@CD sensor in fluorescence detection. (a) Scheme of preparation procedure
of CDs@MIP material. Reproduced with permission from reference [184]. Copyright Elsevier, 2016.
(b) Scheme of the fluorescence detection process of TC in honey. Reproduced with permission from
reference [185]. Copyright Elsevier, 2018. (c) Schematic diagram of the preparation of MIP@CDs and
the identification mechanism of IFE quenching. Reproduced with permission from reference [186].
Copyright Elsevier, 2018.

3. Conclusions

Various nanoscale carbon-based materials are excellent materials for the construction of the
sensors due to their outstanding performances. A considerable number of theoretical and practical
studies have been carried out describing the preparation, modification and application of carbon-based
nanomaterials in the food testing-related field. Substantial progress has been achieved, thus fully
demonstrating the prospects of carbon-based nanomaterials as a new sensor construction material.
The development of advanced preparation technology, nanotechnology and sensing technology will
lead to more advances in the use of carbon-based nanomaterials in studies of food analysis.



Nanomaterials 2019, 9, 1330 14 of 23

Author Contributions: M.P. coordinated the writing of this article and completed Section 2.1. Z.Y. completed
Section 2.2 part; K.L. completed Section 2.3 part; X.D. and L.H. completed Section 2.4 part; S.W. provided the
framework of the paper and finally checked the quality of the article.

Funding: This work is financially supported by the National Natural Science Foundation of China (No. 31972147),
Project of Tianjin Science and Technology Plan (No. 18ZYPTJC00020), Tianjin Natural Science Foundation (No.
17JCQNJC14800), the Open Project Program of State Key Laboratory of Food Nutrition and Safety, Tianjin
University of Science and Technology (No. SKLFNS-KF-201803), Program of Key Laboratory of Food Nutrition
and Safety, Ministry of Education (No. 2018001) and the Open fund of college student laboratory in Tianjin
University of Science and Technology (No. 1814A204).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borchers, A.; Teuber, S.S.; Keen, C.L.; Gershwin, M.E. Food safety. Clin. Rev. Allergy Immunol. 2010, 39,
95–141. [CrossRef]

2. Liu, J.M.; Hu, Y.; Yang, Y.K.; Liu, H.L.; Fang, G.Z.; Lu, X.N.; Wang, S. Emerging functional nanomaterials for
the detection of food contaminants. Trends Food Sci. Technol. 2018, 71, 94–106. [CrossRef]

3. Hoffmann, S.; Harder, W. Food safety and risk governance in globalized markets. Health Matrix 2010, 20,
5–54. [CrossRef]

4. Wu, Y.N.; Liu, P.; Chen, J.S. Food safety risk assessment in China: past, present and future. Food Control 2018,
90, 212–221. [CrossRef]

5. Wright, C. Analytical methods for monitoring contaminants in food - an industrial perspective. J. Chromatogr. A
2009, 1216, 316–319. [CrossRef]
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