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Abstract

The S. pombe Rad60 protein is required for the repair of DNA double strand breaks, recovery from replication arrest, and is
essential for cell viability. It has two SUMO-like domains (SLDs) at its C-terminus, an SXS motif and three sequences that have
been proposed to be SUMO-binding motifs (SBMs). SMB1 is located in the middle of the protein, SBM2 is in SLD1 and SBM3
is at the C-terminus of SLD2. We have probed the functions of the two SUMO-like domains, SLD1 and SLD2, and the putative
SBMs. SLD1 is essential for viability, while SLD2 is not. rad60-SLD2D cells are sensitive to DNA damaging agents and
hydroxyurea. Neither ubiquitin nor SUMO can replace SLD1 or SLD2. Cells in which either SBM1 or SBM2 has been mutated
are viable and are wild type for response to MMS and HU. In contrast mutation of SBM3 results in significant sensitivity to
MMS and HU. These results indicate that the lethality resulting from deletion of SLD1 is not due to loss of SBM2, but that
mutation of SBM3 produces a more severe phenotype than does deletion of SLD2. Using chemical denaturation studies,
FPLC and dynamic light scattering we show this is likely due to the destabilisation of SLD2. Thus we propose that the region
corresponding to the putative SBM3 forms part of the hydrophobic core of SLD2 and is not a SUMO-interacting motif. Over-
expression of Hus5, which is the SUMO conjugating enzyme and known to interact with Rad60, does not rescue rad60-
SLD2D, implying that as well as having a role in the sumoylation process as previously described [1], Rad60 has a Hus5-
independent function.
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Introduction

SUMO is a small ubiquitin-like modifier. It is implicated in

numerous cellular processes, including chromosome segregation,

DNA repair and recombination, and transcriptional control e.g.

[2,3,4,5,6]. More specifically, SUMO-modification of proteins

affects protein-protein or protein-DNA interactions e.g. between

PCNA and Srs2 in Saccharomyces cerevisiae [7,8] or between thymine

DNA glycosylase [9] or mammalian transcription factors, such as

p53, Sp3 and Elk-1 and DNA (reviewed in [6,10]). In addition, it

has recently been demonstrated that SUMO-modified proteins

interact with SUMO-targeted ubiquitin ligases (STUbLs) that target

the modified proteins for proteasomal degradation [11,12,13].

SUMO is produced as a precursor protein and processed to the

mature form to reveal a diglycine (GG) motif at the C-terminus

which is used for attachment to one or more lysine residues in

target proteins (reviewed in [10]). Sumoylation requires activation

of the mature form of SUMO by a heterodimeric activating (E1)

protein. SUMO is then passed to a SUMO conjugating (E2)

protein, called Ubc9 or Hus5 in S. pombe [14,15]. SUMO is

subsequently attached to target proteins either in a ligase-

dependent or -independent manner. In S. pombe the SUMO

ligases (E3s) are Nse2 and Pli1 [16,17].

SUMO is capable of forming both covalent and non-covalent

interactions with proteins. In many instances, formation of a

covalent bond occurs via the lysine residue within the yKxE

consensus motif e.g. [18,19]. Non-covalent interactions occur via

SUMO-interacting motifs (SIMs). The SXS motif is one of two

types of SIMs, and was first identified in a peptide derived from

the SUMO ligase PIASx in complex with human SUMO-1 [20].

The second type of SIM comprises [V/I]-X-[V/I]-[V/I], and is

present in another SUMO ligase, RanBP2, and a variety of

proteins including TTRAP and MCAF [21].

Rad60 is a founder member of the RENi (Rad60 Esc2 NIP45)

family of proteins which have two SUMO-like domains (SLDs) at

the C-terminus [22]. As the name suggests, other members of the

RENi family include S. cerevisiae Esc2 and human NIP45 [22]. The

ESC2 gene was initially identified in a screen for proteins that

restored silencing when tethered to a telomere [23] and more

recently has been shown to have a role in genome integrity [24]

and S phase repair [25,26]. NIP45 is implicated as having a

function in gene regulation [27]. S. pombe rad60 is required for

response to DNA damaging agents and recovery from S phase

arrest [28,29,30]. Unlike S. cerevisiae ESC2, rad60 is essential for

viability [28].

In addition to the SLDs, Rad60 contains an SXS motif that is

thought to be a SIM [31]. It also has three hydrophobic regions

that each contain a sequence conforming to the [V/I]-X-[V/I]-

[V/I] SIM consensus and these have been termed putative

SUMO-binding motifs (SBMs) [31].
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Rad60 was originally identified in a screen for mutants defective

in homologous recombination (24). It has been proposed that

control of Rad60 regulates recombination events when replication

is stalled. It is delocalised from the nucleus in an HU-dependent

manner on activation of Cds1, the fission yeast S phase checkpoint

kinase, but becomes essential for viability on recovery from

replication arrest [29]. Genetic and biochemical studies indicate

that Rad60 functions with the Smc5/6 (structural maintenance of

chromosomes) complex required for recombinational repair and

recovery from replication fork stalling [29,32].

The S. pombe Smc5/6 complex comprises eight tightly associated

proteins: two large proteins, Smc5 and Smc6, and six smaller, non-

SMC proteins, Nse1-6 [33,34]. All of these proteins apart from

Nse5 and Nse6, are essential for viability in S. pombe. The role of

these proteins is beginning to be elucidated. Nse1 has a RING-like

domain frequently associated with ubiquitin E3 ligase activity (e.g.

[35]) although no ligase activity has yet been demonstrated for the

protein. Nse2 is a SUMO ligase [16,36,37]. Nse4 is a kleisin that

bridges the Smc5/6 heads [38]. Nse5 and Nse6 form a

heterodimer that interacts with the hinge regions of Smc5 and

Smc6 [39]. In response to DNA damage, components of the

Smc5/6 complex are modified post-translationally by SUMO (e.g.

[16,36,37]).

In order to further our understanding of the organisation and

function of the Smc5/6 complex, we have undertaken a study into

the function of domains and motifs in the Rad60 protein. These

studies extend those of Raffa et al [31] and Prudden et al [1]. In

particular we have investigated the function(s) of the SUMO-like

domains (SLDs) and the three putative SUMO binding motifs

(SBMs). We show that SLD1 but not SLD2 is essential for viability.

Deletion of SLD2 results in sensitivity to DNA damage. We show

that while the SLDs resemble SUMO, their function cannot be

replaced by SUMO. Additionally, we have analysed the role of

three hydrophobic regions that have been proposed to be SBMs.

Genetic and biophysical studies indicate that SBM3 is not likely to

be a SUMO-interacting motif, but is part of the hydrophobic core

of SLD2.

Materials and Methods

Strains and plasmids
The strains used in this work are detailed in Table 1. rad60-

SLD2D (sp.1174) and rad60-FL (sp.1175) (created as a wild type

control for rad60-SLD2D) were created by the method of Bahler

et al [40]. The recombinase-mediated cassette exchange (RMCE)

system described by Watson et al [41] was used for the creation of

other strains. Briefly, a rad60 haploid ‘base strain’ was created as

follows: the loxP site was integrated 300bp upstream of the rad60

coding sequence, and ura4+ and the loxM3 site were integrated

immediately downstream of the rad60 coding sequence. The base

strain was checked to ensure that the rad60 gene was still

functional, and that the integration events had not disrupted the

function of adjacent genes. A diploid strain heterozygous for this

altered rad60 locus was created by crossing the haploid h2 base

strain containing the ade6-210 allele with a rad+, h+, ura4-D18, leu1-

32, ade6-216 strain. The base strain (either haploid or diploid as

required) was then transformed with wild type and mutant

versions of rad60 flanked by loxP and loxM3 loci, cloned into the

LEU2-containing plasmid pAW8, and LEU+ colonies selected.

Recombination was subsequently induced by expression of the Cre

recombinase following growth of cells in thiamine-free medium.

Strains in which the original copy of rad60 had been replaced were

selected on medium containing 5-FOA. Other plasmids used for S.

pombe transformation were based on pREP41 or pREP42 [42].

Table 1. Strains used in this study.

Strain Genotype Reference:

sp.011 ade6-704, ura4-D18, leu1-32, h2 [52]

sp.432 rhp51::ura4, ade6-704, ura4-D18, leu1-32, h+ [53]

sp.473 rqh1::ura4, ade6-704, ura4-D18, leu1-32, h2 [55]

sp.480 brc1::LEU2, ade6-704, ura4-D18, leu1-32, h2 This work

sp.714 pli1::ura4, ade6-704, ura4-D18, leu1-32, h2 [2]

sp.1123 nse2-SA, ade6-704, ura4-D18, leu1-32, h2 [16]

sp.1125 smc6-X, ade6-704, ura4-D18, leu1-32, h+ [54]

sp.1126 smc6-74, ade6-704, ura4-D18, leu1-32, h+ [46]

sp.1174 rad60-SLD2D, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1175 rad60-FL:kan, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1179 rad60-1, ura4-D18, leu1-32, h2 [28]

sp.1305 rad60-SLD2D, nse2-SA, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1408 rad60-SLD2D, rhp51::ura4, ade6-704, ura4-D18, leu1-32, h+ This work

sp.1701 rad60 base strain, ade6-704, leu1-32, h2 This work

sp.1704 rad60-SBM2, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1778 rad60-SBM1, ade6-704, ura4-D18, leu1-32, h2 This work

sp.1845 rad60 base strain heterozygous diploid, ade6-210, ade6-216, leu1-32, h+/h2 This work

sp.1925 rad60-SBM3, ade6-704, ura4-D18, leu1-32, h2 This work

sp.2026 rad60-SLD2D-SUMO, ade6-704, ura4-D18, leu1-32, h2 This work

sp.2027 rad60-SLD2D-SUMO-M, ade6-704, ura4-D18, leu1-32, h2 This work

sp.2045 rad60-SBM1,SBM2, ade6-704, ura4-D18, leu1-32, h2 This work

doi:10.1371/journal.pone.0013009.t001
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pREP41-rad60-SLD1D was created by deleting aa 227–308,

pREP41-rad60-SLD2D lacked aa 334–406 and pREP41-rad60-

SLD2D-SUMO contained the coding sequence for aa 1–109 of S.

pombe SUMO cloned in-frame with rad60-SLD2D in pREP41-

rad60-SLD2D. rad60-SLD2D-SUMO-M was created by Quik-

Change site-directed mutagenesis (Stratagene) according to the

manufacturers instructions. The hus5 gene was from A Carr (U. of

Sussex) [15].

Analysis of DNA damage responses
UV irradiation was carried out on freshly plated cells using a

Stratagene Stratalinker. Ionising radiation sensitivity was assayed

using a 137Cs source at a dose of 10 Gymin21. Sensitivities to

hydroxyurea (HU) and methyl methanesulphonate (MMS) were

analysed on YE agar (YEA) at the doses stated.

Microscopy
Methanol-fixed cells were stained with DAPI (1 mg/ml) and

viewed using an Applied Precision Deltavision Spectris microscope

with deconvolution software.

Protein purification
His-tagged proteins expressed from pET15b, were purified

using Ni2+ agarose (Novagen) according to the manufacturer’s

instructions.

Equilibrium Denaturation Studies
Preparation of samples: A stock solution of guanidinium HCl

(8 M) was diluted to obtain a large range of denaturant

concentrations using a Hamilton Microlab dispenser; 100 ml of a

stock solution of SLD2 protein (9 mM) containing 450 mM

phosphate, 9 mM DTT (pH 7.0) was added to each denaturant

sample (800 ml). This gave a final buffer concentration of 50 mM

phosphate pH 7.0 and a protein concentration of 1 mM. The

protein/denaturant solutions were pre-equilibrated at 25uC for at

least three hours (This was sufficient time for every solution to

reach equilibrium [data not shown]).

Fluorescence measurements: All measurements were performed

in a thermostatted cuvette holder at 25uC using Varian Cary

Eclipse Fluorescence Spectrophotometer. The excitation wave-

length was 280 nm, band passes were set at 5 nm for excitation

and emission and the fluorescence was measured at the lmax for

the denatured state of 352 nm.

Equilibrium data analysis
Two state folding model: The entire fluorescence monitored

denaturation of SLD2 was fitted to equation (1) using the non-

linear regression analysis program Kaleidagraph (version 4.0 Synergy

Software, PCS Inc.):

lobs~
(aNzbN ½D�)z((aDzbD½D�)exp((mD{N ½D�{½D�50%)))=RT

1zexp(mD{N ½D�{½D�50%)=RT
ð1Þ

where lobs is the observed fluorescence signal, aN and aD are the

intercepts, and bN and bD are the slopes of the baselines at the low

(N) and high (D) denaturant concentrations, [D]50% is the

midpoint of unfolding, [D] is the concentration of denaturant

and mD{N is a constant that is proportional to the increase in

degree of exposure of the protein on denaturation.

Size exclusion chromatography
250 ml of protein was loaded onto a superose 6 column (volume

24 ml) connected to an Amersham Biosciences FPLC and eluted

with 20 mM Tris HCl pH 7.9, 150 mM NaCl, 1 mM DTT.

Protein elutions were monitored with an in-line UV detector and

fractions collected.

Dynamic Light Scattering
50 ml samples were analyzed at 4uC using a Malvern

Instruments Nano S Dynamic Light Scattering instrument.

Samples were spun at 14k rpm for 10 minutes and allowed to

equilibrate at collection temperature for 2 minutes prior to data

collection. Scattering data were analysed for peak position and

width to identify particle size and polydispersity.

Results

Relationship of the Rad60 SLDs to ubiquitin and SUMO
Rad60 has two domains (SLD1 and SLD2) at its C-terminus

(Figure 1A) that were initially reported to be ubiquitin-like [28].

However, sequence comparisons indicate that SLD2 at least,

resembles SUMO more closely than ubiquitin. SLD1 has identity

with S. pombe ubiquitin and SUMO of 18.4% and 19.7%

respectively. For SLD2 the identity with ubiquitin and SUMO is

14.3% and 23.4% respectively. The similarity between SLD2 and

SUMO is further demonstrated by the recent publication of the

structure of S. pombe and human SLD2 [1,43]. Comparison of the

structures of SUMO, ubiquitin and SLD2 and the predicted

structure of SLD1 indicates similar overall structures (Figure

S1A,B). Interestingly, the amino acids in SLD1 and SLD2 that are

the same as, or similar to, amino acids in SUMO, are, in most

cases, not the same in the two domains (Figure S2).

SLD1, but not SLD2 is required for the essential function
of Rad60

The importance of the SLDs for Rad60 function is attested to

by the fact that the majority of the mutations within three

characterised rad60-ts mutants lie within SLD1, namely K263E

(rad60-1) [28], F272V (rad60-3), and I232S and Q250R (rad60-4)

[29] (Figure 1A) (rad60-4 also contains two mutations outside of

SLD1, T72A, and K312N) [29] (Figure 1A). This suggests that

SLD1 at least, has a key role in Rad60 function. Additionally, a

point mutation within SLD2 (rad60-E380R) [1] results in sensitivity

to DNA damaging agents. In order to investigate the roles of the

SLDs, we attempted to create strains containing versions of Rad60

deleted for both SLD1 and SLD2 and, separately, deleted for a

single domain (either SLD1 or SLD2). Using both haploid and

diploid strains (see Materials and Methods) we were unable to

produce haploid strains in which Rad60 was missing either

SLD1+SLD2 (aa 228–406) or missing solely SLD1 (aa 228–307).

In contrast, deletion of SLD2 (aa 334–406) resulted in viable cells

(rad60-SLD2D). Thus, consistent with the presence of the ts

mutations in SLD1, SLD1, but not SLD2, is essential.

SLD2 is required for response to DNA damaging agents
rad60-SLD2D is slightly temperature sensitive for growth at 36uC

(Figure 1B) when compared to wild-type and rad60-FL strains

(rad60-FL was created in parallel with rad60-SLD2D as a full length

Rad60 control), but less sensitive than rad60-1. At permissive

temperatures, rad60-SLD2D cells are slightly elongated compared

to wild-type (Figure 1C). rad60-SLD2D is slightly sensitive to UV

(Figure 1D, Figure S3B) and ionising radiation (Figure S3B).

However, it is significantly sensitive to HU, (DNA synthesis

inhibitor) and MMS (alkylating agent) (Figure 1D) similar to smc6-

X, which contains a point mutation (R706C) in the hinge region of

Smc6 [44], but more sensitive than rad60-1. This is consistent with

Rad60’s reported role in recovery from HU arrest, i.e. in

ð1Þ

Rad60 SLDs
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processing of intermediates following exposure to DNA damaging

agents or replication fork arrest by HU [30].

To determine whether rad60-SLD2D behaves differently to other

rad60 mutants we undertook epistasis analysis with rad60-SLD2D
and mutants defective in the Smc5/6 complex and homologous

recombination. The results are summarised in Table S1.

Consistent with the published analyses of other rad60 mutants

[1,28,29,45], rad60-SLD2D was synthetically lethal with smc6-X,

smc6-74 (contains a point mutation A151T, close to the ATP-

binding site [46]), brc1-d (deleted for a 6 BRCT domain-containing

protein [46]), rqh1-d (deleted for the S. pombe homologue of the

RecQ helicase [47]) and pli1-d (deleted for the Pli1 SUMO ligase).

Figure 1. rad60-SLD2D is ts and sensitive to DNA damaging agents. A. Organisation of the Rad60 protein, indicating the position of the SXS
motif (star), the putative SBMs (diamonds) and the rad60 mutations (*). B. rad60-SLD2D is slightly temperature-sensitive for growth at 36uC. Strains
were streaked onto YEA and incubated at the indicated temperatures for 5 days. C. Morphology of DAPI-stained cells. D. Spot tests to assess
sensitivity to HU, MMS and UV. 10 ml of serially diluted cells were spotted onto media as indicated. Plates were incubated at 25uC.
doi:10.1371/journal.pone.0013009.g001

Rad60 SLDs
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Additionally, it is epistatic with nse2-SA (contains 2 point

mutations, C195S, H197A, in the SP-RING domain of the Nse2

SUMO ligase [16]) and rhp51-d (deleted for the Rad51 homologue)

(Table S1 and Figure S3). Thus rad60-SLD2D is a hypomorphic

mutant which displays a similar sensitivity to DNA damaging

agents or the inhibition of replication and genetic interactions as

previously described for rad60-1.

Neither ubiquitin nor SUMO can replace the functions of
SLD1 or SLD2

The sequences and structural similarities of the SLDs with

ubiquitin and SUMO prompted us to investigate whether the SLDs

can be replaced by either ubiquitin or SUMO (both lacking the GG

motifs and C-terminal extensions downstream of the GG motifs), or

a combination of the two. Figure S4 shows the combinations that we

tested. In no case were we able to obtain viable haploid cells with

ubiquitin replacing SLD1 or SLD2. Additionally, we were unable to

obtain strains in which SLD1 was replaced by SUMO. However,

viable cells were obtained when SLD2 was replaced by SUMO

(Figure S4, construct 7, rad60-SLD2D-SUMO).

To determine whether SUMO can replace the function of

SLD2, rad60-SLD2D-SUMO was tested for sensitivity to HU and

MMS. Figure 2 indicates that rad60-SLD2D-SUMO has similar

sensitivity to HU and MMS as rad60-SLD2D. To determine why

SUMO is not capable of functionally replacing SLD2, differences

between the two were sought. While the overall structure of SLD2

resembles that of SUMO, a detailed comparison of the structure of

SLD2 with that of SUMO identified some key differences between

the two structures [1]. These are (i) that SLD2 lacks the C-terminal

tail present in the mature form of SUMO, which is required for

interaction with the SUMO activating E1 protein, and (ii) that

SUMO has a positively charged cleft formed between b-strand 2

and a-helix 1 which interacts non-covalently with SIMs on

interacting proteins. In SLD2 this is obscured by the side chains of

P351, F354, R362 and E366. Thus the inability of SUMO to

restore wild type function in Rad60-SLD2D-SUMO may be due

to inappropriate interactions involving SUMO. We therefore

introduced a series of mutations into SUMO in rad60-SLD2D-

SUMO to produce rad60-SLD2D-SUMO-M. The mutant fusion

protein lacks two amino acids at the C–terminus of SUMO,

namely Q108 and L109 (see Figure S2B) and has four substitutions

in amino acids corresponding to those in SLD2 that are proposed

to be obscuring the charged cleft, namely K53P, T56F, I64R,

R68E. rad60-SLD2D-SUMO-M was then integrated into the S.

pombe genome. Figure 2 indicates that the mutations do not restore

a wild type response to MMS or HU.

Intermolecular complementation is not observed with
rad60-SLD1 and rad60-SLD2 mutants

Rad60 has been shown to form homodimers via the SLDs [31].

This raises the question as to whether the two molecules both need

to contain SLD1 and SLD2. We investigated this by testing

whether Rad60 function could be restored through inter-

molecular complementation by two Rad60 molecules defective

in one case, in SLD1 and in the other in SLD2. Figure 3A

indicates that unlike over-expression of full length Rad60, over-

expression of Rad60-SLD1D (lacking aa 227–308) does not

complement the HU and MMS sensitive phenotypes of

rad60-SLD2D.

We extended these studies to test whether Rad60-SLD2D can

suppress the ts and DNA damage sensitive phenotypes of rad60-1

(which has a point mutation in SLD1, Figure 1A). As expected,

over-expression of full length Rad60 complements the ts and DNA

damage sensitivities of rad60-1 (Figure 3B). In contrast, over-

expression of Rad60-SLD2D rescues the temperature sensitivity of

rad60-1, but is less proficient than full length Rad60 in restoring

resistance to HU and MMS, particularly at high doses. Since these

responses to HU and MMS are similar to those observed when

Rad60-SLD2D is over-expressed in a rad60-SLD2D strain

(Figure 3A), it is likely that the growth on these plates is due

solely to the over-expression of Rad60-SLD2D rather than to

intramolecular complementation with Rad60-SLD1D.

Probing the role of three putative SUMO binding motifs
It has been proposed that Rad60 contains a SIM (SUMO-

interacting motif) in its N-terminus (SXS) [31]. Additionally, three

hydrophobic regions within the protein which conform to the [V/

I]-X-[V/I]-[V/I] SIM consensus have been identified. These have

been termed putative SBMs (SUMO binding motifs), although no

interactions with SUMO have been reported for them. Since these

putative SBMs are either in, or close to, the SLDs (SBM2 (aa 268–

271) lies within SLD1 and SBM3 (aa 401–406) comprises the last

six amino acids of SLD2, Figure 1A), we were interested in their

contribution to Rad60 function. If these putative SBMs are

important motifs it might be expected that they would be highly

conserved, at least within Schizosaccharomyces species. We therefore

compared the sequence of S. pombe Rad60 with the recently

elucidated Rad60 sequences from S. japonicus, S. cryophilus and S.

octosporus (http://www.broadinstitute.org/annotation/genome/

schizosaccharomyces_group) (Figure S5). Interestingly, while the

SLDs are highly conserved, the regions corresponding to the

proposed SBMs are not, particularly SBM1 and SBM2. For

example, in S. cryophilus and S. octosporus, the region corresponding

to the putative SBM1 contains Pro, while that corresponding to

the putative SBM2 contains Phe. SIMs generally have adjacent

acidic sequences e.g. [21]. Only in the case of the putative SBM3 is

there a significant stretch of adjacent acidic amino acids,

suggesting that SBM1 and 2 may not be SUMO-interacting

motifs. Interestingly, the corresponding sequences in S. cerevisiae

Esc2 are not conserved.

Rad60 and purified SLD2 do not interact with free SUMO
We next tested whether the putative SBMs interact with SUMO.

Using GST-pull down assays (as described in File S1) we do not detect

any interaction of full length Rad60 or SLD2 with free SUMO,

under conditions where Hus5 and SUMO interact (Figure S6).

Figure 2. SUMO is unable to functionally replace SLD2. Response of strains, as indicated, to HU and MMS. Plates were incubated at 30uC.
doi:10.1371/journal.pone.0013009.g002

Rad60 SLDs
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The phenotypes observed for rad60-SLD1D and
rad60-SLD2D are not due to loss of the SUMO binding
motifs SBM2 and SBM3

The three putative SBMs are not present in SUMO (Figure S2).

Thus, a possible reason for the inability of SUMO to replace the

SLDs may be their lack of SBMs. We therefore analysed the effect

of mutating SBM2 and SBM3. In addition, we were interested to

determine whether the phenotypes that we detect for rad60-SLD1D
and rad60-SLD2D (namely lethality and sensitivity to DNA

damaging agents respectively) are due to deletion of SBM2 or

SBM3. We therefore mutated SBM2 (from VVLV to VALA, to

produce rad60-SBM2), SBM3 (from VSVVLD to ASAVLD,

producing rad60-SBM3) and in parallel, SBM1 (from ISVV to

ISAA, producing rad60-SBM1). Mutagenesis of either SBM1 or

SBM2 did not have any effect on cell viability, morphology or

response to DNA damage (Figure 1C, 4A,B). Mutation of both

SBM1 and SBM2 (to produce rad60-SBM1,SBM2) also had no

effect on the response to HU, MMS or UV (Figure 4B). These

results indicate that SBM1 and SBM2 do not contribute important

functions to the recovery from S phase arrest or the DNA damage

response, and do not function redundantly with each other.

In contrast to the results with SBM1 and SBM2 mutants,

mutation of SBM3 has a severe effect on cell morphology, growth

and response to DNA damaging agents (Figure 1C and 4A,B).

rad60-SBM3 cells are both heat and cold sensitive (25uC and 36uC)

(Figure 4A), showing a greater sensitivity to high temperature than

rad60-SLD2D. Thus, mutating SBM3 has a more severe effect on

Rad60 function than deletion of the entire SLD2 domain.

Since the structure of Rad60 SLD2 has recently been

determined [1] we are able to map the positions of the amino

acids in SBM3 that we have mutated (Figure 5A). This shows that

they are located within the hydrophobic core of the protein and

are completely buried. They are both, therefore, likely to be

critical for the stability of the domain. To define the effect of these

mutations on the Rad60 protein, we determined the stability of

SLD2 using a chemical denaturation assay at 298K. We found this

to be 6.2 kcalmol21 (Figure 5B). It has been shown that removing

individual core residues generally leads to a loss of stability of at

least 1 kcalmol21 per methylene group removed [48,49,50]. Thus,

as the two amino acid substitutions in SBM3 each remove four

methylene groups, it is likely that in the rad60-SMB3 mutant, the

SLD2 domain would be completely unfolded.

To further investigate the effect of the SBM3 mutation on the

stability of SLD2, we attempted to purify SLD2-SBM3. Using our

standard conditions for over-expression in E. coli, where the majority

of wild type SLD2 is soluble, we observed that SLD2-SBM3 is

predominantly in the insoluble fraction (data not shown). However, a

small amount of soluble mutant protein was purified (Figure 5C).

Analysis of wild type and SBM3 mutant forms of SLD2 were then

analysed by size exclusion chromatography (Figure 5D). The majority

of wild type SLD2 migrated as a discrete peak (V3), while most of the

SBM3 mutant form of SLD2 eluted in the void volume (V1). SDS

PAGE (Figure 5C) confirms that the majority of wild type SLD2 is in

V3, and that the SBM3 mutant form is mainly present in high Mr

fractions (V1–V2), but not in V3 as is the case with the wild type

SLD2. This suggests that the SBM3 mutant form of SLD2 forms

soluble aggregates. This was confirmed using dynamic light scattering

(Figure 5E). The two samples clearly show peaks at different positions,

the wild type giving a calculated diameter of 4 nm and the mutant a

diameter of 10 nm. This suggests an increase in volume of 16 times.

Thus the severe phenotype that we observe for rad60-SBM3 is likely

due to misfolding of SLD2.

Figure 3. Testing the requirements for Rad60 dimerisation. A. wt and rad60-SLD2D strains were transformed with pREP41 (41), pREP41-rad60
(rad60), pREP41-rad60-SLD2D (rad60-SLD2D) or pREP41-rad60-SLD1D (rad60-SLD1D) as indicated. Cells were plated on YEA containing HU and MMS as
indicated and incubated at 30uC. B. wt or rad60-1 cells were transformed with plasmids as indicated. Top row: cells were plated on YEA and incubated
at 23uC, 30uC or 36uC as indicated. Bottom row: cells were plated on YEA containing HU or MMS at the doses stated and incubated at 25uC.
doi:10.1371/journal.pone.0013009.g003
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Genetic relationship of rad60-SLD2D with components of
the sumoylation system

The Rad60 SLDs interact with components of the sumoylation

machinery [1]. In particular, the SLD2s of Rad60, Esc2 and

Nip45 interact with the SUMO conjugating enzyme (E2), Hus5/

Ubc9 [1,25,26,43]. The hus5-62 strain is extremely slow growing

and prone to accumulate suppressors, making it unreliable to use

for epistasis analysis. To overcome these problems, we investigated

whether over-expressing Hus5 in rad60-SLD2D could rescue the

sensitivities to HU and MMS. Wild type and rad60-SLD2D cells

were transformed with pREP41-Hus5 and the effect compared

with over-expression of full-length Rad60 and Rad60-SLD2D.

Wild type cells were not affected by over-expression of any

versions of Rad60 or Hus5 (Figure 6A,B upper panel). As

expected, over-expression of full length Rad60 reverses the HU

and MMS sensitivities of rad60-SLD2D cells. However, over-

expression of Hus5 does not reverse this phenotype. This supports

the hypothesis that while SLD2 and Hus5 interact, SLD2 has

some functions independent of the sumoylation system.

Over-expression of full length Rad60 has previously been shown

to partially rescue the MMS sensitivity of smc6-X [28]. We next

investigated whether over-expression of Rad60-SLD2D has any

effect in smc6-X. We confirm that over-expression of Rad60 can

reverse the sensitivity of smc6-X to MMS, and has a slight effect on

the response to HU (Figure 6B). In contrast, over-expression of

Rad60-SLD2D is unable to rescue these sensitivities. We next

tested the effect of over-expression of Hus5. Over-expression of

Hus5 either on its own, or with Rad60, has no effect on the

response of smc6-X to HU or MMS. Additionally, over-expression

of Hus5 with Rad60-SLD2D does not restore resistance to HU or

MMS in smc6-X. This is consistent with the proposal that Rad60

has function(s) independent of the sumoylation system.

Discussion

In this study we have analysed the requirement for the SUMO-

like domains (SLDs) and the putative SBMs for Rad60 function.

We show that SLD1 is essential for cell viability under normal

growth conditions, whereas SLD2 is not. Deletion of SLD2 results

in slight temperature sensitivity and sensitivity to DNA damaging

agents, particularly MMS, and the DNA synthesis inhibitor, HU.

We show that despite the structural similarities with ubiquitin

and SUMO, the functions of SLD1 and SLD2 cannot be provided

by either ubiquitin or SUMO. Since the Rad60 SLDs interact

with components of the SUMO modification machinery [1], it is

perhaps not surprising that ubiquitin cannot substitute for either of

the SLDs. In contrast, since the SLDs more closely resemble

SUMO, the reason for the inability of SUMO to functionally

replace either or both SLDs in Rad60 is less clear, particularly

since a single copy of SUMO can functionally replace the two

SLDs in S. cerevisiae Esc2 [24].

We tested whether the inability of SUMO to replace SLD2 is

due to inappropriate interactions involving SUMO, by removing

two amino acids (Q108, L109) from the C-terminus that are

required for interaction of SUMO with the E1, and then mutated

four amino acids in the region required for interaction with

SUMO-interacting motifs (SIMs). Mutation of these regions in

SUMO in rad60-SLD2D-SUMO-M did not restore wild type

function to the hybrid molecule and thus imply a specific role for

SLD2 not undertaken by SUMO.

Two possible explanations for the ability of SUMO to replace

SLD2 in Esc2 but not in Rad60 are that either, the similarity

between S. cerevisiae SUMO and Esc2 SLD2 is greater than that

between S. pombe SUMO and Rad60 SLD2, or that Esc2 and

Rad60 have somewhat different roles in cells, such that SUMO

can replace the SLDs in Esc2, but not in Rad60. Pair wise

sequence comparisons do not indicate gross differences in

similarities between the SLDs and the respective SUMO

sequences (Esc2 SLD2 and SUMO are 17.6% identical and

40% similar, while Rad60 SLD2 and SUMO are 20% identical

and 36.9% similar). This suggests that sequence similarity may not

account for the ability of SUMO to replace the Esc2 SLDs,

although it is possible that certain key epitopes in Esc2 SLD2 may

be present in S. cerevisiae SUMO, while the same may not be true

for Rad60 SLD2 and S. pombe SUMO. Alternatively, and our

preferred hypothesis, the difference may be related to the different

functions of Esc2 and Rad60 in cells. Rad60 is essential for cell

viability, while Esc2 is not. Additionally, an esc2 null mutant is

Figure 4. Effect of mutating the three putative Rad60-SBMs. A. rad60-SBM3 is temperature sensitive. Strains were streaked onto YEA and
incubated at the indicated temperatures for 5 days. B. Response of mutants to HU, MMS and UV. 5 fold more cells were plated for rad60-SBM3 than
other strains. Plates were incubated at 30uC for 5 days.
doi:10.1371/journal.pone.0013009.g004
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Figure 5. Mutation of SBM3 affects SLD2 structure. A. Position of SBM3 in crystal structure of SLD2 = red and green [1]. SBM3 point mutations
created in this study are in green. B. Thermal stability of SLD2. C. SDS PAGE. T = SLD2 protein purified from Ni+2 agarose. In both cases (wt and SBM3),
8 ml of 500 ml eluate was loaded onto gel. V1–V3 8 ml of the FPLC fractions indicated in D, was loaded in each case. D. FPLC trace of wt SLD2 and
SLD2-SBM3 mutant on Superose 6. SBM3 shows an elution peak after 7 ml whereas the wild type shows elution peaks at 11 ml and 12 ml). E.
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sensitive to MMS but not to HU, UV or IR, unlike rad60 mutants.

It has therefore been proposed that Esc2 probably acts to prevent,

or process only limited types of DNA damage, unlike the case with

Rad60 [26]. This suggests that Rad60 may be involved in a more

complex set of molecular interactions than is Esc2. Despite the

likely similarity in structure, the two SLDs in Rad60 have been

demonstrated to be involved in distinctly different interactions

with components of the sumoylation pathway [1]. This may

account for the fact that Rad60 needs to contain two SLDs neither

of which can be replaced by SUMO,

Raffa et al [31] demonstrated that Rad60 homodimerises via

the SLDs. We observe using FPLC and GST-pulldowns (data not

shown) that SLD2 does not interact with itself. This suggests that

homodimerisation occurs either between two SLD1s or between

SLD1 and SLD2. We tested this latter possibility by investigating

whether intermolecular complementation occurred between two

mutant Rad60 proteins defective in one case in SLD1 and in the

other in SLD2. No intermolecular complementation was observed.

This suggest two possibilities. The first is that homodimerisation

occurs between two SLD1s. As SLD1 protein is not very soluble

we have been unable to test this. The second possibility is, that

since our assay is for Rad60 function and not specifically for

homodimerisation, that a Rad60 function unrelated to homo-

dimerisation, e. g. involving intramolecular folding, requires that

both SLD1 and SLD2 need to be present in the same molecule.

This issue will be resolved with the elucidation of the crystal

structure of the full-length Rad60 protein.

Raffa et al [31] proposed that three hydrophobic regions in

Rad60 were putative SUMO binding motifs (SBMs), and that

SBM3 is required for homodimerisation. We have tested the

requirement for these putative SBMs in vivo. Mutation of SBM1

and SBM2 has no effect on cell viability or DNA damage

responses. Since mutation of SBM2 results in viable cells, removal

of this SBM likely does not account for the loss of viability

observed in rad60-SLD1D cells, and the inability of SUMO to

substitute for SLD1. Since some proteins (e.g. STUbLs) contain

more than one SIM (e.g. [51] ) we tested the effect of mutating

both SBM1 and SBM2. Since the rad60-SBM1,SBM2 double

mutant grows as wild type and is not sensitive to HU or MMS, we

conclude that SBM1 and SBM2 do not function redundantly. In

contrast to the results with the SBM1 and SBM2 mutants, we see a

striking effect when we mutate two residues in SBM3. From the

published structure of SLD2 and our results from chemical

denaturation studies we propose that the mutations would

drastically affect the stability of SLD2, with the likely result that

the domain would not be correctly folded. This is also likely to be

Figure 6. Relationship of Rad60-SLD2D to Hus5. A. wt and rad60-SLD2D cells were transformed with pREP41 (41), pREP41-rad60 (rad60) or
pREP41-rad60-SLD2D (SLD2D) or pREP41-Hus5 (hus5) as indicated. Cells were plated on YEA with supplements at 30uC. B. wt and smc6-X cells were
transformed with combinations of pREP41 (41), pREP42 (42), pREP41-rad60 (rad60), pREP41-rad60-SLD2D (SLD2D), pREP42-hus5 (hus5) as indicated.
doi:10.1371/journal.pone.0013009.g006

Dynamic Light Scattering spectra showing solution sizes of wild type and SBM3. The wild type shows a peak indicating a size of diameter 4 nm
whereas SBM3 shows a peak indicating a size of diameter of 10 nm.
doi:10.1371/journal.pone.0013009.g005
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the case in [31], where 6 aa (comprising an entire b-sheet) were

deleted from the C-terminus of Rad60.

Since SLD2 interacts with Ubc9/Hus5 [1,25,26], it has been

proposed that Rad60 may recruit SUMO-charged Ubc9 to

mediate sumoylation of specific proteins, or that it may sequester

Ubc9 in an inactive complex to down-regulate sumoylation [1].

We observe that over-expression of Hus5 does not rescue the

phenotypes of rad60-SLD2D. Thus, SLD2 likely has a function, in

addition to its role in sumoylation, that is independent of Hus5.

This conclusion is supported by the fact that, while over-

expression of full length Rad60 suppresses the HU and MMS

sensitivity of smc6-X, co-over-expression of Hus5 and Rad60-

SLD2D in smc6-X does not. This suggests that Rad60 function is

not simply to recruit the SUMO conjugating enzyme Hus5 to the

Smc5/6 complex and into close proximity with the Nse2 SUMO

ligase subunit. The viability and mild DNA damage sensitivities of

the SUMO ligase dead nse2-SA mutant [16] is further support for

both Smc5/6 and Rad60 having functions independent of the

sumoylation system.

In conclusion, we have demonstrated that SLD1 but not SLD2

is required for the essential function of Rad60, and that neither

can be replaced by ubiquitin or SUMO. Mutational analysis

indicates that the inability of SUMO to functionally replace SLD2

is not due to the slightly extended C–terminus or the presence of

the SIM-interacting region. rad60-SLD2D is sensitive to HU and

MMS. Mutation of the SBMs indicates that neither SBM1 nor

SMB2 is required for the DNA damage response. Since mutation

of SBM3, which is present in the hydrophobic core of SLD2,

destabilises SLD2, we conclude that SBM3 does not interact with

SUMO, but is required for maintaining SLD2 structure. Our

over-expression studies indicate that although SLD2 interacts with

the SUMO conjugating enzyme Hus5/Ubc9, Rad60 also has a

Hus5/sumoylation-independent role.
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