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Myocarditis is an important cause of heart failure in young patients. Autoreactive, most often, infection-triggered CD4+ T cells were
confirmed to be critical for myocarditis induction. Due to a defect in clonal deletion of heart-reactive CD4+ T cells in the thymus of
mice and humans, significant numbers of heart-specific autoreactive CD4+ T cells circulate in the blood. Normally, regulatory T
cells maintain peripheral tolerance and prevent spontaneous myocarditis development. In the presence of tissue damage and
innate immune activation, however, activated self-antigen-loaded dendritic cells promote CD4+ effector T cell expansion and
myocarditis. So far, a direct pathogenic role has been described for both activated Th17 and Th1 effector CD4+ T cell subsets,
though Th1 effector T cell-derived interferon-gamma was shown to limit myocarditis severity and prevent transition to
inflammatory dilated cardiomyopathy. Interestingly, recent observations point out that various CD4+ T cell subsets demonstrate
high plasticity in maintaining immune homeostasis and modulating disease phenotypes in myocarditis. These subsets include
Th1 and Th17 effector cells and regulatory T cells, despite the fact that there are still sparse and controversial data on the
specific role of FOXP3-expressing Treg in myocarditis. Understanding the specific roles of these T cell populations at different
stages of the disease progression might provide a key for the development of successful therapeutic strategies.

1. Introduction

Myocarditis represents a polymorphic, frequently infection-
triggered, and immune-mediated inflammation of the heart
muscle [1]. Most often, it resolves spontaneously, but in sus-
ceptible individuals, it can progress to a chronic stage, which
finally results in pathological cardiac remodelling. Patholog-
ical remodelling includes tissue fibrosis, hypertrophy, and
apoptosis of cardiomyocytes and results in a phenotype of
dilated heart chambers with impaired contractility (inflam-
matory dilated cardiomyopathy (iDCM)). Patients with
iDCM develop heart failure with high mortality [2]. In
children, myocarditis leads to cardiomyopathy in 46% of
affected individuals [3], and up to 20% of sudden death
cases in young adults have been reported to be due to
myocarditis [4]. Diagnostic gold standard is myocardial
biopsy, despite a lack of sensitivity, mainly due to sam-
pling error [2, 5]. Nevertheless, appropriate histological,
immunohistochemical, and molecular biological workup
of sufficient numbers of heart biopsies greatly improved

diagnostic accuracy and allows meanwhile not only a mor-
phological classification but also detection of replicating
viral genomes in the heart [6, 7].

Viral infections are the most frequent cause of myocardi-
tis along with some bacteria, and protozoa. Moreover, toxins,
vaccines, and several drugs, as well as systemic autoimmune
diseases, can also trigger heart-specific autoimmunity and
inflammation [8]. Following tissue damage of any cause,
the release of cardiac self-antigens and activation of scaveng-
ing self-antigen-presenting dendritic cells in draining lymph
nodes may result in a breakdown of heart-specific tolerance
triggering production of heart-specific autoantibodies, auto-
reactive CD4+ T cell expansion, and autoimmunity [9, 10].
Various intracellular cardiac peptides, surface receptors,
and mitochondrial antigens had been reported as markers
of cardiac injury [11], but not all of them are heart specific
or promote autoimmunity. Autoantibodies to both cardiac
troponin T and I had been detected in sera of mice and
men, but only immunization with troponin I led to myocar-
ditis in mice [12, 13]. Autoantibodies to beta1-adrenoceptors

Hindawi
Journal of Immunology Research
Volume 2018, Article ID 4396351, 11 pages
https://doi.org/10.1155/2018/4396351

http://orcid.org/0000-0003-1236-3290
http://orcid.org/0000-0003-1217-9696
https://doi.org/10.1155/2018/4396351


had been shown to promote dilated cardiomyopathy in
rodents [14, 15] and are associated with adverse outcome in
patients with dilated cardiomyopathy [16, 17] or Chagas
heart disease [18]. Patients with dilated cardiomyopathy also
demonstrate increased serum levels of autoantibodies to
M(2) muscarinic acetylcholine receptor. In mice, adoptive
transfer of M(2) muscarinic acetylcholine receptor-specific
splenocytes induces myocarditis, with T cell infiltrations in
the heart and a dilated cardiomyopathy-like phenotype
[19]. Epitopes of the alpha-myosin heavy chain (α-MyHC)
peptide are heart specific, highly immunogenic in various
animal models, and associated with autoantibodies and T
cell-mediated myocarditis both in mice and humans [20–23].

CD4+ T cells were defined as main drivers of heart-
specific autoimmunity in myocarditis [24–27]. Expansion
of heart-specific effector CD4+ T cells is facilitated in
humans and mice due to a high frequency of circulating
naïve α-MyHC-specific CD4+ T cells. The high frequency
of α-MyHC-specific CD4+ T cells is a result of defective
negative selection in the thymus. In fact, transcripts of
Myh6, the gene encoding murine α-isoform of myosin
heavy chain, are absent in mouse medullary thymic epithelial
cells. Humans also do not express α-MyHC in mTECs.
Accordingly, patients with inflammatory cardiomyopathy
demonstrate increased T cell responses against α-MyHC
[28]. Taken together, a natural gap in negative selection of
α-MyHC-specific CD4+ T cells can explain susceptibility to
heart-specific autoimmunity in the context of tissue damage,
self-antigen release, or exposure to pathogen-derived mole-
cules mimicking cardiac proteins [29].

Effector CD4+ T cells (Teff) were reported to be criti-
cal for myocarditis development in patients and animal
models [24, 30]. Starting from their naïve form, CD4+ T
cells differentiate into either mature effector or regulatory
cell populations with distinct functions [31, 32]. Aside
from CD4+ T cell subsets including regulatory T cells
(Treg), several other cell types can exert a regulatory sup-
pressive function in myocarditis development. Such cells
include bone marrow-derived progenitor cells, CD8+ T
cells, monocytes/alternatively activated macrophages, or
dendritic cells [33–37]. Regulatory T cells, expressing fork-
head box P3T (FOXP3), suppress effector cells and main-
tain immune homeostasis and tolerance in various
autoimmune disease models, but their role in myocarditis
is still debatable [38–41]. Importantly, there is functional
polymorphism and high plasticity in all the different T cell
subpopulations [42, 43]. In fact, the regulatory role of the
different T cell subtypes in myocarditis highly depends on
the stage of disease and on a complex and not yet under-
stood interaction between different inflammatory heart
infiltrating and heart resident cell types. IFN-γ-producing
Th1 effector T cells can convert to suppressor cells [44].
Vice versa, Treg are also able to produce proinflammatory
cytokines under certain conditions [45]. In fact, dual IL-17-
producing FOXP3+ regulatory T cells may play a critical role
in controlling inflammatory balance in humans [46].
Whether these observations are also valid in the context of
cardiac inflammatory diseases is not known, however. In this
review, we will focus specifically on the regulatory role of

different CD4+ T cell subtypes in general in the context of
myocarditis and its progression to inflammatory dilated car-
diomyopathy. Our current knowledge largely bases onmouse
and rat models of viral and experimental myocarditis, as well
as from observational studies on patients with myocarditis or
inflammatory dilated cardiomyopathy.

2. CD4+ T Cells as Critical Mediators of Heart-
Specific Autoimmunity

Autoimmune mechanisms play an important role in myocar-
ditis development and in its progression to inflammatory
dilated cardiomyopathy. In patients and mice with myocar-
ditis, heart-specific autoantibodies can be detected [5, 11].
The role of these autoantibodies for disease induction and
progression, however, is still largely speculative [47]. In
patients with acute myocarditis, biopsies demonstrate
accumulation of T cells and macrophages, as well as other
inflammatory cells in close contact to injured cardiomyocytes
[48, 49]. Many studies, most of them based onmouse models,
indicate an exclusive role for CD4+ T cells in myocarditis
development and progression. Susceptible mouse strains
develop myocarditis after viral, especially coxsackievirus B3
(CVB3), infection [50], as well as upon injections of α-MyHC
peptide together with complete Freund’s adjuvant [51] or
activated in vitro α-MyHC-loaded bone marrow-derived
dendritic cells [9]. Transgenic mice carrying a CD4+ T cell
receptor specific to cardiac myosin spontaneously develop
myocarditis progressing to lethal-dilated cardiomyopathy
[52]. In all of these mouse models, myocarditis is associated
with a marked α-MyHC-reactive effector T helper (Th) cell
response. These cells are directly pathogenic, because adop-
tive transfer of heart-specific CD4+ T cells can induce myo-
carditis in irradiated recipients, SCID, or Rag2−/− mice [24].

3. T Cell Maturation: Where Is the Breach?

Random recombination in the generation of the diversity of
the T cell receptor (TCR) repertoire is an important evolu-
tionary mechanism allowing T cells to specifically recognize
and eliminate a large variety of foreign antigens. However,
it also harbours potential danger of generating self-reactive
clones. Under normal healthy conditions, there are two dis-
tinct stages of central and peripheral tolerance, which pre-
vent autoimmunity during the development and activation
of T cells. Central tolerance is based on clonal deletion and
clonal diversion and is responsible for extracting self-
reactive lymphocytes in the thymus [53]. Positively selected
for their ability to recognise MHC complexes, thymocytes
migrate to the thymic medulla and undergo a process of neg-
ative selection. Bearing strongly self-reactive TCRs, cells
respond to self-peptide-MHC complexes on medullary
thymic epithelial cells and receive apoptotic signals. The
autoimmune regulator (AIRE) protein has been shown to
play a major role in expression of self-tissue-specific epitopes
in these complexes [54]. Humans and mice with compro-
mised or absent AIRE suffer from variable severe autoimmu-
nity in almost all their organs [55]. Just recently, Fezf2,
another transcription factor, was introduced to directly
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regulate various tissue-restricted antigen genes in mTECs
independent of AIRE [56]. The key mechanisms however
are still largely unknown. Meaningfully, and as mentioned
above, the expression of α-MyHC is missing in both, humans
and mouse mTECs, leading to a defect in negative selection
of alpha-myosin heavy chain-specific CD4+ T cells in the
thymus putting them at risk for autoimmune myocarditis
development in the presence of self-antigen release and
innate immune activation (Figure 1).

CD45+MHCII+ bonemarrow-derived antigen-presenting
cells (APC) constantly process heart-specific epitopes in
the heart [57]. This observation was made in many rodent
strains, including some, which are not susceptible to viral
or immune-mediated myocarditis. Obviously, presentation
of cardiac antigens alone is not sufficient for activation
and expansion of Teff and myocarditis development. Acti-
vation of CD4+ T cells requires not only interaction with a
cognate antigen expressed on the MHC class II molecule but
also costimulatory signals, such as those mediated by CD28
ligation [58]. In the absence of a local inflammatory milieu,
DCs do not express sufficient amounts of costimulatory B7
family molecules and are supposed to play a tolerogenic role.
CD4+ T cells interacting with MHC peptide without costim-
ulatory signal undergo anergy, repression of TCR signalling,
and IL-2 production [59].

Surface APC molecules programmed death 1 receptor
(PD-1) and cytotoxic T-lymphocyte associated protein 4
(CTLA-4) play an important role in T cell anergy. Deficiency
in PD-1 or CTLA-4 leads to impaired peripheral tolerance
and enhanced T cell activation [60]. In fact, mice deficient
for CTLA-4, PD-1, or its ligand demonstrate elevated num-
bers of effector T cells and develop severe autoimmune
myocarditis and DCM [61–64]. By maintaining signalling
through these molecules, DCs mediate the peripheral conver-
sion of naive T cells to Treg. Acute inflammatory processes in
the heart, on the other hand, result in upregulation of
MHC II peptide complexes as well as costimulatory mole-
cules on the surface of DCs and enhance migration of DC
to the draining lymph nodes, where they interact with
circulating T cells. This leads to a breakdown of peripheral
tolerance and differentiation of naïve T cells into an effec-
tor phenotype (Figure 1).

4. The Role of Treg in Myocarditis

Since first identified and described as suppressive “regula-
tory” T cells [65], Treg were intensively studied [66].
Regulatory CD4+CD25+ T cells represent a specific T cell
population responsible for immune homeostasis and toler-
ance. Their frequencies in the circulation can widely differ
depending on the conditions or stage of disease [67]. Treg
express FOXP3 transcription factor, which is essential for
active suppression of autoimmunity [68]. As other T cells,
Treg mainly develop in the thymus, but can also develop
in the periphery. Treg suppress autoimmune Teff popula-
tions as well as APCs involved in priming and activation
via different cell-cell contact-dependent and contact-
independent mechanisms. Treg produce inhibitory cyto-
kines such as transforming growth factor beta (TGF-β)

and IL-10 or express surface molecules with immunosup-
pressive properties such as CTLA-4 or glucocorticoid-
induced tumor necrosis factor receptor (GITR) modulating
immune processes [69–71]. Expansion of regulatory cells is
an important mechanism to control autoimmunity. In
mouse and rat models of experimental autoimmune myo-
carditis, EAM numbers of Treg conversely correlated with
disease severity. Moreover, the proliferation capacity and
inhibitory activity of Treg increased in animals immunized
for EAM induction [72, 73]. Adoptive transfer of CD4+ T
cells depleted from highly efficient glucocorticoid-induced
TNFR family-related gene/protein-expressing Treg resulted
in more severe myocarditis in T cell-deficient BALB/c
nude mice [74]. Furthermore, adoptive transfer of Treg
protected mice from CVB3-induced myocarditis [75] and
from progression to cardiomyopathy, if injected after
clearance of the acute virus infection [76, 77].

Differences in numbers of circulating Treg explain varia-
tions in the susceptibility of different mouse strains to EAM.
Comparison of A.SW and B10.S mouse strains sharing the
same MHC haplotype showed that development of severe
disease in A.SW mice correlated with a lower relative fre-
quency of Treg among the total CD4+ T cell count, compared
to resistant B10.S animals [26]. Moreover, gender differences
in myocarditis development were linked to differences in cir-
culating Treg. Mice with increased estradiol levels, for exam-
ple, increased numbers of Treg upon immunization and are
less susceptible to CVB3-induced myocarditis [78]. Mono-
cytic myeloid-derived cells from female but not male mice
promoted expansion of CD4+IL-10+ Treg [36]. Furthermore,
IL-10 producing Treg transferred to immunized Lewis rats
efficiently suppressed myocarditis induction [79]. A decrease
in IL-10 production and Treg numbers was also observed in
α-MyHC/CFA-immunized mice after endothelin receptor
blockade and resulted in exacerbated EAM [80]. IL-10 effi-
ciently drives the generation of Treg [81] while its immuno-
suppressive effect includes decreasing MHC II complexes
and B7 family costimulatory molecules on the APC surface
[82–84]. IL-37 mediated activation of Treg, and IL-10 pro-
duction downregulates the expression of Th17-related cyto-
kines IL-6 and IL-17 and ameliorates CVB3-induced viral
myocarditis [85]. IL-35, on the other hand, was shown not
only to have suppressive activities [86] but also to convert
naive T cells into a regulatory phenotype [87].

TGF-β directly suppresses self-reactive cells, as shown
in models of experimental mouse colitis [88] and enceph-
alitis [89], and protects mice against coxsackievirus-
induced myocarditis [75]. Moreover, TGF-β launches a
paracrine positive feedback loop converting naïve into reg-
ulatory CD4+ T cells [90]. TGF-β, however, was shown to
promote disease and adverse cardiac remodelling during
later stages of myocarditis: TGF-β-mediated Wnt secretion
promoted myofibroblast differentiation and myocardial
fibrosis in EAM [91], while treatments targeting TGF-β
prevented fibrosis and heart failure [92–94].

Human CTLA4 haploinsufficiency results in serious
dysregulation in T and B lymphocyte homeostasis and
specifically affects FOXP3+ Treg cells [95]. CTLA-4 as a
high-affinity receptor interacts with CD80/CD86 signalling
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[96], causes elimination of these molecules via transendo-
cytosis [97], and suppresses IL-2—a major T cell survival
and expansion factor [98–100]. Adenovirus vector-
mediated CTLA4Ig gene transfer in mice with EAM leads
to downregulation of CTLA-4 and B7-2 proteins but
upregulation of Treg, expression of FOXP3 and TGF-β
mRNA, and alleviation of myocarditis [73]. Patients with
Chagas heart disease demonstrate increased frequencies
of suppressive IL-6+, IFN-γ+, TNF-α+, and CTLA-4+ Treg
cells but a rather small FOXP3+CTLA-4+ Treg cell

population [101, 102]. Reduction of CTLA-4 levels in
CD4+ T cells following disruption of T cell Ig mucin
signalling during the innate immune response results in
decreased Treg populations and increased inflammation
in the heart [103]. A direct cytolytic effect of Treg is
due to a granzyme B-dependent, perforin-independent
mechanism [104] which allows them to eliminate target
effector cells.

Interestingly, some observations demonstrate that early
activation of Treg might be associated with exacerbation of
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Figure 1: Role of CD4+ T cells in myocarditis. Break of central tolerance: CD4+ T cells undergo maturation and selection in the thymus. Due
to a defect in negative selection, α-MyHC-specific CD4+ T cells do not undergo anergy or apoptosis and are released to the periphery. Break of
peripheral tolerance: Inflammation results in activation of α-MyHC-loaded DCs which upregulate MHC II-peptide complexes as well as
costimulatory molecules on the surface and migrate to the draining lymph nodes, where they interact with circulating T cells. Activated
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CVB3-induced myocarditis [105]. Other viral myocarditis
models, however, demonstrate the ability of Treg to decrease
virus-induced inflammation and to limit tissue damage asso-
ciated with viral infection [106]. Thrombospondin-2, for
example, protected against cardiac dysfunction in acute
CVB3-induced viral myocarditis via activation of anti-
inflammatory Treg [107]. Valproic acid was suggested as a
promising drug in the therapy of viral myocarditis increasing
the percentage of Treg cells and decreasing the percentage of
splenic Th17 [108]. Moreover, an approach modulating
Th17/Treg immune responses by inhibition of microRNA-
155 resulted in a simultaneous decrease of both Th17 and
Treg and reduced disease severity. These observations, how-
ever, suggest that improvement of EAMmainly resulted from
the repressed Th17 response [109]. In Chagas myocarditis,
granulocyte colony-stimulating factor administration pro-
moted Treg recruitment and reduced cardiac inflammation
and fibrosis [110]. In contrast, endogenous administration
of CD4+CD25+ regulatory T cells during Trypanosoma
cruzi infection was not at all protective in another study.
Depletion of Treg via anti-CD25 monoclonal antibodies
neither worsened nor improved the outcome of Trypano-
soma cruzi infection [111].

Attenuation of acute cardiac inflammation by Treg seems
to prevent progression of myocarditis to iDCM in humans
[112, 113]. Patients with low responder T cell susceptibility
to the suppressive function of regulatory T cells demon-
strated progression of DCM [114], and an increase of Treg
frequency after immunoadsorption therapy improved
cardiac function in iDCM patients [115]. In modulating
inflammatory responses and inhibiting proinflammatory
cytokines, Treg also ameliorate adverse cardiac remodelling
after myocardial infarction [116, 117]. Decreased frequencies
of circulating Treg in patients negatively correlate with pro-
inflammatory cytokines, such as IL-6, and are associated with
a significantly higher incidence of recurrent hospitalization
for worsening heart failure [118]. In addition, cell therapy
with regulatory T cells prevents chronic rejection of heart
allografts in a mouse model of mixed chimerism [119]
and enhances mesenchymal stem cell survival and prolifer-
ation upon cotransplantation into ischemic myocardium in
Yorkshire pigs [120].

5. Regulatory Role of CD4+ T Effector Cells in
Progression of Myocarditis to iDCM

Several observations support a role for CD4+ T cells as major
drivers of autoimmune myocarditis development [72, 121].
During myocarditis induction, various inflammatory cell
subsets infiltrate the heart and produce proinflammatory
cytokines, which create an amplification loop enhancing dis-
ease progression [72]. The crucial role of self-reactive СD4+ T
cells in myocarditis induction is well described [10], although
mechanisms remain still poorly understood. It is established
that IL-17-producing Th17 cells play a major role in initia-
tion and development of myocarditis [122]. Though both
Th1 and Th17 cooperate in disease progression and transi-
tion to iDCM [52], it was claimed that IFN-γ and IL-17 have
antagonistic functions in myocarditis and inflammatory

cardiomyopathy. Immunosuppressive strategies are benefi-
cial for some patients with iDCM and myocarditis, without
evidence on actively replicating viruses in heart biopsies [2].
Thus, elimination of Teff and their proinflammatory cyto-
kines appears as a promising therapeutic strategy. Neverthe-
less, some contradictory findings have also been reported. It
was shown recently that T cells—Treg, Th1, and Th17 in par-
ticular—possess great capacity to plasticity and are able to
change their function and phenotype depending on the local
milieu in tissue and lymph nodes. CD4+ T cells often coex-
press more than one specific cytokine [123]. Th17 cells, for
example, often produce IL-17 and IFN-γ [124]. In fact, in a
model of experimental autoimmune encephalomyelitis
(EAE), it was shown that IL-23-induced IL-17-producing
Th17 demonstrated plasticity, that is, the capacity to change
their cytokine production profiles in different inflammatory
settings. Using a reporter mouse strain designed to fate
map cells that have activated IL-17A, Hirota et al. demon-
strated that former Th17 cells produced almost exclusively
IFN-γ and other proinflammatory cytokines in the spinal
cord [125]. Another study of effector cell plasticity underlines
the nonstability of the IL-17+/IFN-γ+ population and further
differentiation to IL-17 or IFN-γ single-producing cells
[126]. Both Th1 and Th17 undergo active expansion in auto-
immune myocarditis, and the balance between these popula-
tions may strongly influence disease phenotype and outcome.
It was observed that α-MyHC/CFA-immunized IFN-γ- and
IFN-γR-deficient mice develop more severe and persistent
myocarditis [127, 128], suggesting a protective regulatory
role of IFN-γ in this disease model. While in wild-type mice
inflammatory infiltrates largely subside within few days after
the peak of disease, IFN-γR-deficient show ongoing expan-
sion of autoreactive CD4+ T cells, persistent inflammatory
infiltrates, and enlarged, functionally impaired hearts with
impaired nitric oxide production [128]. It was then con-
firmed that IFN-γ signalling is crucial for NO production
by inducible nitric oxide synthase (NOS) 2 in tumor necrosis
factor-α and NOS2-producing dendritic cells, which limit
expansion of Teff and cardiac inflammation [33]. In fact,
the progressive disease course in IFN-γR-deficient mice was
associated with enhanced IL-17 release from heart-
infiltrating Th17 cells. The EAM model also demonstrated
that IL-17 recruits CD11b+ monocytes confining disease pro-
gression in an IFN-γ-dependent manner [129]. Moreover,
IFN-γ signalling was crucial for prevention of EAM by vacci-
nation of mice with FMS-like tyrosine kinase 3 ligand
pretreated, α-MyHC-loaded splenic CD8α+ DCs. In this
experimental approach, DC vaccination enhanced the Th1
response, which was considered to negatively regulate expan-
sion of Th17 effector cell expansion [130]. In line with these
findings, IFN-γ-deficient mice also showed severely impaired
systolic and diastolic functions and heart failure [131].

In a mouse model of adenovirus 1 infection-mediated
myocarditis, depletion of IFN-γ during the acute phase of
disease did not affect viral replication, but reduced cardiac
inflammation protecting from remodeling and hypertrophy
[132]. High IFN-γ levels correlated with cardiac damage
and dysfunction in an autoimmune myocarditis model
enhanced by purinergic receptor P2X7 deficiency [133]. Mice
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lacking Regnase-1 and Roquin, RNA-binding proteins that
are essential for degradation of inflammatory mRNAs, dem-
onstrated increased expression of IFN-γ, but not IL-17, and
suffered from severe inflammation and fibrosis in their hearts
[134]. Dampening IFN-γ overexpression by Ebi3, a compart-
ment of IL-27, prevented T. cruzi-induced myocarditis in
mice [135]. Thus, although some studies indicate a protective
role of IFN-γ as a negative regulator of Teff responses, the
same cytokine can also contribute to myocardial inflamma-
tion and pathological remodeling.

Recent findings indeed suggest that Teff may play a dual
role in myocarditis progression. IL-17 increases myocarditis
severity during the acute inflammatory stage [31, 136]. In
contrast, it was observed in a T. cruzi infection model that
anti-mouse IL-17 antibody increased myocarditis severity
and mortality [137]. IL-17 signalling via IL-17RA mediated
recruitment of IL-10-producing neutrophils, which in turn
protect from the development of fatal cardiomyopathy in this
model [138]. In line with these findings, it has been shown
that in human Chagas disease patients, low frequencies of
IL-17-producing T cells correlate with more severe symp-
toms and cardiac dysfunction [139]. A link between Th17
and Treg has also been shown in a model of viral myocarditis.
Neutralization of IL-17 in mice, with an anti-mouse IL-17Ab,
resulted in a decrease in Treg counts and T reg cytokines
(TGF-β, IL-10) [140]. In patients with inflammatory dilated
cardiomyopathy, IL-17 seems essential for the transition of
myocarditis to iDCM, but serum levels of IL-17 normalize
within one year after the diagnosis, whereas cytokines like
IL-6 and TGF-β remain permanently increased in these
patients [141, 142]. Moreover, low serum concentrations of
IL-17 were associated with a worse prognosis for patients
after acute myocardial infarction [143].

Mice immunized with pcDNA3-hM2, a DNA plas-
mid carrying the entire muscarinic acetylcholine receptor
M2 (M2AChR) cDNA sequence, develop anti-M2AChR-
associated DCM mimicking the human cardiomyopathy
phenotype. In this DCMmodel, mice lacking P2×7 receptors
produced lower amounts of IL-17 and higher amounts of
IFN-γ and showed more severe cardiac dysfunction at later
stages of disease [133]. Finally, it was shown that mice
lacking both cytokines, IL-17 and IFN-γ, simultaneously
developed rapidly fatal EAM [144]. In line with these find-
ings, unpublished observations from a group also point to a
different role of IFN-γ and IL-17 in the development of car-
diac fibrosis following acute myocarditis.

6. Outlook

Myocarditis development and its progression to iDCM are a
very complex process. CD4+ T cells are key players in the
maintenance of peripheral tolerance, are critical for disease
induction, are involved in the progression of acute inflamma-
tion to a chronic process of pathological remodelling, and
may be part of negative feedback loops confining unlimited
heart-specific autoreactive T cell expansion. So far, the deli-
cate interplay between distinct CD4+ T cell subsets such as
Treg, Th1, and Th17 cells has only been partly deciphered.

Further studies in animal models, as well as in human
tissue samples, will be required to fully understand the
specific role of all different CD4+ T cell subsets in myocar-
ditis. Nevertheless, these mechanistic insights are a critical
requirement for the development of novel therapeutic
concepts and vaccination strategies.
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