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Protein interactions shape proteome function and thus
biology. Identification of protein interactions is a major
goal in molecular biology, but biochemical methods, al-
though improving, remain limited in coverage and accu-
racy. Whereas computational predictions can guide bio-
chemical experiments, low validation rates of predictions
remain a major limitation. Here, we investigated compu-
tational methods in the prediction of a specific type of
interaction, the inhibitory interactions between proteases
and their inhibitors. Proteases generate thousands of pro-
teoforms that dynamically shape the functional state of
proteomes. Despite the important regulatory role of pro-
teases, knowledge of their inhibitors remains largely in-
complete with the vast majority of proteases lacking an
annotated inhibitor. To link inhibitors to their target pro-
teases on a large scale, we applied computational meth-
ods to predict inhibitory interactions between proteases
and their inhibitors based on complementary data, includ-
ing coexpression, phylogenetic similarity, structural infor-
mation, co-annotation, and colocalization, and also sur-
veyed general protein interaction networks for potential
inhibitory interactions. In testing nine predicted interac-
tions biochemically, we validated the inhibition of kal-
likrein 5 by serpin B12. Despite the use of a wide array of
complementary data, we found a high false positive rate
of computational predictions in biochemical follow-up.
Based on a protease-specific definition of true negatives
derived from the biochemical classification of proteases
and inhibitors, we analyzed prediction accuracy of indi-
vidual features, thereby we identified feature-specific lim-
itations, which also affected general protein interaction

prediction methods. Interestingly, proteases were often
not coexpressed with most of their functional inhibitors,
contrary to what is commonly assumed and extrapolated
predominantly from cell culture experiments. Predictions
of inhibitory interactions were indeed more challenging
than predictions of nonproteolytic and noninhibitory inter-
actions. In summary, we describe a novel and well-de-
fined but difficult protein interaction prediction task and
thereby highlight limitations of computational interaction
prediction methods. Molecular & Cellular Proteomics
16: 10.1074/mcp.M116.065706, 1038–1051, 2017.

Identification of protein interactions is an important goal in
molecular biology yet one that remains difficult. Approaches
such as yeast-2-hybrid, coimmunoprecipitation and newer
experimental methods (1, 2) are highly productive and scal-
able. However, limited accuracy from false positives and cov-
erage that is context dependent remain problematic (3, 4).
Computational methods have been developed to predict
protein–protein interactions, commonly linking together pro-
teins on the basis of shared features such as patterns of
conservation, expression, or annotations (5–8)—a version of
guilt by association. A second class of approaches uses
protein structural features to identify potential physical inter-
action interfaces (9). These approaches can be combined.
However, their practical utility remains unclear. In the meth-
ods cited above, accuracy was estimated by cross-validation
or by validating a small number of hand-picked test cases (5,
6). Estimates of the true efficacy of prediction methods in
structured evaluations, such as those that exist for function
prediction (critical assessment of protein function annotation
algorithms (10)), structure prediction (critical assessment of
protein structure prediction (11)), or for structural docking
(critical assessment of prediction of interactions (12)), are
lacking for protein interaction prediction methods. If compu-
tational predictions of interactions were sufficiently accurate,
biochemical assays could be targeted more efficiently by
focusing on predicted pairs (9), but to date, computational
predictions do not appear to have played a major role in
interaction discovery or prioritization (13). We hypothesized
that studying a specific subset of protein interactions and
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combining computational prediction and biochemical valida-
tion will grant deeper insights into the pitfalls and state of the
art for general protein interaction predictions.

We focused on the prediction of interactions between pro-
tease inhibitors and proteases—a problem that has not re-
ceived specific attention to our knowledge—despite being
characterized by covalent or low-KD noncovalent interactions
(low nM or pM) and hence, in principle, being more tractable
for identification than high-KD noncovalent, general protein–
protein interactions. Previous cell culture and transcript anal-
yses have suggested that known protease–inhibitor pairs are
often coexpressed and coregulated (14, 15). It is therefore
hypothesized that protease–inhibitor coexpression plays a
major role in the regulation of the detrimental activities of a
protease. Inverse protease–inhibitor coexpression is thought
to amplify protease activity but has only been observed for
relatively few protease–inhibitor pairs (16, 17). Overall, it is
currently a common assumption that protease–inhibitor co-
expression is evidence for an inhibitory interaction, but this
concept has not been tested comprehensively.

Proteases are a critical component of the posttranslational
regulatory machinery in cells and therefore promising drug
targets. However, drug targeting of proteases has been ham-
pered by complex protease biology that is often poorly un-
derstood. One aspect of this complexity is the organization of
proteases in dense interaction networks of protease cleavage
and interaction (18). Proteases regulate the activity of other
proteases by direct cleavage or by cleaving their endogenous
inhibitors, which in turn influences additional distal cleavage
events. Thus, proteases can potentially indirectly influence the
cleavage of substrates other than their direct substrates. We
recently established a graph model of protease web interac-
tions based on existing biochemical data that can be used to
predict proteolytic pathways (19). However, the network is far
from its full potential because cleavage and inhibition interac-
tion data underlying the model are incomplete. This is mainly
due to the lack of studies of proteases and inhibitors but also
to the lack of uploading of existing data to community data-
bases. Computational prediction could provide a means to
accelerate the addition of interactions to this network. How-
ever, large-scale computational prediction efforts in protease
interaction biology have been limited to the use of molecular
features of proteases and their substrates to predict protease
cleavage (20) and have largely ignored protease inhibition.
Therefore, the whole realm of protease inhibition is underex-
plored, with 354 (�80%) of 444 human proteases lacking
annotated inhibitors and 13 (�14%) of 94 inhibitors without
any annotated targets (orphan inhibitors) in the MEROPS
protease database (21). Proteases are regulated by multiple
mechanisms other than inhibition such as autodegradation,
reversible activation, substrate-induced activation, and other
allosteric activators. However, protease inhibitors are often
present in adjacent compartments to block and clear excess
proteases that could rapidly and irreversibly cleave a large

number of proteins. Protease inhibitors are therefore often
secreted in the plasma or distal tissues to block proteases
delivered by diffusion, secretion, or leakage from tissues to
the circulation. Considering the key role of proteases in cell
signaling pathways, identifying additional, physiologically rel-
evant protease–inhibitor pairs would greatly benefit our un-
derstanding of protease biology.

Important questions in interaction prediction methods are
which input data to use for predictions and how to evaluate
performance (in contrast, the prediction algorithm used plays
relatively little role (22)). To evaluate performance of a predic-
tor, efficacy in separating predefined true positives (TP)1 and
true negative (TN) examples is measured. For example, in
interaction prediction, if most true interacting proteins are
coexpressed and noninteractors are not coexpressed, then
coexpression is a good predictor of interaction. The better the
separation of the two groups, the better the predictive per-
formance. In general, TPs are readily found in biological da-
tabases, but the definition of TNs is a challenge, especially for
weak interactions having low mM KDs, and more practically
since a lack of interaction is rarely established and docu-
mented. Common approaches therefore use unlikely interac-
tions as TNs, for example, random interactions (based on the
assumption that true interactions are a small subset of all
possible interactions) or interactions between proteins local-
ized to different cellular compartments according to annota-
tion (4). An advantage of the protease–inhibitor prediction task
is the ability to define TP and TN inhibitions more accurately.
Protease inhibitors are characterized by tight interactions with
their cognate proteases, thus providing a clear separation
between true and false interactors. Further, proteases and
their inhibitors are organized into families based on their pri-
mary sequence and into clans based on the structure of their
active site and reactive site, respectively (21). Families and
clans of inhibitors can mostly be assigned specifically to one
or two target protease classes. Thus, it is possible to define
TN pairs, where the inhibitor cannot inhibit the protease based
on known chemical and structural constraints. As examples, a
serpin will not inhibit a metalloprotease, and a tissue inhibitor
of metalloproteinases will neither inhibit a serine protease nor
aspartate, threonine, or cysteine proteases. However, matrix
metalloproteinases (MMPs) cleave and inactivate many ser-
pins and so transiently are also interactors before peptide
bond scission, albeit with a moderate KD (� Km) (18, 23). A
further advantage of selecting this group of proteins in the
analysis of prediction methods is the accuracy of biochemical

1 The abbreviations used are: TP, true positives; TN, true negatives;
PPI, protein-protein interaction; MMP, matrix metalloproteinase;
AUC, area under the curve; ROC, receiver operating characteristic;
RPKM, reads per kilobase of transcript per million mapped reads; GO,
Gene Ontology; EXP, Inferred from Experiment; IDA, Inferred from
Direct Assay; IPI, Inferred from Physical Interaction; IGI, Inferred from
Genetic Interaction; IMP, Inferred from Mutant Phenotype; IEP, In-
ferred from Expression Pattern; TAS, Traceable Author Statement.
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testing of the predictions by measuring inhibition of the cat-
alytic activity of the protease.

Here, we defined TP inhibitions (n � 294) as those inhibi-
tions annotated in MEROPS (21). We defined TN inhibitions
(n � 6,990) as enzymatically implausible inhibitor/protease
pairs that are known not to be inhibitory. Using this gold
standard, we evaluated the predictive power of common
interaction prediction methodology to predict protease–
inhibitor pairs in the protease web. Predictions were based on
protein–protein interaction data, coannotation, coexpression,
phylogenetic similarity, and colocalization as input data. In-
terestingly, we report that coexpression is surprisingly low for
many functional protease–inhibitor pairs, contrary to what is
commonly assumed. In particular, we employed 40 interac-
tion predictors based on coexpression values derived from
different input data and correlation metrics, all of which we
found suffered from weak predictive power. Nonetheless, we
predicted 270 protease–inhibitor pairs, examined 9 of these
predicted inhibitions biochemically, and validated the novel
inhibition of kallikrein 5 (KLK5) by serpin B12 (SERPINB12),
previously an orphan inhibitor.

EXPERIMENTAL PROCEDURES

Proteases and Protease Inhibitor Data—Protease and protease
inhibitor data and coexpression matrices used throughout the anal-
yses are available for download at http://hdl.handle.net/11272/
10472. Protease and inhibitor class, family, cleavage, and inhibitor
information were extracted from the MEROPS database (http://mer-
ops.sanger.ac.uk/) (21) version 9.9 on September 30, 2013. MEROPS
identifiers were used to classify proteases and inhibitors into classes
and families as described on the MEROPS website.

Protein–Protein Interaction Networks—Protein-protein interaction
(PPI) data from Human Integrated Protein-Protein Interaction Refer-
ence (24) version 1.5 were downloaded on June 12, 2013. PPI data
from high-throughput experiments were downloaded from BioGRID
(25) on October 11, 2013. PPI data from (26) were downloaded on
October 11, 2013. Experiments with up to 100 identified PPIs were
considered low throughput, those with 100–1,000 PPIs were labeled
medium throughput, and those with more than 1,000 PPIs were
deemed high throughput.

Protein Localization—Protein localization information was down-
loaded from three sources: LocDB (27) (data downloaded November
19, 2013), the Human Protein Atlas (28) (downloaded November 12,
2013.), and Gene Ontology (GO) annotation using the hgu95av2.db
package in R (29) (downloaded August 8, 2013). For each dataset,
annotations were mapped to GO terms and annotation trees for each
protein were generated using the GOstats package in R (29). For
LocDB, primary and secondary localization information was com-
bined for each protein. Main and other localization data from the
Human Protein Atlas were used if the reliability was annotated as
High, Medium, or Supportive. GO annotations were retained if the
evidence code was one of EXP, IDA, IPI, IGI, IMP, IEP, or TAS.

Coexpression Networks—Genome Tissue Expression Atlas (GTEx)
data (30) were downloaded on January 31, 2013. Gene Expression
Omnibus Series 7307 expression data were downloaded from the
database Gemma (31) on June 26, 2013. Other microarray-based
expression datasets used in meta-coexpression analysis were down-
loaded from Gemma on January 18, 2013 and are listed in supple-
mental Table S6. Gene correlation was calculated using the cor
function in R (29). Partial correlation was calculated using the ppcor

package in R. Full datasets or subsets were used as inputs as
explained in the results section and in supplemental Table S5.

Phylogenetic Profiling—Phylogenetic profile data were constructed
by downloading mappings from human proteins to other species from
InParanoid (32). Mappings were binarized into 0 (absent) and 1 (pres-
ent) for the binary networks before calculating the fraction of agree-
ment (where the genes are absent or present in both organisms),
Pearson correlation (cor package in R (29)) or mutual information
(entropy package in R) for all pairs of genes. The Bits network was
constructed by multiplying InParanoid scores with the bit score for
each cluster and the calculating Pearson correlation (cor package
in R).

Machine Learning—Machine learning algorithms were run using
the caret package. 60% of pairs were used for training and 40% for
testing. Parameters picked by cross-validation were mtry of 2 for
random forest and C of 0.1 and sigma of 0.2 for the radial support
vector machine.

Biochemical Validation Experiments—Coagulation factor 11 (F11),
coagulation factor 12 (F12), plasma kallikrein (KLKB1), and the chro-
mogenic substrates for F11 (2366 Catalogue# S821090), F12 (Cata-
logue# S820340), and for KLKB1 (S2302) were from DiaPharma.
Chromogenic substrates were measured at an emission wavelength
of 405 nm as recommended by the suppliers. KLK5 (Catalogue#
1108-S.E.-010) and its quenched fluorescent substrate (Catalogue#
ES011) and kallikrein 5 (KLK7, Catalogue# 2624-S.E.-010) and its
quenched fluorescent substrate (Catalogue# ES002) were from R&D
Systems. Cleavage of quenched fluorescent substrates was meas-
ured using excitation/emission wavelengths of 380/460 nm for KLK5
and 320/405 nm for KLK7 as recommended by the suppliers.
SERPINB12 was kindly provided by Dr. G. A. Silverman (Children’s
Hospital of Pittsburgh); serpin A4 was kindly provided by Dr. J. Chao
(Medical University of South Carolina); murine serpin B8 was from
Sino Biological, Inc. (Catalogue# 50215-M08B); and serpin B7 was
from Creative BioMart (Catalogue# SERPINB7–2596H). Protease ac-
tivity was measured after incubation for 1 h at 37 °C with and without
serpins in a POLARstar OPTIMA plate reader (BMG Labtech). Sub-
strate cleavage and protease inhibition assays were also analyzed by
10% SDS-PAGE and silver staining of proteins after incubation at a
1:1 ratio protease:inhibitor (w/w) for 1 h at 37 °C.

RESULTS

Our results are organized around a presentation of our
investigation of the predictive power of each of several data
types we considered. We then describe a combined predic-
tion approach that attempts to improve predictive power,
biochemical validation of selected predictions, and finally a
more in-depth investigation of coexpression patterns of pro-
teases and inhibitors.

PPIs—Our goal in considering general PPI data was to
identify any relevant interactions that are not included in MER-
OPS. We analyzed PPI networks of proteases and their inhib-
itors from the databases HIPPIE (24) (supplemental Table S1)
and BioGRID (25) (supplemental Table S2), and a literature-
curated PPI network (26) (supplemental Table S3). Comparing
559 annotated cleavage and 325 inhibition interactions be-
tween proteases (including inactive proteases) and inhibitors
from MEROPS to PPI data from HIPPIE (24), we found a PPI
between protease and substrate for 187 known cleavages
(33%) and between inhibitor and protease for 88 known inhi-
bitions (27%). Figs. 1 and S1A show interactions annotated in
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HIPPIE between well-defined groups of proteases and inhib-
itors such as the proteasome, cathepsins, serum serine pro-
teases, MMPs, and deubiquitin hydrolases. Confirming our
earlier findings, (18) the connectivity in this network is heavily
influenced by protease inhibitors (supplemental Fig. S1B).

We investigated the possibility that novel protease inhibi-
tors of proteases might be hidden in the high-throughput PPI
screens, which identify thousands of interactions but often
without functional follow up. We collected 96 protease–
inhibitor PPIs not already annotated as inhibitory interactions

in MEROPS and examined all the original publications that
served as references for these interactions in HIPPIE (supple-
mental Table S4). In 28 cases (29%), an inhibition of protease
activity was observed in the original paper; in 20 (21%), an
inhibition was inferred from complex formation in the source
publication; and 14 (15%) interactions were based on a cleav-
age event of the inhibitor. Taken together, 62 (65%) of the 96
interactions were known protease web interactions that were
simply not annotated in MEROPS, confirming the incomplete
status of protease and protease inhibitor annotations reported

FIG. 1. Protein–protein interaction (PPI) networks of proteases and inhibitors. PPI network of proteases and inhibitors based on the
HIPPIE database with a HIPPIE score cutoff of 0.7. Nodes are colored according to their MEROPS class (proteases: green—threonine;
blue—metallo; yellow—serine; orange—cysteine; purple—aspartic; inhibitors: red). Red edges are enzymatic interactions. Thickness of edges
corresponds to the HIPPIE score of the interaction.
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previously (18). Of the remaining 34 interactions, 18 (19% of
total) reflected a PPI not related to inhibition or cleavage, 3
(3%) were unclear interactions, and 13 (14%) PPIs were phys-
ical interactions between proteases and inhibitors with no
mention of inhibitory activity and therefore potentially inter-
esting novel inhibitions (Supplementary Results). Thus, PPI
data not only reflect known protease interactions but also are
potentially useful to predict novel inhibitory interactions. To
identify additional inhibitory interactions, we further ana-
lyzed a BioGRID-derived (25) (supplemental Table S2, Fig.
S1C) and a literature-curated PPI network (26) (supplemen-
tal Table S3, Fig. S1D). However, these networks were
subject to study biases as described previously (33) and did
not yield interesting predictions (Supplementary Results).
These results motivated us to consider additional data types
for inhibitory interaction prediction.

Coexpression Patterns—We explored tissue expression
profiles of proteases and inhibitors to seek useful patterns of
coexpression, primarily in the GTEx (30) due to its high cov-
erage (RNA-Seq data for 26 different tissues distributed over
1,660 samples). Expression patterns (Fig. 2) distinguish tis-
sue-specific genes and housekeeping genes expressed in
most or all tissues. For example, serpins either have a broad
expression pattern across tissues (e.g. serpins E1, F1, and
G1) or are specific to one or two tissues (e.g. serpins A1, C1,
and D1), matching with known targets such as coagulation
proteins and kallikreins (Fig. 2). Further examples are shown in
supplemental Figs. S2 and S3.

We investigated the possibility of exploiting gene expres-
sion patterns to predict protease–inhibitor interactions. It has
been observed in cell culture that expression of a protease
inhibitor positively correlates with its target protease, which is
suggested to counterbalance the cleavage potential of the
protease (14, 15) or negatively correlates to facilitate proteol-
ysis (16, 17). Such correlated expression (coexpression) is
promising as a prediction tool because RNA expression is
generally measured for all genes simultaneously, and it is thus
less biased than e.g. protein interaction data (22). We calcu-
lated correlation values for all protease–inhibitor pairs (a co-
expression matrix) and compared these to our gold standard
of TP and TN inhibitory interactions derived from MEROPS.

We aimed to capture the variety of possible coexpression
patterns observed (Fig. 2). Therefore, we generated 40 coex-
pression matrices based on different data and correlation
methods to (summarized in supplemental Table S5). As dem-
onstrated in supplemental Fig. S4, Pearson correlation (which
is strongly influenced by samples with small values or zeros),
captures tissue-specific expression patterns whereas Spear-
man correlation requires correlation across all tissues. We
therefore generated coexpression matrices using both meas-
ures on the entire GTEx dataset (supplemental Fig. S5A). In
addition, to simultaneously capture both patterns of coex-
pression, we generated a matrix using the maximum of Pear-
son and Spearman correlation coefficients for each pairs of

proteins (GTEX_All_Max). We then generated coexpression
matrices (Pearson, Spearman, and maximum of both) using
partial correlation, which might help resolve complex correla-
tion patterns between multiple variables (genes). To capture
tissue-specific correlation, we generated coexpression matri-
ces in subsets of GTEx limited to only one tissue and one
matrix representing the average of the tissue-specific matri-
ces (each both for Pearson and Spearman correlation). For
comparison, we also measured Pearson and Spearman cor-
relation coefficients in a large dataset based on mRNA mi-
croarrays (GEO-ID: GSE7307, 677 samples from over 100
tissues, supplemental Fig. S5B). Finally, with the aim of de-
riving a more robust coexpression result, we performed a
meta-analysis (34, 35) of gene expression over multiple mi-
croarray datasets (listed in supplemental Table S6 and shown
in Fig. S5C) across all tissues and in a tissue-specific manner
in two ways: (i) datasets were merged into one large dataset
(Merged) and (ii) Pearson correlation coefficients were ob-
tained from each dataset and then averaged for each gene
pair (Averaged (22)).

The resulting coexpression matrices differed strongly in
content depending on the methods and data used (Fig. 3,
Supplementary Results). Coexpression values between some
matrices were highly correlated overall (matrices GTEX_All_
Pcc and GTEX_All_Scc with r � 0.67) as shown in Fig. 4,
indicating similarity between methods. Yet, if predicting inter-
acting pairs by applying a coexpression cutoff (blue lines in
Fig. 4), these predictions resulted in a small overlap (top right
corner). Predictive power thus needs to be assessed sepa-
rately for each matrix.

We compared the ability of coexpression matrices to pre-
dict protease inhibition (inhibitory protease–inhibitor pairs).
We measured the area under the curve (AUC) of the receiver-
operator characteristic for separating predefined TP pairs (an-
notated) from TN protease–inhibitor pairs (enzymatically im-
plausible) using a given coexpression matrix. Fig. 5A shows
that almost all matrices had some predictive value (better than
random picking with AUC � 0.5). TP pairs thus had higher
coexpression than TN pairs on average. However, consider-
ing the common perception that protease inhibitors are co-
expressed with their target protease, this signal was surpris-
ingly low (AUCs � 0.7). One explanation for this discrepancy
might be that RNA levels do not correspond to protein levels,
and thus proteins can be coexpressed whereas their mRNAs
are not. We tested this possibility by creating a coexpression
network based on proteomics quantification data in the Hu-
man Proteome Map (36), but this performed worse than the
RNA networks (AUC of 0.6, data not shown). This poor per-
formance might be due to noise in protein quantification or the
small sample size of Human Proteome Map compared with
GTEx. It thus remains unclear if protein data could be more
informative than mRNA data.

Similar results were found when measuring accuracy of
interaction prediction within the top 10% of coexpressed
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FIG. 2. Expression patterns. Tissue RNA expression levels of groups of proteases and their inhibitors showing tissue-specific and broad
expression patterns as well as correlation of expression patterns between serpins and serine proteases. Log10 transformed reads per kilobase
of transcript per million mapped reads (log10(RPKM)) as obtained from GTEx (30) shown on the left. Zero values were set to 0.01 before log10
transformation. Normalized RPKMs for each gene are shown on the right and plotted as standard deviation from the mean (SD). Values were
averaged across samples of each tissue.
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pairs of each matrix (Fig. 5B). Here, Array_Averaged_Liver and
GTEX_All_Max methodologies had the highest signal. The
strong correlation of Array_Averaged_Liver with protease web
data was expected because many interactions are known
between proteases and inhibitors that are expressed in liver
as part of the well-understood complement and coagulation
systems. However, this network is therefore biased to a sub-
set of the protease web and performance would not general-

ize to other genes. The high AUC and accuracy of GTEX_
All_Max demonstrated the usefulness this network, which
combined tissue specific and across-tissue coexpression,
making it the better candidate for prediction.

Phylogenetic Profiles—Phylogenetic similarity of two genes
is a measure for their co-occurrence across a range of taxa
and is reported to reflect functional relations (37). We created
similarity matrices of phylogenetic profiles of proteases and

FIG. 3. Coexpression and phylogenetic similarity matrices. Heatmap of correlations values (agreement) show similarity and dissimilarity
of matrices described in Supplementary results and Table S5. For two matrices, the Pearson correlation coefficient across all coexpression
values in both matrices is shown.
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inhibitors from the InParanoid (32) database using correlation
of sequence similarity scores as well as correlation and mu-
tual independence measures of binary presence/absence val-
ues of proteases across 162 species represented in the da-
tabase (supplemental Table S5). The resulting matrices were
very similar to each other (correlation 0.7–0.98), but dissimilar
from the coexpression matrices (Fig. 3), indicating that this
data source could be complementary to coexpression. Pre-
diction performance of phylogenetic similarity matrices was
generally comparable to coexpression matrices but weaker
than GTEX_All_Max in the top pairs (Fig. 5B).

Colocalization—We next evaluated subcellular colocaliza-
tion, which might enrich for interacting proteins. We obtained
localization annotations LocDB (27), the Human Protein Atlas
(28), and GO (38). We defined four groups of localization: (i)
CO, colocalized for proteins sharing localization annotation;
(ii) AT, antilocalized where one protein was extracellular and
the other was in the cytosol or where one protein was in an
organelle and the other in the cytosol (so that they meet upon
cellular stimuli); (iii) NC, not colocalized where neither of the
above was the case; and (iv) NA, not annotated, where sub-
cellular localization was not annotated for one or both of the
proteins. The use of colocalization enriched TP interactions
considerably (Table I). However, colocalization also reduced
the number of remaining pairs (the search space) significantly,
mostly because of lack of annotation (NA). Using colocaliza-
tion for novel predictions might increase specificity but sub-
stantially reduce sensitivity.

Coannotation and Comentioning in the Literature—Interact-
ing genes often participate in similar cellular functions, and so
it is possible to predict gene interactions based on their
annotation patterns (39). We considered coannotation and

comention as predictive features but dismissed both on the-
oretical and practical grounds. As we observed above for PPI
data, utilizing this approach it is hard to distinguish between
results that are de novo predictions, where novel interactions
or functions are predicted, and mere retrieval of information
already present in the literature but not yet annotated to
databases (13). A related serious difficulty with this approach
is that annotation is strongly biased by patterns of publication
and gene annotation (40). Furthermore, if there were GO an-
notations linking a protease–inhibitor pair or in the literature,
the interaction would likely already have been characterized
biochemically. Estimation of prediction performance based
on coannotation would thus appear overoptimistic. Predicted
pairs would represent examples of information retrieval and
not de novo predicted pairs. Because of the bias in annota-
tion, poorly characterized proteins would likely never be pre-
dicted to be associated. Furthermore, many proteases and
inhibitors are functionally related in cascades or biological
processes, without having physical interactions, while here
we were only interested in direct interactions, especially be-
tween previously unconnected cascades. Overall, comention
and coannotation lack the coverage and detail required to
make predictions about particular novel candidate pairs, and
so we disregarded this feature.

Predicting Novel Inhibitions—In the face of poor prediction
performance of the individual input data types assayed above,
we hypothesized that a combination of matrices would im-
prove prediction. However, we did not observe improvement
when combining the different prediction matrices in machine
learning classifiers (Supplementary Results, Fig. S6). There-
fore, we focused on the best performing individual matrix for
prediction, GTEX_Max, selecting a coexpression threshold of
0.6. This threshold enriching TP 5.5-fold in comparison to TN
as shown by TP to TN ratio (TP:TN, Table II). We attempted to
combine coexpression with colocalization. Colocalization of
protease–inhibitor pairs further enriched TPs threefold and
antilocalization enriched results 2.4-fold.

Nonetheless, colocalization information was missing for
many proteins, thus limiting and biasing predictions. We
therefore also included pairs where no localization information
was available for one of the proteins. Finally, we removed all
enzymatically implausible pairs, retaining only those where (i)
it is known that the inhibitor blocks a protease from the same
family as the predicted target protease or (ii) it is known that
inhibition of the protease occurs by an inhibitor from the same
family as the predicted cognate inhibitor. These two filters
reduced the search space from 1,239 coexpressed pairs to
270 pairs. We anticipated that the incorporation of enzymatic
constraint would greatly increase the precision of predictions.
A loss of sensitivity is possible if all target protease families of
an inhibitor or all inhibitor family members of a target protease
are not annotated as such, but we considered this unlikely
since relevant inhibitor families are known for most proteases.

FIG. 4. Effect of threshold on predicted pairs in two corre-
lated matrices. Binned scatterplot of GTEX_All_Pcc (Pearson) and
GTEX_All_Scc (Spearman) coexpression values for all pairs of pro-
teins. Counts are number of pairs in each bin. Blue lines indicate a
threshold of the mean plus two standard deviations. The overlap in
predicted pairs above threshold (top right corner) is small despite the
high correlation of these matrices.
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Inhibitor–protease pairs meeting these criteria are shown in
supplemental Fig. S7 and listed in supplemental Table S7.

To evaluate the predicted protease–inhibitor pairs, we se-
lected a number of pairs for biochemical experiments: inhibi-

tion of factor XI (F11), factor XII (F12), and KLKB1 by kallistatin
(SERPINA4) (three pairs) as well as inhibition of KLK5 and
kallikrein 7 (KLK7) by serpins B7, B8, and B12 (six pairs). It is
important to note that we evaluated predictions without
biases resulting from selecting the most likely pairs. Instead,
we selected pairs of biologically interest and availability of
reagents. GTEx showed high expression of kallistatin in liver
together with the coagulation proteases factor XI, factor XII,
and plasma kallikrein. Whereas this indicated an interesting
new role for kallistatin, the predictions were indeed risky
since all of the four proteins are well studied and newly
discovered inhibition is therefore unlikely. Moreover, liver is
known to express and secrete many serum proteases and
inhibitors, and so there was additional likelihood that these
predicted pairs would not be true. On the other hand, ser-
pins B7, B8, and B12 are little studied inhibitors and thus
biologically interesting interaction partners of KLK5 and
KLK7.

We tested all pairs by fluorescent substrate cleavage as-
says in vitro. We found no new targets for kallistatin among
the three serum proteases but did observe inhibition of KLK5
by SERPINB12 (Fig. 6A), which we confirmed by analysis of
covalent complex formation on SDS-polyacrylamide gels (Fig.
6B). Given that these proteins are coexpressed and therefore

FIG. 5. Performance of coexpression and phylogenetic similarity matrices in predicting protease inhibition. TPs are inhibitions (n �
218); TNs are specific inhibitor/protease pairs, where inhibition is enzymatically implausible. TNs were subsampled to reflect the number of TPs
(n � 218, 200 times) to avoid effects resulting from an unbalanced gold standard. AUC values obtained from each sample are represented as
boxplots. (A) AUC of the receiver/operator curve. (B) Accuracy of prediction (percentage of correct classifications), when predicting interactions
as the top 10% of pairs of each matrix.

TABLE I
TP, TN, and remaining inhibitor–protease pairs after applying colocal-

ization filters

TN TP TP:TN
Remaining

pairs

All 6,990 294 4.21% 32,368
Colocalized 430 65 15.12% 1,747
Antilocalized 466 30 6.44% 1,757
Information missing 5,338 159 2.98% 25,135
Remaining 756 40 5.29% 3,729

TABLE II
TP, TN, and remaining inhibitor–protease pairs after applying colocal-

ization and coexpression filters

TP TN TP:TN Remaining
pairs

Total 294 6,990 1:24 32,368
Coexpressed (R � 0.6) 46 205 1:4.5 1,237
Coexpressed and colocalized 10 18 1:1.8 112
Coexpressed and antilocalized 6 14 1:2.3 73
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found in the same tissue, we conclude that this interaction is
also likely to be physiologically relevant. The interaction could
also represent an interesting drug target since KLK5 is a major
regulator in a number of diseases (41).

Limited Coexpression of Proteases and Their Inhibitors—
We were intrigued by the low coexpression of protease–
inhibitor pairs (Fig. 5) and the limited success in validating
predicted coexpression pairs. To analyze differences in pre-
dictions of our prediction matrices, we compared the true
inhibitions that are retrieved when collecting only the most
coexpressed protease–inhibitor pairs (top 10%) from each
matrix. This analysis confirmed that GTEX_All_Max captured
most pairs predicted by other coexpression matrices and was
thus the better choice for prediction (supplemental Fig. S8,
Supplementary Results). We also tested whether a more com-
prehensive dataset would improve predictions by basing our
predictions using updated versions of GTEx (version 4 instead
of 3 with 2,921 instead of 1,660 samples) and MEROPS
(version 11.0) but did not see any improvement (supplemental
Figs. S9 and S10). To further understand the low correlation
between coexpression and the protease inhibition, we inves-
tigated coexpression of exemplary, well-studied inhibitor–
protease pairs. First, we examined serpins that regulate
coagulation (e.g. antithrombin III (SERPINC1) and alpha-
2-antiplasmin (SERPINF2)). Indeed, these serpins were co-
expressed with coagulation proteases in liver, which, as noted
above, is the case for many serum proteins destined for
secretion to the circulation. However, these serpins are anno-
tated to inhibit many additional proteases. For example,
SERPINF2 inhibits KLK 4, 5, 7, 13, and 14 that are not highly
expressed in liver, have uncorrelated expression patterns
from SERPINF2 (Fig. 2) and are thus not retrieved by coex-

pression analysis (Fig. 7A). Yet, these interactions are bio-
chemically meaningful, as serpins are exported from the liver
to the serum and thus transported through the body, where
they encounter and inhibit proteases with uncorrelated ex-
pression patterns. Thus, as we showed before, coexpression
in exocrine tissues is limited in predicting such protein
interactions.

These observations were not limited to serpins but applied
to all groups of inhibitors: For example, TIMP 2 (Fig. 7B) was
not coexpressed with any of its annotated target proteases
with a few exceptions (MMP2 or MMP14), which were
drowned out by the number of other annotated targets. In the
extreme case, alpha-2-macroglobulin (Fig. 7C), a highly mul-
tifunctional protease inhibitor that inhibits multiple classes of
proteases, is also only coexpressed with a small portion of
proteases. However, alpha-2-macroglobulin is present in
blood plasma and so can reach most tissues (especially in
inflammation were blood vessel permeability is increased) (23)
and inhibit extracellular proteases or intracellular proteases
that are secreted (e.g. by neutrophils (e.g. serine proteases
and MMPs)) or released from damaged cells. These examples
show that expression patterns of inhibitors are often corre-
lated with the expression pattern of some (possibly the most
relevant) targets but uncorrelated with additional biologically
relevant targets.

Protease–Inhibitor Predictions Comparison to General Pro-
tein Interaction Predictions—We compared the performance
of our coexpression matrices in predicting protease–inhibitor
interactions to the performance achieved when predicting
general protein interactions in the HIPPIE network (Fig. 1),
using interactions annotated in HIPPIE as TPs and random
interactions as TNs. Prediction of protein interactions showed

FIG. 6. Inhibition of KLK5 by SERPINB12 (A) Cleavage of the quenched fluorescent substrate ES011 by KLK5 was followed over time
after preincubation with different mole ratios of SERPINB12 (as indicated). A decrease in KLK5 activity (A.U.—arbitrary units) with
increasing SERPINB12 confirms that SERPINB12 inhibits KLK5 as predicted. (B) Silver-stained 10% SDS-PAGE gel of KLK5, SERPINB12, and
the inhibitory KLK5:SERPINB12 complex, indicating that the serpin is covalently bound to the protease. Serpins form metastable kinetically
trapped folding states that are crucial for the inhibitory mechanism. Thus, serpins can occur in multiple folded states, some of which expose
the reactive center loop as bait for protease cleavage. The presence of other folded states also indicates that N or C-terminal loops and strands
may be cleaved by KLK5 depending on the conformations of the serpin present, which may shield or expose other potential cleavage sites.
Thus, the lower molecular weight forms of the serpin–KLK5 covalent complex likely represent cleavage of N or C peptides of the serpin in
addition to the inhibitory cleavage in the reactive center loop. Further autocleavage of KLK5 results in lower molecular weight forms of a still
active protease, which may also form lower molecular weight inhibitory complexes.
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higher accuracy than predictions of protease inhibitions (Fig.
8). This difference was even stronger when focusing on pro-
teasomal protein complex, demonstrating that prediction of
protease inhibitions is indeed a difficult task compared with
the prediction of general protein interactions.

To assess whether predictions of generic protein interac-
tions in state-of-the-art methodology are useful in predicting
protease inhibitions, we obtained predicted interaction part-
ners of protease inhibitors from PrePPI (42). Without our en-
zymatic constraints, these predictions included many predic-
tions that were irrelevant for the identification of protease
inhibitors. For example, predicted partners of kallistatin (SER-
PINA4) in PrePPI included many proteins that were not pro-
teases or were themselves protease inhibitors (e.g. SER-
PIND1 and SERPINC1). Focusing on interactions between
inhibitors and proteases (predicted probability of 0.9 or
higher), we identified 241 predictions. 41 interactions over-
lapped with our 270 predictions despite the use of different
methodology and underlying data. It is not possible to deter-
mine the accuracy of PrePPI predictions since PrePPI uses
structural constraints and GO annotations, which partially
correspond to the annotations we used to build the gold
standard. However, despite these filters, 7 of the 51 interac-
tions of serpins included metalloproteases, and none of the
eight predicted interactions of cystatins included cysteine
proteases, indicating that these predictions lack specificity
and are not easily applicable to the prediction of inhibitory
protease interactions.

DISCUSSION

We observed that coexpression was very limited in utility in
predicting protease–inhibitor pairs, contrary to previous find-
ings suggesting proteases and their inhibitors have correlated
expression (14 and 15). Our results suggest this is not a
general principle, at least at the RNA level. We did not observe
specific coexpression of many protease inhibitors with their
target proteases despite our extensive efforts in calculating
coexpression across human tissues and within tissues, based
on proteomics and using machine learning to combine net-
works. As demonstrated by our analysis (Fig. 7), we deci-
phered a biological reason for the delinking of protease–
inhibitor coexpression in the mobility of proteins in an open

FIG. 7. Recovery of known inhibitor–protease pairs in matrices.
Recovered pairs among the top 10% of ranked pairs in each matrix
marked in black. Columns are coexpression and phylogenetic simi-
larity matrices from supplemental Table S5. Rows are genes of pro-
teases that are annotated to be inhibited by (A) SERPINF2 (alpha-2-
antiplasmin), (B) TIMP2 (tissue inhibitor of metalloproteinases), and
(C) A2M (alpha 2 macroglobulin).

FIG. 8. Prediction of PPI and predictions of protease inhibition.
Area under the receiver-operator curve for predictions of protease
inhibitions (Protease Web), protein–protein interactions from HIPPIE
(PPI, Fig. 1), and interactions of proteasome components in HIPPIE
(Proteasome, Fig. 1). Predictions are based on the coexpression
matrices GTEX_All_Pcc (Pearson), GTEX_All_Scc (Spearman), and
GTEX_All_Max (Max).

Bioinformatics Prediction of Protease–Inhibitor Interactions

1048 Molecular & Cellular Proteomics 16.6

http://www.mcponline.org/cgi/content/full/M116.065706/DC1


biological system with interactions between tissues and cells.
While coexpression might thus be better observed at the
protein level, we also did not observe this, possibly due to the
limited quality and extent of protein quantification. We further
hypothesize that in complex networks, where an inhibitor
inhibits many proteases and vice versa, the expression pat-
tern of one gene represents a combination of the patterns of
its interactors and is thus not clearly correlated with any one
of them individually. However, our attempt to address this by
using partial correlations did not provide support for this
notion.

In addition to many true inhibitor–protease pairs not coex-
pressing, we also found that coexpressed pairs are often not
inhibitory. We hypothesize that this is due to pathways of
genes, where a gene can be coexpressed with other genes in
the same pathway that are not direct interactors. In our data,
one example is the coexpression of SERPINB12 with KLK5
and KLK7. SERPINB12 inhibits KLK5 but not KLK7. KLK5 is
also an activator of KLK7 (41). Whereas SERPINB12 and
KLK7 are involved in the same pathway and coexpressed,
they do not interact directly. Nonetheless, inhibition of KLK5
by SERPINB12 prevents activation of KLK7 and thus indi-
rectly inhibits KLK7. Thus, network effects (18) might explain
some false positives in protein interaction prediction studies.

Due to the complexity of biological networks, identification
of biochemically relevant protein interactions remains an in-
tricate problem. Prediction of inhibitors of proteases provided
in-depth insights into the related difficulties since it allows a
cleaner definition of TP and TN examples than general protein
interaction prediction. We emphasize that biochemical evalu-
ations are useful to give realistic estimates of expected per-
formance because computational evaluation such as cross-
validation performance is a very poor predictor of how a
guilt-by-association method will do in reality (43). Our per-
formance results are in line with many previous evaluations of
guilt-by-association methods (43), and we conclude that
much higher validation rates are unrealistic in unbiased bio-
chemical experiments. Indeed, no prediction method has
been adopted by biochemists for routine prioritization (13),
despite reports of improved prediction performance (9, 42).
The best performing biochemically validated protein interac-
tion prediction method (PrePPI) (9, 42) was reported to be
successful in 15 of 19 experiments (suggesting �79% preci-
sion). However, in that case, predictions were guided by GO
annotation, possibly reflecting information retrieval rather than
the harder de novo predictions, and were hand selected for
validation based on plausibility, which can significantly bias
performance evaluation. Therefore, the reported performance
for PrePPI is likely overoptimistic. Indeed, in a recent mass
spectrometry screen of interaction partners of adenosine
monophosphate-activated protein kinase-�1 and -�1 (44),
only 63 of the 381 biochemically identified interaction partners
overlapped with the 1,235 interactors predicted by PrePPI,
giving only �5% precision. We posit that low validation rates

in realistic settings can explain the limited use of prediction
tools in guiding biochemical experiments.

We also revealed strengths and weaknesses of individual
input features in our focused analysis. One important input
feature was the prior knowledge of structural constraints,
namely the knowledge of protease and inhibitor classes. We
hypothesized that this feature would greatly simplify the in-
hibitor prediction task by narrowing and focusing the search
space compared with the general protein interaction predic-
tion problem. Without enzymatic constraints, common protein–
protein interaction predictions included many irrelevant pre-
dictions, as we demonstrated in the case of PrePPI. In our
analysis, protease-specific structural features significantly re-
duced the search space to relevant interactions but also did
not discern specificity between closely related protein family
members. We conclude that such structural information as
well as the related sequence-based input used in phyloge-
netic similarity decreases the search space to plausible pairs
but is not specific enough to identify individual interactions.

Overall, we conclude that computational interaction predic-
tion remains challenging and with the current state of data,
and methods seem unable to accomplish the task with suffi-
cient specificity to reliably replace biochemical experiments.
Improvements may come from more comprehensive expres-
sion studies and proteomics quantification as well as a better
definition and larger numbers of TP and TN examples used for
training to identify pertinent patterns. This will improve as
more data are uploaded to community databases such as
MEROPS and TopFIND for proteases and inhibitors. We cau-
tion against overoptimistic estimates of performance based
on aggregating diverse data in a black box algorithm and
overtrusting cross-validations based on flawed gold stand-
ards (43, 45). Equally problematic are biases toward well-
studied proteins (40) by relying on functional or localization
data that can lead to valid but less interesting interactions. By
carefully selecting and combining features in a transparent
method that is more analogous to a biologist’s reasoning, we
can clarify limitations of features and thus should build con-
fidence among the users of predictions.
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