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A B S T R A C T   

Background: β-thalassemia is an inherited hemoglobinopathy resulting in quantitative changes in the β-globin 
chain. Understanding the molecular basis of that disorder requires studying the expression of genes controlling 
the pathways that affect the erythropoietic homeostasis especially the MAPK pathway. The MAPKs are a family 
of serine/threonine kinases that play an essential role in connecting cell-surface receptors to DNA in the nucleus 
of the cell. 
Aim: to study the effect of expression of GNAI2, DUSP5 and ARRB1 genes on MAPK signaling pathway in pe
diatric patients with beta thalassemia. 
Methods: Forty children with beta thalassemia major (TM), forty children with beta thalassemia intermedia (TI) 
and forty age and gender matched healthy controls were enrolled in this study. Detection of GNAI2, DUSP5 and 
ARRB1 mRNA expression was done by real time polymerase chain reaction (RT-PCR). 
Results: revealed increased expression of ARRB1 (Arrestin Beta 1) gene, and decreased expression of both GNAI2 
(Guanine nucleotide-binding protein G (i) subunit alpha-2) and DUSP5 (Dual specificity protein phosphatase 5) 
genes in both patient groups than control groups respectively. 
Conclusions: Change in the rate of expression of ARRB1, GNAI2 and DUSP5 may have a role in the pathogenesis of 
abnormal hematopoiesis in cases of β thalassemia through affecting the MAPK pathway.   

1. Introduction 

Thalassemias are heterogeneous group of genetic blood disorders, 
there are two main types, alpha thalassemia and beta thalassemia ac
cording to which globin chain is affected. The severity of alpha and beta 
thalassemia is correlated with the number of affected α-globin and β 
-globin alleles and on nature of the mutation [1]. 

β-Thalassemia, one of the most common inherited hemoglobinopa
thy in the world, is inherited as autosomal recessive disorder affecting 
the β-globin gene which induce an absence (β0) or low-level (β+) syn
thesis of β-globin protein in erythropoietic cells [2]. Beta-thalassemia 
includes three main forms: Thalassemia Major, referred to as "Cooley’s 
Anemia” and “Mediterranean Anemia”, Thalassemia Intermedia and 
Thalassemia Minor also called “beta-thalassemia trait” [3]. 

There are 837 reported HBβ (β-globin gene) mutations, of which 247 

have been reported to cause the β-thalassemia phenotype. These can 
affect any point from expression of the HBB through to protein synthesis 
[4]. 

The disorder of β-chain synthesis leads to ineffective erythropoiesis 
in which erythroid progenitor cells undergo intramedullary apoptosis 
and do not develop into mature erythrocytes, resulting in variable 
phenotypes ranging from severe anemia to clinically asymptomatic in
dividuals [5,6]. 

Although thalassemia is usually asymptomatic or associated with 
only mild anemia, patients with severe disease require lifelong blood 
transfusions for survival. Regular transfusion results in normal growth 
and development until 10–11 years old, after this age risks arise from 
complications due to transfusion related iron overload [7]. 

The mitogen activated protein kinase (MAPK) pathway is probably 
the best characterized signal transduction pathway in cell biology. The 
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MAP kinases are a family of dual-specificity serine/threonine protein 
kinases; the function of these kinases is to transduce signals from the 
extracellular receptors to the nucleus where specific genes are activated. 
These activated genes are implicated in multiple cellular functions, 
ranging from cell survival and proliferation to cell differentiation and 
programmed cell death [8,9]. 

There are three sub-pathways of MAPK, these include extracellular 
signal-regulated kinases 1/2 (ERK1/2), c-Jun amino (N)-terminal ki
nases 1/2/3 (JNK1/2/3) and p38 isoforms (α, β, γ, and δ) that are most 
widely studied among the many subfamilies of the MAPK family [10, 
11]. The ERK signaling pathway mainly exerts its effects on cell prolif
eration, development, and differentiation induction. In contrast, the 
JNK and p38MAPK signaling pathways are mainly activated under stress 
and play roles in growth inhibition, inflammation, and proapoptotic 
signaling [12,13]. 

It is well known that hematopoietic stem cells (HSCs) are required to 
self-renew as well as differentiate into the various hematopoietic line
ages [14]. Therefore, appropriate control of HSC self-renewal is essential 
for the maintenance of hematopoietic homeostasis. Recently, MAPK 
signaling has been demonstrated to play a key role in the maintenance of 
HSC quiescence [15]. 

1.1. Aims of the study 

The aim of this study was to study the mRNA expression of GNAI2, 
DUSP5 and ARRB1 genes within the MAP kinase signaling pathway in 
beta thalassemia. 

1.2. Subjects and methods 

This study was carried out on 80 children suffering from β-thalas
semia and 40 healthy children as control who not suffering from any 
hematological disorders. Patients were selected from the Hematology 
unit, Pediatric department, Menoufia University Hospital. Children 

included in this study were divided into three groups; Group I included 
40 children patients with β-thalassemia major (TM), they were 23 males 
and 17 females with mean age of (7.99 ± 4.27), Group II included 40 
children patients with β-thalassemia intermedia, they were 23 males and 
17 females with mean age of (8.82 ± 4.48) and Group III included 40 
healthy children not suffering from any hematological disease, age and 
gender matched as a control group, they were 22 males and 18 females 
with mean age of (6.87 ± 3.75). 

The study was approved by the faculty ethical committee after taking 
written consent from patients’ guardians after a full explanation of the 
study. 

2. Methods 

All studied subjects were subjected to complete history taking 
(including personal history, history of blood transfusion (1st and fre
quency), history of drug intake and history of splenectomy and its age). 
Thorough clinical examination stressing on presence of pallor, jaundice 
and scars of splenectomy. 

Blood sample and laboratory investigations: five milliliters (ml) of 
venous blood were withdrawn from the cubital vein and divided as 
follows: two ml of blood were put in a tube containing EDTA for com
plete blood count (CBC) measured with Pentra – 80 automated blood 
counter (ABX– France – Rue du Caducee-Paris Euromedecine-BP- 
7290.34184 Montpellier-Cedex 4.), estimation of HbF% by Hb electro
phoresis (automated analyzer (minilite) MNL320350-Italy) and for 
detection of GNAI2, DUSP5 and ARRB1 mRNA expression by RT-PCR. 
The remaining 3 ml blood was transferred into plain tube, separated 
by centrifugation and stored at -20◦C for determination of ALT, AST, 
urea, creatinine on auto-analyzer (SYNCHRON CX5) from Beckman 
(Beckman, instrument Inc., Scientific Instrument Division, Fullerton, 
CA92634 - 3100) and ferritin by ELISA kits, Ramco Laboratories Inc, 
Stafford, Texas, USA. 

Fig. 1. Shows the amplification plot of genes expression.  
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2.1. Detection of GNAI2, DUSP5 and ARRB1genes expression 

RNA was extracted from fresh EDTA treated blood sample using 
direct-zol RNA Mini protocol for purification of total cellular RNA ac
cording to the manufacturer’s instructions. Single-stranded cDNAs were 
created utilizing Quanti Tect Reverse Transcription Kit (Qiagen, Applied 
Biosystems, USA): the reverse-transcription master mix was prepared by 
mixing 1 μl of Quantiscript reverse transcriptase, 4 μl of Quantiscript RT 
buffer and 1 μl of RT Primer, then mixed with 4 μl RNase-free water Mix, 
then 10ul of extracted RNA was added to each tube containing reverse 
transcription master mix, to achieve reverse-transcription reaction of 20 
μl total volume and stored on ice. The programming of warm cycler 
condition was: hold for 1 h at 42 ◦C, hold for 5 min at 95 ◦C to inactivate 
Quantiscript Reverse Transcriptase then for 5 min at 4 ◦C.The reverse- 
transcription reactions were stored at − 20 ◦C for real-time PCR. 

Second Step- PCR done by: cDNA amplification with SYBR Green II 
with low ROX for detection of GNAI2, DUSP5, And ARRB1 genes 
expression (QuantiTect SYBR Green PCR Kit, Applied Biosystems, USA). 
The reaction mix for each gene was prepared as follow: 10 μl of 
2xQuantiTect SYBR Green PCR Master Mix with low ROX, 1 μl for each 
forward and reverse primers of the gene, 3 μl of template cDNA, 5 μl of 
RNase-free water to give a final total reaction volume of 20 μl. 

The forward (F) and reverse (R) primers for each gene are: GNAI2 (F: 
TCTGGCATCAGGGAGGCTTTCA,R:TTCCCTTGGTGGCTTTCCTAGC), 
DUSP5 (F:CTACCCACTCAACAGTCTCAGAGC, R:AAATCCCA
GAAGTCCACAGCTT) and ARRB1 (F:GCGAGCACGCTTACCCTTT,R: 
CAAGCCTTCCCCGTGTCTTC). Beta actin is used as the endogenous 
control gene. 

The programming of real-time cycler was: hold for 15 min at 95◦Cfor 
initial activation of HotStar Taq DNA Polymerase, hold for 30 min at 
42 ◦C, then, 3 step cycling of denaturation at 95 ◦C for 15 S, annealing at 
60 ◦C for 30 S and extension at 72 ◦C for 34 S. 45 cycles with a total time 
of 210 min was performed. Melting curve analysis of the PCR products 
was performed using 7500 software version 2.0.1, the melting curve 

cycling program is 95 ◦C for 15s, 55 ◦C for 1 min fluorescence data 
collection, 95 ◦C for 30s and 55 ◦C for 15 s. Fig. 1: shows the amplifi
cation plot of genes expression and Fig. 2: a, shows melting curve of 
GNAI2 and DUSP5 genes expression. b, shows melting curve of ARRB1 
gene expression Data analysis using Applied Biosystems 7500, soft
ware version 2.0.1. 

Quantification is done by the comparative Ct (cycle threshold) 
method that uses arithmetic formulas to achieve the result for relative 
quantitation, where the amount of the target is normalized to an 
endogenous reference (beta actin). This involves comparing the Ct 
values of the samples of interest with a control. The Ct values of both the 
calibrator and the samples of interest are normalized to an appropriate 
endogenous housekeeping gene (beta actin). 

2.2. Statistical analysis 

The collected data were tabulated and analyzed by SPSS (statistical 
package for social science) version 22.0 on IBM compatible computer. 

Two types of statistics were done: Descriptive statistics in which 
percentage(%), mean, standard deviation (SD), and median were used 
while for analytical statistics: Chi-square test (χ2): was used to study 
association between two qualitative variables, Fischer exact test for 2 x 2 
tables, Student t-test: used for comparison between two groups having 
quantitative parametric variables, Mann-Whitney test(nonparametric 
test): used for comparison between two groups, ANOVA (F) test (para
metric test): used for comparison between more than two groups, 
Kruskal-Wallis (H) test (nonparametric test): used for comparison be
tween three or more. Spearman correlation was used to correlate be
tween two quantitative variables. A p-value ≤ 0.05 was considered 
significant. 

3. Results 

Demographic features showed a non-significant statistical difference 

Fig. 2. a, shows melting curve of GNAI2 and DUSP5 genes expression. b, shows melting curve of ARRB1 gene expression.  
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between the studied groups as regards age and gender. On comparison 
between both patient groups as regard clinical data, there was increased 
number of children having jaundice, organomegally, splenectomy and 

number of blood transfusion per year in TM group than TI group 
(Table 1). Blood indices showed a highly significant statistical decrease 
of red blood cell (RBC) count, hemoglobin (Hb) and hematocrit (HCT) 

Table 1 
Comparison between the three studied groups according to demographic data and different clinical parameters.  

Parameter Major (n = 40) Intermedia (n = 40) Control (n = 40) Test of Sig. p  
No. % No. % No. % 

Sex 
Male 
Female 

23 
17 

57.5 
42.5 

23 
17 

57.5 
42.5 

22 
18 

55 
45 

χ2 = 0.068 0.967 

Age (years) 
Min. – Max. 
Mean ± SD. 
Median 

1.5–17 
4.27 ± 7.99 
8.0 

0.75–17 
4.48 ± 8.82 
9.0 

0.5–15 
3.75 ± 6.87 
6.50 

H = 4.064 0.131        

χ2 p 
Pallor 40 100.0 40 100.0 0 0.0 120.0* <0.001* 
Jaundice 35 87.5 8 20.0 0 0.0 73.138* <0.001* 
Organomegally 33 82.5 5 12.5 0 0.0 73.094* <0.001* 
Splenectomy 

Negative 
Positive 

32 80.0 40.0 100.0  8.889* FEp=
0.005* 8 20.0 0 0.0 

No of transfusion/year 
Min. – Max. 
Mean ± SD. 
Median 

14.0–2.0 
3.44 ± 9.15 
9.50 

4.0–1.0 
0.74 ± 2.60 
3.0 

U = 49.0* <0.001* 

χ2: Chi square test H: Kruskal Wallis test FE: Fisher Exact U: Mann Whitney test. 

Table 2 
Comparison between the three studied groups according to laboratory investigations.   

Major (n = 40) Intermedia (n = 40) Control (n = 40) Test of Sig. p 

RBCs (million/mcl)      
Min. – Max 1.64–3.88 2.27–5.03 4.14–5.63 F=

154.837* 
<0.001* 

Mean ± SD 2.73 ± 0.48 3.22 ± 0.74 4.84 ± 0.41 
Median 2.66 3.0 4.77 

Sig. bet. Grps. p1 = 0.001*,p2<0.001*,p3<0.001*   
Hb (g/dl)      

Min. – Max 5.0–9.60 5.50–11.50 9.90–13.90 F=
155.216* 

<0.001* 
Mean ± SD 7.10 ± 1.14 8.54 ± 1.46 11.77 ± 0.99 
Median 7.0 8.50 11.50 

Sig. bet. Grps. p1<0.001*,p2<0.001*,p3<0.001*   
HCT (%)      

Min. – Max 15.0–28.10 15.10–34.60 32.0–40.0 F=
177.195* 

<0.001* 
Mean ± SD 19.97 ± 3.47 25.22 ± 4.87 35.46 ± 2.50 
Median 19.25 25.15 35.25 

Sig. bet. Grps. p1<0.001*,p2<0.001*,p3<0.001*   
MCV (fl)) 

Min. – Max. 
Mean ± SD. 
Median 

63.0–83.0 
71.59 ± 5.01 
72.60 

79.0–63.40 
4.20 ± 4.07 
75.40 

79.50–65.0 
4.11 ± 73.48 
74.10 

F=
3.231* 

0.043* 

Sig. bet. Grps. p1 = 0.045*,p2 = 0.146,p3 = 0.859  
MCH (pg)) 

Min. – Max. 
Mean ± SD. 
Median 

29.0–20.70 
2.09 ± 25.52 
25.70 

31.0–21.30 
1.90 ± 26.07 
26.0 

45.0–21.70 
4.66 ± 26.63 
26.0 

F = 1.237 0.294 

MCHC (g/dl) 
Min. – Max. 
Mean ± SD. 
Median 

43.0–31.90 
2.23 ± 35.23 
34.70 

35.10–32.0 
0.75 ± 33.79 
33.90 

36.21–32.0 
1.14 ± 34.24 
34.25 

H = 13.961* 0.001* 

Sig. bet. Grps. p1<0.001*,p2 = 0.044*,p3 = 0.085   
HbF (%)      

Min. – Max 
Mean ± SD 
Median 

91.0–0.0 
21.11 ± 26.75 
10.40 

96.80–0.0 
23.62 ± 43.74 
43.20 

0.80–0.0 
0.21 ± 0.21 
0.10 

H =
68.090* 

<0.001* 

Sig. bet. Grps. p1<0.001*,p2<0.001*,p3<0.001*   
Ferritin (ng/ml)      

Min. – Max 
Mean ± SD 
Median 

5340.0–71.40 
1144.4 ± 2140.7 
1803.5 

851.0–86.0 
135.4 ± 245.4 
210.5 

88.0–30.0 
48.33 ± 15.71 
42.65 

H=101.331* <0.001* 

Sig. bet. Grps. p1<0.001*,p2<0.001*,p3<0.001*   

F: ANOVA test, H: Kruskal Wallis test. 
p1: p value for comparing between Major and Intermediate. 
p2: p value for comparing between Major and Control. 
p3: p value for comparing between Intermediate and Control. 
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values in both patient groups when compared with control group and a 
non-significant difference between studied groups as regards MCV, MCH 
and MCHC. Hb F was significantly increased in both patient groups than 
control group and in TI group than TM group. Also, serum ferritin 
showed a highly significant increase in TM group than other groups and 
in TI group than control group (Table 2). 

Expression of ARRB1 (Arrestin Beta 1) genes is markedly increased in 
TM group than TI and control groups, while expression of both GNAI2 
(Guanine nucleotide-binding protein G (i) subunit alpha-2) and DUSP5 
(Dual specificity protein phosphatase 5) genes showed a significant 
decrease in TM group than TI and control groups respectively (Table 3). 
Expression of ARRB1 genes showed a significant negative correlation as 
regard serum ferritin, Hb F% and number of transfusion per year and 
showed significant negative correlation as regard RBCs, Hb and HCT 
while expression of both GNAI2 and DUSP5 genes showed a significant 
positive correlation as regard RBCs, Hb and HCT and showed a signifi
cant negative correlation as regard serum ferritin, Hb F% and number of 
transfusion per year (Table 4). 

4. Discussion 

Erythropoiesis describes the processes involved in the lineage 
commitment, maturation and terminal differentiation of a hematopoi
etic stem cell (HSC) into a mature red blood cell (RBC); many signaling 
pathways regulate these processes including the MAPK pathway 
[16–18]. Traditionally, the pathogenesis of β-thalassemia has been 
attributed to ineffective erythropoiesis due to intramedullary apoptosis 
and delayed maturation of erythroid progenitor cells [5,6]. 

Our work aimed to study the effect of expression of GNAI2, DUSP5 
and ARRB1 genes on MAPK signaling pathway in pediatric patients with 
beta thalassemia. 

Results revealed a statistically increased HbF in both patient groups 
of thalassemia than control group with marked increase in TI group than 
TM group. 

Previous studies reported elevated fetal hemoglobin (HbF) expres
sion in cases of β-thalassemia and this elevation may ameliorate the 
clinical symptoms of β-globin disorders in these cases [19–21]. Several 
studies work to explain the cause of increased HB F expression in 
β-thalassemia; Pace et al., [22] and Mabaera et al., [20]reported that 
the p38 MAPK signaling pathways use histone deacetylase inhibitors to 
induce HbF expression, while Tohru et al., [21] stated that activation of 
the cAMP signaling pathway prove to be an important signaling mech
anism to reactivate HbF expression in erythroid cells in part by inhib
iting BCL11A gene expression. On other hand Galanello et al. [23], 
reported that plasma erythropoietin levels correlate with HbF levels in 
β-thalassemia intermedia and this in agreement with Bhanu et al., [24] 
who found that increase in cytokines including erythropoietin, stem cell 
factor, and tumor growth factor-β in β-thalassemic patients; strongly 
enhance Hb F activity in primary erythroid cells. 

As regards serum ferritin, this study revealed marked elevation of 
serum ferritin in TM group than TI group and this may be attributed to 
the repeated blood transfusion for patients with TM than TI leading to 
iron overload. Despite the life-saving nature of long-term blood trans
fusion, iron intoxication due to dysregulated cellular iron metabolism is 
the leading cause of prolonged complications in patients with β-TM [25, 
26]. Normally, iron is stored intracellularly in the form of ferritin. Under 
conditions of iron overload, excess iron accumulates within tissues such 
as the liver, heart, lungs, and endocrine glands. These unbound iron 
particles contribute to the release of free radicals, which damage 
membrane lipids and other macromolecules and lead to cell death and, 
eventually, organ failure [27,28]. 

Studying gene expression in this work showed increased expression 
of ARRB1 gene in TM and TI groups than control group while there were 
decreased expression of both DUSP5 and GNAI2 in TM and TI groups 
than control group. 

β-Arrestins (βarrs) are ubiquitously expressed proteins that were first 
described for their role in desensitizing G protein-coupled receptors 

Table 3 
Comparison between the three studied groups according to RQ.  

RQ Major (n =
40) 

Intermedia 
(n = 40) 

Control (n 
= 40) 

H p 

GNAI2      
Min. – 
Max. 

0.0–1.62 0.0–2.28 1.80–7.70 93.631* <0.001* 

Mean ±
SD. 

0.65 ±
0.41 

1.56 ± 0.44 4.20 ± 1.98 

Median 0.40 1.57 3.43 
Sig. bet. 

Grps. 
p1 < 0.001*,p2 < 0.001*,p3 < 0.001*   

DUSP5      
Min. – 
Max. 

0.33–6.78 1.19–1.92 1.23–7.13 89.925* <0.001* 

Mean ±
SD. 

0.95 ±
0.96 

1.54 ± 0.25 3.54 ± 1.88 

Median 0.85 1.56 3.07 
Sig. bet. 

Grps. 
p1 < 0.001*,p2 < 0.001*,p3 < 0.001*   

ARRB1      
Min. – 
Max. 

1.13–9.14 1.75–4.15 0.01–1.80 87.750* <0.001* 

Mean ±
SD. 

4.77 ±
2.31 

2.55 ± 0.60 0.69–0.54 

Median 4.15 2.48 0.52 
Sig. bet. 

Grps. 
p1 = 0.001*,p2 < 0.001*,p3 < 0.001*   

H: Kruskal Wallis test. 
p1: p value for comparing between Major and Intermediate. 
p2: p value for comparing between Major and Control. 
p3: p value for comparing between Intermediate and Control. 

Table 4 
Correlation between gene expression and different parameters in total subjects.    

GNAI2 DUSP5 ARRB1 

rs p rs p rs p 

Age (years) − 0.197* 0.031* − 0.105 0.252 0.117 0.201 
RBCs (million/mcl) 0.677* <0.001* 0.623* <0.001* − 0.672* <0.001* 
Hb (g/dl) 0.734* <0.001* 0.672* <0.001* − 0.703* <0.001* 
HCT (%) 0.753* <0.001* 0.687* <0.001* − 0.706* <0.001* 
MCV (fl) 0.189* 0.038* 0.123 0.180 − 0.118 0.199 
MCH (pg) 0.067 0.466 0.021 0.816 − 0.062 0.503 
MCHC (g/dl) − 0.139 0.131 − 0.228* 0.012* 0.108 0.242 
HbF (%) − 0.365* <0.001* − 0.302* 0.001* 0.431* <0.001* 
Ferritin (ng/ml) − 0.881* <0.001* − 0.853* <0.001* 0.842* <0.001* 
No of transfusion/year − 0.735* <0.001* − 0.752* <0.001* 0.561* <0.001* 

rs: Spearman coefficient. 
*: Statistically significant at p ≤ 0.05. 
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(GPCRs) [29]. There are two βarr isoforms, β-arrestin1 and β-arrestin2, 
both are expressed ubiquitously and share 78% sequence homology 
[30]. 

Platelet activating factor receptor (PAFR) desensitization was 
β-arrestin-1-dependent, with receptor internalization requiring both 
β-arrestin-1 and dynamin-2. This translocation and binding of β-arrestin- 
1 to the PAFR provided a platform for recruitment of a p38 MAPK signal 
some (ASK1/MKK3/p38 MAPK) and its subsequent activation [31,32]. 

P38 activation was reported to be induced by erythropoietin (EPO) 
[33–35], and several reports have suggested that p38 is necessary for the 
initiation of erythroid differentiation. Pharmacological inhibition of p38 
suppressed EPO-induced differentiation of SKT6 cells, and p38 antisense 
oligonucleotides inhibited Epo-induced hemoglobinization [36]. Other 
study reported that lack of p38 activity was found to interfere with 
stabilization of Epo mRNA in human hepatoma cells undergoing hypoxic 
stress, resulting in diminished EPO gene expression [37,38]. 

β-Arrestin-1genemRNA expression in the present study showed a 
marked increase in TM group than TI group which was also increased 
more than control group. Overexpression of β-Arrestin-1 gene may 
ameliorate the effects of severe anemia and hypoxia in cases of β-thal
assemia by stimulating erythropoietin synthesis and these findings are in 
agreement of Nişli et al., who found elevated serum EPO in both TM and 
TI groups than control group and also reported that In the TM patients, 
the serum EPO concentration was not consistently correlated with 
clinical signs of erythropoietic activity [39]. 

MAPK phosphatases (MKPs) also called Dual-specific (Thr/Tyr) 
MAPK phosphatases (DUSPs) are protein phosphatases that dephos
phorylate both tyrosine and serine/threonine residues of MAP kinases, 
among them DUSP5 and DUSP6 are known to be induced by ERK 
signaling, and thereby involved in a negative feedback loop that tightly 
controls phosphorylated ERK (pERK) [40–42].Geest et al., and Mori 
et al., have demonstrated that ERK MAPK activity is essential for sur
vival of erythroid CD34 progenitor cells and inhibition of ERK1/2 ac
tivity completely abolished expansion and subsequent differentiation of 
CD34 erythrocyte progenitors as a result of induction of apoptosis [43, 
44]. 

Our study revealed that DUSP5 mRNA expression is decreased in 
both TM and TI groups and this decease may not affect the ERK kinase 
activity which may be explained by a previous work who has shown that 
DUSP5 interacts with ERK and is responsible for its nuclear anchoring, 
but this binding is not accompanied by the catalytic activation of the 
phosphatase, also the basal activity of DUSP5 in the absence of ERK 
activation is greater than that of DUSP6 before and even after its acti
vation by ERK [45]. In contrast to these results Buffet et al., stated that 
induction of DUSP5 by the MEK-ERK pathway serves as an important 
feedback loop that controls activation of ERK1/2 [46]. 

GTP-binding guanine nucleotide regulatory proteins (G proteins; 
either stimulatory [Gs] or inhibitory [Gi]) are heterotrimeric, composed 
of α-, β-, and γ-subunits. The Gi family of G proteins is defined by the 
α-subunits and includes Gαi1, Gαi2, Gαi3, Gαz, GαoA and GαoB isoforms 
[47]. 

One of these isoforms is the Gαi2 (or GNAI2; Guanine nucleotide- 
binding protein G (i) subunit alpha-2) which showed decreased 
expression in TM and TI groups than control group in our study, have 
proven to affect the MAPK signaling pathway by different mechanisms. 
One of these mechanisms is by stimulating the Ras-dependent ERK 
signaling without directly involving the activation of Ras by inhibiting 
the activity of Rap-1 [48,49] and the other mechanism is by attenuating 
the activation of the p38MAPK module [50]. 

5. Conclusion 

From the above study it is well documented that regulation of 
erythropoiesis requires urgent control from MAPK pathway and that the 
rate of expression of the three studied genes affects directly the MAPK 
pathway. This occurs through activation or inactivation of P38 and ERK 

sub-pathways which have roles in differentiation, survival and apoptosis 
of erythropoietic cells, and so in cases of β thalassemia. Further study is 
needed at the protein level of these genes in cases of β thalassemia. 
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