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The promises and pitfalls of applying
computational models to neurological
and psychiatric disorders

Christoph Teufel1,2 and Paul C. Fletcher3,4

Computational models have become an integral part of basic neuroscience and have facilitated some of the major advances in the

field. More recently, such models have also been applied to the understanding of disruptions in brain function. In this review, using

examples and a simple analogy, we discuss the potential for computational models to inform our understanding of brain function

and dysfunction. We argue that they may provide, in unprecedented detail, an understanding of the neurobiological and mental

basis of brain disorders and that such insights will be key to progress in diagnosis and treatment. However, there are also potential

problems attending this approach. We highlight these and identify simple principles that should always govern the use of com-

putational models in clinical neuroscience, noting especially the importance of a clear specification of a model’s purpose and of the

mapping between mathematical concepts and reality.
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Introduction
Though frequently implicit, models are ubiquitous in sci-

ence. If successful, they allow us to make complex prob-

lems more tractable by simplifying them to a set of deep,

hidden components that are the main drivers of the visible

phenomena the model attempts to explain. This leads to a

seemingly paradoxical situation: a model must necessarily

neglect many aspects of reality to represent adequately the

deeper causal structure of that reality. Thus, even at the

earliest stages of modelling, we are forced to make two

important assumptions: first, that certain aspects of reality

can be ignored because they are irrelevant to the bit of

reality that the model attempts to explain; second, that

there are parts of the model that ‘stand for’ things in a

way that is meaningful and useful (despite the fact that

the model is necessarily an incomplete rendition of reality).

Ultimately, therefore, the value of modelling depends upon

a clear conceptualization of, and adherence to, the map-

pings between the model and reality and this, in turn
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demands a careful consideration of when and where it

applies. Incorrect models can be heuristically useful but

incorrect application of models will be misleading.

In the modern brain sciences, the most powerful models

are computational in nature. Researchers in computational

neuroscience draw on a wide range of disciplines and tools

with the aim of constructing formal mathematical models

of neurobiological and mental processes (Dayan and

Abbott, 2001). The relatively novel approach harnesses

these powerful computational methods and applies them

to psychiatric and neurological disorders (Maia and

Frank, 2011; Montague et al., 2012; Corlett and Fletcher,

2014; Friston et al., 2014; Stephan and Mathys, 2014). It

thus lies at the interface between computational and cogni-

tive neuroscience, psychology, and psychiatry/neurology.

But computational clinical neuroscience is by no means a

homogenous field: its models differ in their intended pur-

pose, the mathematical techniques employed, and the level

of explanation they seek, ranging from mechanistic or pro-

cess models of neural circuits to abstract normative models

of high-level mental function. Despite this heterogeneity,

however, the common hope and promise is that these

models will provide a deeper understanding of the neuro-

biological and mental processes that contribute to psychi-

atric and neurological disorders and, ultimately, be key to

progress in diagnosis and treatment.

While we share the growing enthusiasm for explicitly

modelling the processes of the mind, and their disruptions,

in mathematical and computational terms, we cannot help

but notice an evolving feeling of disorientation and puzzle-

ment in some observers of the field. In particular, there

seems to be a growing sense that computational psychiatry

in particular, while developing in several different direc-

tions at once, is making assertions that are often highly

mutable, opaque, and, paradoxically, given the intentions,

inexact. Here, therefore, we scrutinize afresh the general

nature of modelling and ask ourselves how we may deter-

mine whether our models are serving us or misleading us.

We begin by outlining what we consider to be the three

most important benefits of computational models in psych-

iatry, neurology and, indeed, clinical neuroscience gen-

erally: (i) enforcing rigour and precision in the

formalization of conceptual models; (ii) inspiring useful

new conceptualizations of known phenomena and provid-

ing a principled means of synthesizing disparate pieces of

evidence by helping to identify core principles of brain dis-

orders; and (iii) offering a means of bridging the gap be-

tween different levels of explanation all the way from basic

neurobiology to conscious experience of suffering. Such

powerful insights can, if generalized, offer profound new

ways to make predictions about the brain but the potential

benefits come with serious challenges, which we will high-

light. We will identify key principles and criteria, which,

though well known in the field of modelling, are easily

neglected with appreciable cost. By applying these prin-

ciples scrupulously, we argue, the researcher can harness

the power of the modelling approach while avoiding the

dangers of drawing unwarranted inferences.

The value of computational
models in understanding
brain function and
dysfunction
Below, we discuss three consequences of using computa-

tional models that we believe are most relevant for clinical

neuroscience, and illustrate these with a simple analogy in

Box 1 and Fig. 1.

Enforcing precision through
formalization

The formalization of existing conceptual models in math-

ematical terms is a way in which computational models

contribute to our understanding of processes in the mind

and brain. Formal models provide several important advan-

tages over purely conceptual ones. First, conceptual models

that are phrased exclusively in linguistic terms inevitably

carry a certain amount of vagueness and ambiguity, inde-

pendently of how advanced and detailed the technical ter-

minology used to express them. In the ideal situation, the

act of translating conceptual ideas into mathematical terms

enforces a rigorous and precise way of thinking that adds

specification to the conceptual model. It is particularly

useful in forcing the researcher to explicitly specify which

components are relevant (and which are irrelevant) and

how these components are related. Often this has the add-

itional benefit of helping to uncover implicit assumptions

that might remain unnoticed without such formalizations.

To illustrate, consider the experimentally measured ten-

dency of individuals with schizophrenia to sample less evi-

dence than healthy controls before reaching a decision

when confronted with a probabilistic, uncertain environ-

ment. Since its initial discovery (Huq et al., 1988), this

jumping to conclusions (JTC) bias has received a large

amount of attention (Fear and Healy, 1997; Garety et al.,

2005; Corcoran et al., 2008) as an interesting and in-

formative phenomenon in developing our understanding

of delusional thinking. A widely accepted hypothesis as-

sumes that the JTC bias reflects an expectation of high

costs for sampling new pieces of information. However, a

recent mathematical formalization that explicitly modelled

sampling costs as one of the variables underlying decision-

making suggests that this view, which implicates a differ-

ence in subjective motivational factors, is not supported by

a more carefully formalized model (Moutoussis et al.,

2011). Rather, the model indicates that noise in decision-

making is a key factor in the JTC bias. While the nature of

this noise and its precise alteration in delusions, is not yet

clear, it may be that it reflects neural noise, known to be a
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key factor in neural information processing and previously

ignored in the JTC. The key point here is that its import-

ance in explaining the JTC bias had been easily overlooked

until a quest for an explicit formalisation of the bias ruled

out an alternative view and demanded its consideration.

Another illustration of the usefulness of computational

models in shaping our understanding of brain disorders

comes from neurological work that evaluates the conse-

quences of lesions to brain areas involved in high-level

vision (Plaut and Behrmann, 2011; Behrmann and Plaut,

2012). Addressing the debate about whether visual recog-

nition is carried out in dedicated, category-specific modules

or general-purpose mechanisms, Plaut and Behrmann

(2011) constructed an artificial neuronal network of face

and word recognition. Rather than supporting either inter-

pretation—dedicated, category-specific modules versus gen-

eral purpose mechanisms—the simulation combines these

views and shows how a graded specialization of com-

puter-simulated brain areas emerges naturally as a conse-

quence of general computational principles. Without the

computational model, it would have been most likely

more difficult to clearly specify such a middle-ground solu-

tion to the debate. Importantly, based on this model, the

authors predicted a specific pattern of face and word pro-

cessing impairments in prosopagnosia and pure alexia,

which was subsequently confirmed empirically (Behrmann

and Plaut, 2012).

These examples illustrate the crucial heuristic value of

computational models and their use as a tool for structur-

ing our thoughts and explanations. It demonstrates how

readily computational formulations offer and encourage

an ever more detailed and quantitatively precise character-

ization of neurobiological, behavioural, and mental pro-

cesses, highlighting the potential importance of previously

ignored parameters, suggesting new experiments, and more

sophisticated explanatory frameworks. Such an iterative

process is likely to be crucial as neurology, neuropsych-

ology, and psychiatry strive towards a more mechanistic

understanding of symptoms. In psychiatry, this is particu-

larly important in helping to critically review its diagnostic

categorizations from the perspective of a dimensional ap-

proach to illnesses of the mind and brain (Montague et al.,

2012) (also see Box 2). The fact that existing diagnostic

categories group biologically heterogeneous syndromes,

with potentially different pathophysiological mechanisms,

into one disorder constitutes a real obstacle to developing

an understanding of the neurobiological underpinnings of

mental illness (Cuthbert and Insel, 2013). Explanations

based on computational models seek to go deeper than

current conceptualizations, with the aim of describing

these symptoms at lower levels, and thereby uncovering

potential mechanisms underlying symptom clusters inde-

pendent of diagnostic category. Thus, computational

models may be a necessary prelude to an improved classi-

fication system in psychiatry (Box 2).

Box 1 Benefits of computational modelling: a simple physical analogy

This example aims to illustrate what we might aspire to in developing our models of brain function with a simple analogy. In addition, it helps to

highlight the core principles of computational modelling and the perils of departing from them (Fig. 1).

Suppose that you are interested in training a runner. You want to know how good she currently is, how she compares to other athletes, whether she is

performing at her optimal level or could benefit from a training regimen and, if so, how this might best be structured. You might begin with a very

simple—but workable—conceptualization of her ‘fitness’, perhaps defined as how far she might run at a given speed and you might note that the more

your athlete runs, the fitter she gets. But, after a time, she reaches a point where there is no further improvement. Has she reached her limit? How

might a more formal, mathematically-informed approach help you to determine this and to find ways of producing further improvements?

(i) Developing rigor and precision

In setting up a more complex model of what makes good runners, you would gain important benefits. It would encourage you to identify more

precisely the key components (at multiple levels) of the act of running. You may come to see the relevance of the biomechanics of her running—such as

stride length and cadence—as well as muscle and fat distribution, cardiovascular markers and subjective factors such as pain and motivation. More

detailed measurements could provide markers for underlying metabolic processes—her maximal oxygen consumption and her lactate threshold as well

as microanatomical factors such as proportions of slow- and fast-twitch muscle fibres. Importantly, through mathematically modelling these variables

and, in particular, how they relate to each other, you have gained a much deeper understanding that might allow you to identify important, but

previously unconsidered, factors driving performance. The model provides too a more powerful tool to assess the impact of different training regimens.

(ii) A new conceptualization

The original simple conceptualization of fitness (maximum distance covered at a given pace) captures some aspects of the athlete’s ability but it only

indirectly captures her race performance. In drawing together the biomechanical, biochemical and physiological levels in a mathematical model you find

that a more useful conceptualization emerges, one that has much greater capacity to distinguish between runners. For example, her ‘running economy’

(Barnes and Kilding, 2015) (amount of oxygen consumed per kg per min), may be more suitable for your purposes, offering both a predictive measure

and one that you can focus on in improving her training.

(iii) Bridging the gaps

This new conceptualization, and the modelling process that generated it, provides a link across multiple levels of description of the act of running: the

biomechanical, the neuromuscular, the biochemical and the physiological. All factors may play a part, both separately and through their interaction, in

determining oxygen consumption per kg per min. Exploring its mathematically-defined relationships to changes at these many levels may offer new and

powerful ways to understand, assess, and, ultimately, change running performance.
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Shaping novel conceptualizations and
syntheses

Concepts derived from computational neuroscience have

often led to exciting new ways of thinking about estab-

lished phenomena in neuroscience more generally. For in-

stance, classic studies in visual neuroscience have shown

how notions derived from information theory (Shannon,

1948; McKay, 2003) can provide compelling functional ex-

planations of the specific structure of receptive fields in

many peripheral visual systems (Srinivasan et al., 1982)

or the shape of transfer functions in early visual neurons

(Laughlin, 1981). Moreover, the application of computa-

tional methods has often helped to synthesize disparate

phenomena within a common explanatory framework.

One remarkably successful and classic example of such a

synthesis comes from Rao and Ballard (1999), who demon-

strated that a simulation based on a predictive coding

scheme inspired by information theory reproduced a

number of known receptive field effects. As well as showing

the power of feedback modulations in the encoding of nat-

ural images, this model has been enormously influential in

shaping ensuing experiments—and their interpretations—in

visual neuroscience and beyond. It gives a glimpse of the

unifying potential of computational modelling, a potential

that has played a part in inspiring a remarkable growth in

the use of such models in our attempts to understand brain

dysfunction.

In psychiatry, Fletcher and Frith (2009) recently provided

an integrated account of positive symptoms in

Figure 1 The importance of specifying both the purpose of a model, and the mapping between the model components and

aspects of the ‘real world’. Here, we illustrate the importance of two principles of modelling using the running analogy from Box 1. It is

tempting, when we have identified a reliable measure, one that seems to capture the essence of what we are trying to characterize and that has

predictive value, to make it generally applicable. We may forget or ignore both the elements of the world that we are not including in our model

and, furthermore, the ways in which the components that we are modelling may map to the real world. The figure illustrates how we might use

‘Running Economy’ (the volume of oxygen consumed at steady state running) as described in Box 1 as a predictor of race performance. Having the

figures for oxygen consumption on two athletes allows a direct comparison of how they are likely to fare in competition. Indeed, even if the

measurements were obtained at a range of speeds and on different terrain, the measures may be comparable. Running economy serves as a good

model of running ability. But, as indicated in the figure, it only fulfils this purpose within predefined constraints. For example, it is standard to

measure running economy at a pace that is below that at which a person is near their lactate threshold (the point at which oxygen consumption

cannot keep up with demand) and therefore the model is inadequate if we wish to judge running ability for shorter distance sprints in which lactate

levels are highly relevant (Billat, 1996). Here the mapping between the model and reality has gone wrong because the model is applied for a setting

where its assumptions are no longer relevant or valid. Unless we are explicit about our mapping between model components and reality and the

working assumptions that justify it, our model will ultimately lead us astray. Such error lies not in the model but in how it is used. It should also be

noted that running economy, even when applied under restricted and appropriate circumstances, emerges from a number of complex, interacting

factors that are individually ignored, though each contributes to the overall measure (indicated by straight black arrows). This is not a problem

when running economy is being used for the purpose of predicting running performance but it may become very important if we are using our

model for a different purpose, for example to decide on the best training regimen to improve performance. At this point, the value of the model is

much more influenced by the factors that were previously only an implicit part of the model. Two athletes may have limitations in their running

economy for very different reasons, one due to biomechanical inefficiency arising from flaws in her posture or stride rate, another due to

cardiovascular inefficiency. Each would be rectified by distinct training regimens (as indicated by blue, dotted arrows), which could not be chosen

merely on the basis of running economy. It is the purpose of the model that specifies which components of reality need to be modelled and in how

much detail.
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schizophrenia—hallucinations and delusions—based on

ideas derived from computational neuroscience.

Conceptual models of schizophrenia have largely treated

perception and belief as arising from distinct processes; it

has consequently been hypothesized that hallucinations and

delusions are caused by abnormal perceptual processing

(Maher, 1974), abnormal belief formation (Huq et al.,

1988), or both (Coltheart, 2007). Based on concepts origi-

nating in Bayesian decision theory (Chernoff and Moses,

1959; Berger, 1985; Young and Smith, 2005), and earlier

work implicating prediction error in the emergence of de-

lusional beliefs (Corlett et al., 2007), Fletcher and Frith

(2009) suggested a synthesis of these explanations, arguing

that the unusual perceptual experiences and beliefs in

psychosis can be explained by one core atypicality,

namely a shift in the balance of Bayesian inference within

a hierarchically-organized information processing system.

By identifying a core principle, the model offers a parsimo-

nious explanation for the co-occurrence of hallucinations

and delusions as well as the fact that hallucinations and

delusions are often not clearly distinct from each other.

Moreover, it provides a common framework for under-

standing the emergence of positive symptoms from various

different perspectives, linking levels of explanation that

range from basic neurobiology to the individual phenom-

enology of suffering (see next section).

In this case, ideas derived from computational neurosci-

ence—a multi-level, hierarchical predictive processing

system—militate against a simplistic distinction between

perceptual experience and belief and, by extension, the

dichotomization of positive symptoms into hallucinations

and delusions. Moreover, the model offers encouragement

to move away from static characterizations of symptoms,

suggesting rather that we must consider a dynamic balance

in which prior knowledge is used to make sense of incom-

ing sensory information, which either accords with or chal-

lenges that prior knowledge. This informational

conversation occurs over time and at multiple levels with

the overall system acting in pursuit of optimal predictions.

The same core disturbance can thus give rise to different

symptoms depending on the hierarchical level, at which it

expresses itself. For instance, Teufel and colleagues (2015)

have recently shown that, in both early psychosis and

psychosis-proneness, there is a tendency for visual process-

ing of ambiguous stimuli to show increased reliance on

prior knowledge. While this finding is specific to atypical

perceptual experiences rather than psychosis in general, the

authors point out that such an effect, measured at one level

of processing and one point in time, is likely to propagate

up and down the hierarchy, inducing changes to inference

systems at other levels in the brain. This growing and in-

creasingly influential way of thinking about psychosis

(Aleman et al., 2003; Corlett et al., 2009; Fletcher and

Frith, 2009; Chambon et al., 2011; Adams et al., 2013;

Schmack et al., 2013; Jardri and Denève, 2014; Teufel

et al., 2015; Fineberg and Corlett, 2016) is partly inspired

by new ideas emerging during the search for overarching

neurocomputational models.

Bridging the explanatory gap

A widely held but contentious notion is that computational

techniques might allow researchers to link various levels of

explanation of mental illness ranging from basic neurobio-

logical systems to the phenomenology of specific symptoms

(Huys et al., 2011; Maia and Frank, 2011; Montague

et al., 2012; Friston et al., 2014). While different levels of

explanation may be independent, as most famously high-

lighted by David Marr (1982), the hope is that computa-

tional models nevertheless will help to constrain and link

descriptions at various levels. This linking of multiple levels

of explanations will be critical in assessing different risk

factors and their interaction in psychiatric illness

(Kendler, 2012), and, while advances so far in this regard

are still speculative and incomplete, the potential for real

progress is there.

As an example, there is a long tradition linking features

of schizophrenia to basic associative learning. In this form

Box 2 Computational modelling giving new perspectives on diagnosis and treatment

One of the most profound challenges facing psychiatry is its reliance on a diagnostic system that is both widely distrusted and criticized and, at the same

time, forms the basis for most research and clinical practice (Cuthbert and Insel, 2013). The central problem is that diagnostic categorizations are based

on phenomenological similarity, often expressed at the level of perception, belief and emotion. Consequently, there is a danger that superficially similar,

but fundamentally different dysfunctions may be grouped together under one category while some categorical distinctions might be based upon

superficial differences that do not actually reflect underlying differences in pathology. The conundrum is reflected in the fact that many researchers

and clinicians now challenge the idea that schizophrenia meaningfully refers to a particular group of people (van Os, 2016) while, conversely, the long-

treasured distinction between schizophrenia and affective disorder is increasingly questioned (Kendell and Jablensky, 2003).

Only through more precise characterizations of mental and brain function can we begin to converge on mechanisms that may allow us to distinguish

between conditions that, despite superficial similarity, are actually fundamentally different. And it is only through identification of such mechanisms that

we can avoid the creation of false distinctions between conditions that, though superficially distinct, are actually overlapping. The three benefits of the

computational approach identified in the text and exemplified in Box 1 therefore become powerful allies in the pursuit of a credible diagnostic system.

To return to the simple running analogy in Box 1, it is easy to see how two runners may show similar levels of fitness or unfitness for different reasons,

and how differences in current fitness might not reflect differences in core abilities. Only through more precise modelling of the underlying factors is it

possible to understand how superficial resemblance may disguise lower level distinctions.
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of learning, knowledge acquisition is thought to be driven

by so-called prediction errors, i.e. the difference between

expected and actually experienced rewards. Of equal im-

portance, schizophrenic symptoms have been linked to

dopaminergic dysfunction (Kapur, 2003). The formaliza-

tion of associative learning in terms of computational

models derived from machine learning (Sutton and Barto,

1998) has been instrumental in relating these two levels of

explanation (Montague et al., 1996). In particular, they

provided the tool to link the formation of delusions to

atypicalities in phasic dopamine via the prediction error

signal that drives learning. For instance, computational

models enabled researchers to relate psychotic symptoms

in an animal model to dopaminergic neurons down to the

receptor level (Smith et al., 2007) and, using functional

MRI in psychotic patients, to abnormal activity in dopa-

minergic neurons in mesolimbic brain structures (Murray

et al., 2008). Moreover, a series of complementary studies

(for reviews see Frank, 2008; Maia and Frank, 2011),

drawing on the advantages of different approaches (cogni-

tive tasks, exploration of patients with known dopamine

dysfunction, functional perturbations using deep brain

stimulation and pharmacological manipulations) have

demonstrated the links between dopaminergic neuronal

populations, regional brain responses, precise cognitive

functions and neuropsychiatric symptoms. Critically, these

studies explored links suggested by, and hypotheses based

on, computational reinforcement-learning models.

Another powerful example of how the key attributes of

computational modelling may be harnessed to provide both

a new conceptualization and an opportunity for multi-level

explanatory insights, ultimately applicable to understanding

neurological dysfunction, is seen in the work of Ueno and

colleagues (2011). Synthesizing a series of existing compu-

tational models, they applied known neuroanatomical con-

straints to generate a mapping between computational

processing and brain anatomy. The ensuing ‘fusion of

neuroanatomy and computation’ provided a new conceptu-

alization with remarkable capacity to shed light on both

normal language function and aphasia.

Challenges
Though we recognize the huge potential offered by apply-

ing computational models to the study of mental and

neurological illness and we share the growing enthusiasm

for the field, there is a danger that these models obscure

rather than clarify, and that they may form the basis for

assertions that are frustratingly mutable and inexact.

Consider for example, the application of Bayesian models

to understanding hallucinations. Bayesian models are one

way of formalizing the notion that our perceptual experi-

ence is the result of a combination of sensory evidence with

prior knowledge and expectations of our environment.

There is a growing body of empirical research that supports

the idea that this framework is a useful tool to understand

hallucinations. Yet, the general notion underlying Bayesian

models has been invoked to support several profoundly

different conceptualizations of how hallucinations may

arise. First, an increased weighting of prior expectation in

perception, such that expectations generate inaccurate per-

cepts (Friston, 2005b; Corlett et al., 2009; Fletcher and

Frith, 2009; Frith and Friston, 2013; Teufel et al., 2015),

second, a reduction in the relative weighting of prior ex-

pectation such that it is the relatively stronger bottom-up

signal that generates the aberrant percept (Adams et al.,

2013), and finally, a circularity in inferential processing

such that a lack of inhibitory control generates a reverber-

ating effect: an expectation enhances a signal which then

acts as additional evidence in favour of that expectation

(Jardri and Denève, 2013, 2014). While some of these

models might not be mutually exclusive, clearly, a compu-

tational framework that is able to encompass such differing

possibilities needs close scrutiny.

A related illustration of the difficulties facing the compu-

tational approach to neuropsychiatric illness comes from

work attempting to relate high-level Bayesian models of

brain function to processes at the neuronal level. Under

certain specific but plausible assumptions, Bayesian

models find a natural implementation in predictive coding

schemes. In its original form, predictive coding provides a

functional theory of perceptual processing located at an

intermediate level between low-level mechanistic models

and high-level explanations (Spratling, 2008a, b, 2013;

Huang and Rao, 2011). More recently, some authors

have embarked on a further step, treating predictive

coding schemes as mechanistic models of information pro-

cessing in the brain more generally (Friston, 2005a). This

perspective has been adopted in some models of psychotic

experiences (Adams et al., 2013), perhaps offering the

exciting possibility of making assertions about their precise

neural instantiation. Here, based on a specific conceptual-

ization of predictive coding, psychotic symptoms are

thought to be a consequence of abnormal neuromodulation

of post-synaptic gain of superficial pyramidal cells. This is

an admirably precise and specific assertion and it depends

on a correspondingly precise conceptualization of predictive

coding. However, given that predictive coding is a func-

tional scheme, other conceptualizations are possible

(Spratling, 2013; Kogo and Trengove, 2015). Indeed, it

has been demonstrated that an alternative predictive

coding model that, in some respects, is based on the op-

posite assignment between mathematical concepts and

neurobiological implementation is not only mathematically

equivalent to the model mentioned above but is well-sup-

ported by empirical data (Spratling, 2008a,b, 2010).

The above example simultaneously illustrates the promise

of the computational approach to clinical neuroscience and

the challenges inherent in the move towards drawing to-

gether a theory (Marr’s computational level) and a specific

implementation of that theory (Marr’s physical level)

(Marr, 1982). The promise lies in the opportunity to ex-

plore computational ideas in terms of their neural
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mechanisms and the challenge is to avoid overburdening a

model with interpretations that it cannot unambiguously

support. Computational neuroscience offers us the tools

and the framework to identify and resolve the discrepancies

and ambiguity that the approach itself throws up.

However, in order for the field to advance, it will be critical

not to stretch the explanatory power of models beyond a

certain point. This brings us back to the importance of

being clear on what the purpose of our specific models is,

which components of reality we are choosing (and neglect-

ing) in building them, and in what sense the components of

the model represent reality.

A principled approach
In its ideal form computational modelling provides novel

and powerful tools to shed light on information-processing

atypicalities in neurological and mental illness. However,

the approach also comes with difficulties and ambiguities.

We suggest that many pitfalls could be avoided through use

of two relatively simple and well-established, but often neg-

lected, principles of modelling (Bender, 1978). The first is

that it is vital to specify clearly the purpose of a model and

its role in the explanatory process (Fig. 1). For instance,

normative optimality models that can act as a benchmark

against which to compare human performance, of course,

serve a different purpose from mechanistic models of

neurobiological or mental processes, or simulations that

are supposed to provide a proof of principle (Maloney

and Mamassian, 2009). An important aspect of the process

of clarifying a model’s purpose is a specification of the level

of explanation or description at which the model represents

reality. Second, and very closely related to the first point, is

the importance of an explicit treatment of the mapping

between mental or neurobiological process and

mathematical concept (Fig. 1). It is important to note

(Box 3) that we distinguish between a model being wrong

in useful and in useless, or misleading, ways. A model need

not be right (or indeed complicated) to be useful nor should

it be constrained to such a degree that it cannot be used to

generalize and predict beyond the confines of its initial ap-

plication. However, its use must always align with the

question or purpose that it is used for, and its relevance

must be continuously evaluated. Only if it is very clear

which mathematical concept ‘stands for’ which aspect of

reality, can the validity of the model truly be assessed. In

particular, the mathematical concepts need to be carefully

chosen in such a way that they capture those aspects of

reality that are essential to the chosen purpose of the

model. Ultimately, the usefulness of a computational

model is limited by how meaningful the relationship is be-

tween linguistically expressed concepts of reality and math-

ematical terms.

Concluding remarks
The use of computational models to understand brain func-

tion and its disruption is an exciting development. It prom-

ises to provide insights, in unprecedented detail, to

psychological and neurobiological subsystems that go

awry in disorders of the mind and brain, laying the foun-

dation for the development of novel diagnostic systems and

treatments that accurately reflect underlying causes. But the

approach carries too the power to mislead and a mature,

and ultimately successful use of computational models re-

quires a detailed appreciation of their strengths and limita-

tions as well as the simple principles that govern this use.

Foremost, we must repeatedly ask ourselves, what are we

modelling, how do our model components relate to reality

and, crucially, what are we leaving out?

Box 3 Simple, general, and breakable: three useful properties of a good computational model

Good computational models are often simple. To be useful in the generation of explanations, models have to reach beyond the confusing diversity of

reality and identify key causal components. Indeed, the process of simplification is itself useful. The act of choosing which parts of reality to include and

which to exclude demands that the modeller is explicit about the model’s assumptions and limitations. Though computational modelling should strive

for specificity and precision, detailed and isolated explanations of specific phenomena may ultimately impose a serious limit on the value of the model.

Rather, one of the main strengths of computational models is their usefulness in uncovering deep organizational principles of a system, achieved by

balancing simplicity with situation-specific accuracy.

The process of simplification thus embodies a quest for more universal principles that extend beyond the current situation. It thereby furthers the

development of an explanatory framework that generalizes across, and provides prediction of, a whole range of phenomena. Such generalization is of

course a hallmark of a successful model. It is important to keep in mind, however, that the process can easily become misleading when a successful

model is applied to new domains without a detailed evaluation of its applicability. Thus, in addition to seeking the balance between simplicity and detail,

we advocate a specific and precise treatment of the relationship between the model’s components and to-be-modelled aspects of reality, and of the

model’s purpose in the explanatory process.

A focus on specificity and precision also does not mean that models should be abandoned if they are unsuccessful. Rather, failures should provide the

impetus for an iterative process of updating, leading to novel experiments and further model development. It may be profoundly useful and informative

for a model to break. Note that only a model that can make specific, testable prediction will be breakable. As with conceptual models, inadequately

specified computational models may bend themselves, appearing to fit a wide range of data and, in doing so, become devoid of the attributes that

ultimately make models useful.

2606 | BRAIN 2016: 139; 2600–2608 C. Teufel and P. C. Fletcher



Funding
This work was funded by the Wellcome Trust and the

Bernard Wolfe Health Neuroscience Fund.

References
Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ. The

computational anatomy of psychosis. Front Integr Neurosci 2013;

4: 1–26.
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