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Past-future information bottleneck for sampling
molecular reaction coordinate simultaneously
with thermodynamics and kinetics

Yihang Wang® ', Jodo Marcelo Lamim Ribeiro? & Pratyush Tiwary?

The ability to rapidly learn from high-dimensional data to make reliable bets about the future
is crucial in many contexts. This could be a fly avoiding predators, or the retina processing
gigabytes of data to guide human actions. In this work we draw parallels between these and
the efficient sampling of biomolecules with hundreds of thousands of atoms. For this we use
the Predictive Information Bottleneck framework used for the first two problems, and
re-formulate it for the sampling of biomolecules, especially when plagued with rare events.
Our method uses a deep neural network to learn the minimally complex yet most predictive
aspects of a given biomolecular trajectory. This information is used to perform iteratively
biased simulations that enhance the sampling and directly obtain associated thermodynamic
and kinetic information. We demonstrate the method on two test-pieces, studying processes
slower than milliseconds, calculating free energies, kinetics and critical mutations.
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key contributor to the rich and diverse functioning of
molecular systems is the presence of myriad possible
configurations. Instead of simply staying in the ground
state, a given system can adopt one of many metastable config-
urations and stay trapped there for extended periods. It has been
a long-standing dream to apply all-atom molecular dynamics
(MD) simulations to learn what these metastable states are, their
thermodynamic propensities, pathways for moving between
them, and associated kinetic constants. However, there have been
two central challenges in this: (a) the large number of states and
pathways for traversing between them and (b) the inherent rare
event nature of transition between states, wherein a simulation
would simply be trapped in whichever metastable state it was
started in. While multiple sampling methods! and even ultra-
specialized supercomputers? have been introduced for tackling
this timescale problem, the problem is not fully solved. For
instance, a large class of sampling methods need an a priori sense
of a reaction coordinate (RC), which is a low-dimensional sum-
mary of the many configurations and pathways3~7. However, this
leads to an inherent coupled problem where one needs extensive
sampling of rare events to learn the RC, but also needs to know
the RC in the first place to perform sampling.

To address this problem, our ansatz is that efficient sampling of
energy landscapes of molecular systems has the same key
underlying challenge as one faced by a fly as it goes about sur-
viving®, or the human brain trying to process how to catch a
moving baseball®. Namely, given limited storage and computing
resources, which memories to preserve and which ones to ignore
in order to be best prepared for various possible future chal-
lenges? This can be paraphrased as the ability to rapidly learn a
low-dimensional representation of a complex system that carries
maximal information about its future state. Since storing and
processing large amounts of information can be computationally
and thus energetically expensive for the brain, it has been sug-
gested that neurons in the brain separate predictive information
from the non-predictive background in a way that by encoding
and processing a minimum amount of relevant information, the
brain can still be maximally prepared of future outcomes. The
past—future (or predictive) information bottleneck framework
introduced and developed in many forms3-!! involves imple-
menting such neuronal models from an information theoretic
basis that can originally be traced back to Shannon’s rate dis-
tortion theory.

Here we interpret the RC in molecular systems as such a
past-future information bottleneck!?. We develop a sampling
method for small biomolecules that, simultaneously and with
minimal use of human intuition, esitmates this bottleneck, its
thermodynamics, and its kinetics. The central idea is that not all
features of the past carry predictive value for the future. A
complex model can be made to be very predictive; however, it will
often obscure physical interpretability and also end up capturing
noise. In order to address this task, we set up an optimization
problem and demonstrate how to solve it through the principle of
variational inference!? implemented through deep neural net-
works. This makes it possible to estimate a predictive information
bottleneck (PIB)!!, which we interpret as the RC that, given a
molecule’s past trajectory, is maximally predictive of its future
behavior. Our net product is an iterative framework on the lines
of ref. 13 that starts from a short MD simulation, and, given these
data, makes an estimate of the RC, its Boltzmann probability, and
its associated causal Green’s function valid for short times. This
information is leveraged to perform systematically biased simu-
lations with enhanced exploration of phase space, which can then
be used to re-learn the RC along with its probability and pro-
pagator, and iterating between MD and variational inference until
optimization is achieved. At this point, we have converged

estimates of the most informative degrees of freedom, associated
metastable states, and their equilibrium probabilities. Finally,
through the use of a generalized transition state theory-based
framework on the lines of ref. 14, we recover the unbiased kinetics
for moving between different metastable states.

We first demonstrate the method on sampling a small peptide.
We then apply it to a problem of immense relevance, by calcu-
lating the full dissociation process of benzene from L99A mutant
of the T4 lysozyme protein!>1°. In the last system, with the use of
all-atom MD simulations taking barely a few hundred nanose-
conds in total, and with the minimal use of prior human intuition
as in other related methods, we obtain accurate thermodynamic
and kinetic information for a process that takes few hundred
milliseconds in reality. Our simulations shed light on the complex
interplay between protein flexibility and ligand movement, and
predict the residues whose mutations will have the strongest effect
on the ligand dissociation mechanism. We believe our approach
marks a big step forward in the use of fully-automated all-atom
simulations for the study of complex molecular and biomolecular
mechanisms.

Results

Principle of past-future information bottleneck. We formalize
this problem in terms of a high-dimensional signal X character-
izing the state of a N-particle system under some generic set of
thermodynamic conditions. We take X as some d generalized
coordinates or basis set elements, where 1 << d < N. Let the value
of this signal measured at time ¢, or the past, be denoted by X; and
at time t + At, or the future by X, »;. We call At the prediction
time delay. We assume that X, and X, , 5, are jointly distributed
as per some probability distribution P(X;, X; »,). The mutual
information I(X,, X, ;) (Supplementary Notes 1 and 2 for this
and other definitions) quantifies how much an observation at one
instant of time t can tell us about an observation at another
instant of time ¢ + At. Furthermore, in this article we restrict our
attention to stationary systems; hence, we omit the choice of time
origin and write down X; as X and X, ; 5, as X,,. The principle of
PIBI011 postulates a bottleneck variable y, which is related to
X by an encoder function P(x|X). Given the bottleneck variable
x> predictions of the future X,,; can be made with a decoder
P(Xadx). PIB says that the optimal bottleneck variable is one
which is as simple as possible in terms of the past it needs to
know, yet being as powerful as possible in terms of the future it
can predict correctly. This intuitive principle can be formally
stated through the optimization of an objective function £, which
is a difference of two mutual informations:

L=1(x,Xp) = YI(X, x)- (1)

The above objective function quantifies the trade-off between
complexity and prediction through a parameter y € [0, oo).

Variational inference and neural network architecture. Typi-
cally, both the encoder P(y|X) and the decoder P(Xxx) can be
implemented by fitting deep neural networks!” to data in form of
time-series of X. Our work stands out in three fundamental ways
to typical implementations of the information bottleneck prin-
ciple and in general of artificial intelligence (AI) methods to
sampling biomolecules!'8-21. First, we use a stochastic deep neural
network to implement the decoder P(Xay), but use a simple
deterministic linear encoder P(x|X) (see Fig. 1). The simple
encoder ensures that the information bottleneck or RC we learn is
actually physically interpretable, which is notably hard to achieve
in machine learning. On the other hand, by introducing noise in
the decoder, we can control the capacity of the model to ensure
that the neural network can delineate useful feature from useless
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Fig. 1 Network architecture used for learning predictive information
bottleneck y. The decoder Q(Xa¢ly) is a stochastic deep neural network,
while the encoder P(y|X) is of a simple deterministic and thus directly
interpretable linear form

information instead of just memorizing the whole dataset. Sec-
ond, now that our encoder is a simple linear model, we com-
pletely drop the complexity term in Eq. (1) and set y = 0. Due to a
reduced number of variables, this leads to a simpler and more
stable optimization problem. Finally, the rare event nature of
processes in biomolecules makes it less straightforward to use of
information bottleneck/AI methods for enhanced sampling. Here
we develop a framework on the lines of ref. 13, which makes it
possible to maximize the objective function in Eq. (1) through the
use of simulations that are progressively biased using importance
sampling as an increasingly accurate information bottleneck
variable is learnt.

Our typical starting point is an unbiased MD trajectory X =
(X1, ..., XM} with M data points. We want to develop a low-
dimensional mapping x of this high-dimensional space, which
maximizes the objective function £ = I(x(X),X,,). At the heart
of this mutual information lies the calculation of the decoder P
(Xafx), which can in principle be done exactly using Bayes’
theorem (Supplementary Note 1). However, this becomes
impractical as soon as the dimensionality of X increases, due to
a fundamental problem in statistical mechanics and machine
learning: intractability of the partition function in high dimen-
sions?2. The principle of variational inference is an elegant and
powerful approach to surmount this problem?3.

Let us consider a generic encoder given by some conditional
probability Py(x|X), where 0 is a set of parameters. Our objective
then is to find the optimal RC or equivalently, the encoder 6 that
optimizes the PIB objective:

0" = argmax,L(0). (2)

As mentioned above, this optimization problem is intractable for
almost all cases of practical interest. However, it is possible to
perform an approximate inference problem by assuming an
approximate decoder Qg(Xa|x) parametrized by the vector ¢. For
any choice of ¢, we make a straightforward use of Gibbs’
inequality!? to write down (Supplementary Note 2):

I(x, Xp) = H(Pp(Xy,)) — H(Py(Xalx))
> H(Py(Xy,)) = C(Py(Xar 1)1 Q¢ (Xarlx))-

Here H and C denote Shannon entropy and cross entropy,
respectively. Take note that the first term in Eq. (3) is
independent of our model parameters and hence can be
completely ignored from the optimization. Focusing on the
second term in Eq. (3), we thus obtain a variational lower bound

(3)

on the PIB objective function:
L= L= —C(Py(Xu 0)IQy(Xarlx))- (4)

Thus, £’ is a tractable lower bound bound to the true PIB
objective function £, which involves a variational approximation
through the trial decoder parametrized by ¢. It has a simple
physical interpretation. We are attempting to learn a decoder
probability function Q that mirrors the actual Bayesian inverse
probability function P in terms of predicting the future state Xy,
of the system, given the knowledge of the RC y. The difference
between the two probability distributions is calculated as a
cross-entropy. By maximizing the right-hand side of Eq. (4)
simultaneously with respect to the decoder and encoder
parameters ¢ and 0, respectively, we can then solve the actual
optimization problem posited in Eq. (4) rigorously and identify
the optimal RC.

It is clear that a model of a dynamical system X that attempts
to capture just its stationary probability P(X) will be less
informative and useful than one that captures the joint past-
future probability distribution P(X, Xa,). This is simply because
the stationary probability can always be calculated by integrating
P(X, X, over future outcomes X,,. What is however less clear is
the choice of the time-delay At?. In biomolecular systems, it is
likely that there will be a hierarchy of time scales and thus time
delays relevant to different types of structural and functional
details. In principle, our formulation allows us to probe these
various time delays in a systematic manner. Here, for the purpose
of enhanced sampling, we propose an approach for selecting At
that is rooted in the reactive flux formalism of chemical
kinetics?4-26. This formalism applies to any system with
stochastic transitions on a network of microstates with arbitrary,
complex connectivity. Summarily, it states that the correlation
function for a trajectory’s population in any given state can be
partitioned into three parts: (a) an initial inertial part, (b) an
exponential decay, and (c) an intermediate plateau region
between (a) and (b). A key insight from this formalism is that
capturing (c), that is, the plateau part of a system’s state to state
dynamics accurately is necessary and sufficient to capture the
temporal evolution at any timescale. By paraphrasing this
argument in the context of the present work, we propose to
learn our PIB model for gradually increasing values of the
predictive time-delay At, and stop when the calculated bottleneck
variable converges.

Variational inference on unbiased and biased trajectories. We
now show how to calculate £’ in practice. For a given unbiased
trajectory {X!, ..., XM *k} with large enough M, we can easily
show (Supplementary Note 2):

1 M
L= log QX" |y, (5)
n=1

where y" is sampled from P(y|X") and the time interval between
X" and X"tk is At. For practical rare event systems, however, a
typical MD trajectory will be trapped in the state where it was
started. Here we use our current best estimate of the PIB to
perform importance sampling of the landscape, so that the system
is more likely to sample different regions in configuration space,
and use this enhanced sampling to iteratively improve the quality
of the RC. However, the data so generated is biased per definition,
and we need to reweight out the effect of the bias. We suppose
that along with the time series {X!, ..., XM * k}, we also have been
provided the corresponding time-series for the bias V applied to
the system {V1, ..., VM+K}. We can then use the principle of
importance sampling?’ to write our PIB objective function £’ as
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follows (Supplementary Note 2):

M -1y
ﬁL{Z”q'ZW%wmmfx (©
n=1 =

n=1

where f§ is inverse temperature. The above equation is however
approximate, as it assumes Ppizeed(X"  X|x") = Punpiasea(X" T X|x™).
This is exact as At—0, and can be expected to be reasonably valid
for small At, where we expect that the system on average would
not have diffused too far from its starting position at the begin-
ning of that interval. If the bias varies smoothly enough that its
natural variation length scale is smaller or comparable to this
diffusion distance, then for small enough At we can indeed make
the aforementioned approximation. This means that we select the
smallest possible At at which the RC estimate plateaus.

Patching it all. We now state our complete sampling algorithm,
which accomplishes in a seamless manner the identification of the
RC together with the sampling of its thermodynamics and
kinetics. The first step is to perform an initial round of unbiased
MD. This trajectory, expressed in terms of d order parameters
{s1, ..., s4} (where 1 < d<N), is fed to a deep learning module
(Fig. 1). The deep learning module implements the optimization
of £ in Eq. (6) through the use of multi-layer feed-forward
neural network for the stochastic decoder Q, and a physically
interpretable linear map for the deterministic encoder P (Fig. 1).
Unlike the decoder, the encoder has no noise term and always
maps {s1, S5, ..., S} to > ¢;s;, where {c;} denote the weights of

different order parameters. We perform this optimization for
gradually increasing values of the predictive time-delay At, and
estimate RC y (given by the values of the weights ¢;) as seen by the
first plateau in terms of when it ceases to depend on choice of At.
This value of At is then kept constant for different rounds of our
protocol. At this point, we have an initial estimate of y and also its
unbiased probability distribution P%(y). These are both used to
construct a bias potential Vi,;,s(x) for the next iteration of MD:

Viias(X) = kT log P*(x), (7)
where kg is Boltzmann’s constant and T = Klﬁ With this bias

potential added to the original Hamiltonian of the system, we run
a biased MD simulation. This explores an increased amount of
configuration space since we have applied a bias along our esti-
mated slow degree of freedom, viz. the PIB or the RC. This next
round of MD trajectory is again fed to the deep learning module,
but this time each data point carries a weight w = e to
compensate for the applied bias. This now identifies an improved
RC y and its unbiased probability through the use of importance
sampling:

(WOl = KOy _ ey
(W) - " ®)

where the subscript b denotes sampling under a biased ensemble
with weight w = eVs= and F(y) is the free energy along y. From
here, using the bias as —F(x) our algorithm can now enter into
further iterations of MD-deep learning-MD-... This looping
continues until both the RC y and the free energy estimate F(x)
along the RC have converged. We have thus obtained an opti-
mized RC and its Boltzmann probability density, or equivalently
the free energy. Through these we can directly demarcate the
relevant metastable states and quantify their relative propensities.
Furthermore, we can also calculate the transition rates for moving
between these metastable states. The central idea is to keep all
transition states between the different metastable states, as iden-
tified through the RC, devoid of any bias. As we show in exam-
ples, this can be easily achieved when implementing Eq. (8), by

P*(x) o

ensuring that any barriers in the unbiased probability distribution
of the estimated RC are completely bias-free. Once we have done
this, we take into account that by virtue of it being the PIB, the
RC already encapsulates any relevant, predictive modes in the
system. Thus, the hidden barriers, which have invariably been
corrupted through the addition of such a bias, do not have any
predictive power for the dynamics of the system, and are thus not
relevant to the process at hand. This then implies that (i) the
biased dynamics preserves the state-to-state sequence one would
have seen with unbiased dynamics, and (ii) through the use of a
simple time rescaling calculation!4?8 (Supplementary Note 1) we
can calculate the acceleration of rates achieved through biased
simulations. Finally, we can perform self-consistency checks for
the reliability of the rescaled kinetics by analyzing the unbiased
lifetimes for robustness with precise choice of biasing protocols
(Supplementary Fig. 1). We now demonstrate the use of the PIB
framework with two biomolecular case studies, in both of which
we simultaneously learn the RC, free energy, and kinetic rate
constants. In each case, the RC x is constructed as a linear
combination y = Y ¢;s;, where {c;} denote the weights of different

1
pre-selected order parameters {s, s,, ..., S4}.

Conformation transitions in a model peptide. First we consider
the well-studied alanine dipeptide system (Fig. 2a). This system,
as characterized by its Ramachandran dihedral angles, can exist in
different metastable states with varying stabilities and hard-to-
cross intermediate barriers. However, due to its small size it serves
as a reliable benchmark where we can perform longer than
microsecond unbiased MD simulations to benchmark our PIB
calculations.

Here we choose {cos¢, sin¢, cosy, siny} as our order
parameters, where ¢ and y are the backbone dihedral angles. By
taking trigonometric functions of dihedral angles, we avoid
problems related to periodic boundary conditions. The PIB
protocol used here is shown in Fig. 2. In the initial round, we
perform a short unbiased MD simulation (see Fig. 2a for
trajectory and Supplementary Methods for technical details). As
discussed in Methods, the RC is then determined as the linear
encoder of the trained neural network with smallest loss function.
In Fig. 2b, we show how the weights rapidly converge as functions
of predictive time delay and reach a plateau in <2 ps, which we set
as At. Figure 2c shows the RC y as well as the bias V() learnt
along it to be used in the next round of MD. With this biasing
potential, we perform biased MD simulation as shown in Fig. 2d.
This trajectory through the use of Eq. (8) leads to a more
complicated bias structure as shown in Fig. 2e along with the
improved RC y. Biased simulation with this new RC and bias as
shown in Fig. 2f finally leads to escape from the starting
metastable state. The final obtained RC is: y=0.02cos ¢ +
0.97sin ¢ — 0.25cos y — 0.02sin y. It is known for alanine dipep-
tide that ¢ is more relevant than y for capturing the
conformational transitions, and our PIB-based RC estimate
agrees with that. The shift in weights of order parameters across
different rounds (Supplementary Fig. 5) reflects how our iterative
scheme finds the optimal RC.

Now that we have achieved back-and-forth motion in terms of
the rare event we intended to study, we use this final RC and bias
to perform multiple sets of longer simulations with no further
refinement of the RC. This yields the free energy surface (defined
as —kpTlogP(¢, y), where P is the unbiased Boltzmann
probability) as shown in Fig. 2g. This is in excellent agreement
with previously published benchmarks for this system?’. At the
same time, we use the acceleration factor to rescale the biased
time back to the unbiased time. In Fig. 2h we show the cumulative
distribution functions of the first passage time from the deeper
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Fig. 2 Past-future information bottleneck framework results on alanine dipeptide. a Unbiased simulation trajectory for dihedral angles @ and ', in blue
triangles and orange pluses, respectively. The alanine dipeptide molecule is shown in inset. b Absolute weights for different order parameters in the first
training round as a function of the predictive time delay At. Blue triangles, orange triangles, green circles, and red squares correspond to cos ¢, sin ¢, cos v,
and siny, respectively. c-f Free energy along the adaptively learnt reaction coordinate (RC) along with the corresponding biased trajectories for different
training rounds. g Free energy along ¢, w after the RC has converged with energy contours every 4 kJ mol~'. h Kinetics from the post-training biased runs
as well as reference unbiased runs. The two are essentially indistinguishable. Orange and blue dashed lines denote unbiased data, respectively, while red

and black solid lines show corresponding best fits

basin as obtained through this approach, and through
much longer unbiased MD runs, which are feasible given the
small size of this system. The distribution functions and their
best-fit Poisson curves are nearly indistinguishable, and lead to
excellent agreement in values of the escape rate constant, given by
k=52+08 and 58+0.9us~!, respectively, for biased and
unbiased simulation.

Benzene dissociation from T4-L99A lysozyme. We now apply
our framework to a very challenging and important test case,
namely the pathway and kinetic rate constant of benzene dis-
sociation from the protein T4-L99A lysozyme in all-atom
resolution!>16, We also demonstrate how the RC calculated
through our approach can be directly used to perform a sensi-
tivity analysis of the protein, and predict the most important
residues whose mutations could have a significant affect on the
stability of the protein-ligand complex. Such an analysis has
direct relevance to predicting, for instance, the mutations in a
protein, which could lead to a pharmacological drug losing its
efficacy.

For this problem we choose 11 fairly arbitrary order parameters
denoted {s, ..., s;1}. Eight of these are ligand-protein distances,
while three are intra-protein distances (Supplementary Fig. 2 and
Supplementary Table 1 for order parameter details). The RC is
learnt as a linear combination of these order parameters, namely
X =268

For this problem as well we start with a short unbiased MD
simulation. As shown in Fig. 3, the weights of different order
parameters in the RC learnt from this trajectory change as a
function of the predictive time-delay At, but converge quickly. On
the basis of this plot, we set At =2 ps for all further calculations.
We then iterate—using the same neural network architecture as
for alanine dipeptide (Fig. 1)—between rounds of learning an
iteratively improved RC y; together with its probability distribu-
tion, and running biased MD using the iteration’s RC and
probability distribution as bias Vi(y;) (Eq. (7)). After nine
rounds, we find that the bias saturates as a function of training
rounds. That is, no further enhancement in ergodicity is achieved
by performing additional rounds of the aforementioned iteration.
This corresponds to the system reaching configurations where the

Ardekehs pe i bk b Aheohep

0.8 A AhAA

061 o d,

_
&

|Weights|

hd,,

At (ps)

Fig. 3 Order parameters weights as functions of time delay for
benzene-lysozyme dissociation. The scheme shows the absolute value of
weights for 11 order parameters in the first round as a function of predictive
time delay

previous PIB ceases to be effective. To learn a new PIB, we use the
washing out trick from ref. 2% to learn a second RC y, conditioned
on our knowledge of the first RC y;. In the next few rounds of
learning MD iterations, we (a) keep y; and Vi(x;) fixed, and (b)
do not account for Vi(y;) when using Eq. (8). Through this we
learn a bias V(y1, x2) = V1(x1) + V2(x2). In principle we can lift
this assumption and learn more complicated non-separable V(y;,
X2)- In a few rounds of training x,, we observed spontaneous
disassociation of the ligand from the protein. We are now ready
to use the RC (x3, x2) (shown in Fig. 4) and its bias V(y, x») learnt
to directly study the pathway and kinetics of ligand dissociation.

For this we launch 20 independent biased simulations using (x1,
x2) as RC and V/(y1) + Va(x2) as bias. By calculating the acceleration
factor, we can recover the original timescale of the first passage time.
As we show in SI, we fit the cumulative distribution function to a
Poisson process and get an escape rate constant of 3.3+0.8s7],
which is in good agreement with other methods30-32. We also
obtain a range of free energies viewed as functions of different order
parameters (Supplementary Fig. 3). These are in excellent agreement
with previously published results?-32.
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Fig. 4 The two-component predictive information bottleneck for
benzene-lysozyme dissociation, where colors red and blue correspond to y;
and y», respectively. The optimized weights for different order parameters
are illustrated after scaling all weights to keep ¢;=11in p

A comment we would like to make here concerns the
magnitude of At, especially in connection to the decorrelation
time of the MD thermostat. Here we implemented a canonical
ensemble using the velocity rescaling thermostat3 with a time
constant of 0.1 ps. Our predictive time-delay At is thus at least 20
times longer than the times for which the history of the
thermostat would persist. Interestingly, as can be seen in Fig. 3
the estimate of the RC converges with longer time delays, which
would be even more accurate from the perspective of not having
thermostat-induced noise, but would be less accurate due to
biasing related errors as explained earlier.

Predicting critical residues. On the basis of the PIB that we have
now calculated, we can directly predict which protein residues
have the most critical effect on the system. To do so, our guiding
principle is that the residues which carry higher mutual infor-
mation with the PIB are more likely to have an impact on the
stability of the system, for instance, if these residues were to be
mutated. By performing a scan of the mutual information
between the PIB and the backbone dihedral angles of different
residues, we can rank them as being most critical to least critical
(Supplementary Note 3 has further details of the calculation
setup). As shown in Fig. 5, some of the important residues are (in
order of decreasing relevance): Ser136, Lys135, Asnl132, Leul33,
Alal34, Phell4, Val57, Asp20, Leull8, and Vall31.

These residues can be classified in two broad groups. First, we
have group (a) comprising residues 114, 118, and 131-136—
together these contribute to breathing movement between the two
helices through which the ligand leaves. Second, we have group
(b) comprising residues 20 and 57, which lie in different
disordered regions of the protein, and have no obvious
interpretation. The roles of groups (a) have been hinted at in
previous works323435 and are thus yet another validation of our
approach. The role of group (b) during the unbinding process
remains to be seen. In order to demonstrate the robustness of this
calculation, we performed the full MD-deep learning-MD-deep
learning-... iterative protocol with a new set of order parameters
(details in Supplementary Discussion) that considered new
protein-ligand distances and completely excluded any
protein-protein distances, as the selection of latter require a
more significant role of human intuition in anticipating protein
breathing for instance. In this new set of calculation, we again
obtained same critical residues, including a residue from the same
disordered region as in group (b) above. Whether the disordered
regions are biophysically relevant to the unbinding of the ligand
with the existence of a long-range allosteric communication
pathway, or if these residues are picked due to just noise from our
calculations, needs more detailed mutagenesis study in the future.
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50
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Fig. 5 Critical residue analysis for benzene-lysozyme complex. The plot on
left shows for every residue the maximal mutual information between the
predictive information bottleneck (PIB) and either of the Ramachandran
angles ¢, w of that residue. The top 10 residues are highlighted through
markers and in the right plot, illustrated relative to the ligand in a typical
intermediate pose

Discussion

In this work we have introduced a new framework for the
simultaneous sampling of the RC, free energy and rate constants
in biomolecules with rare events. Our work is grounded in the
PIB framework, which is an information theoretic approach for
building minimally complex yet maximally predictive models
from data. Such a framework has previously been found useful for
modeling fruit fly movement and human vision. Here we exploit
the commonality between these diverse problems and that of
sampling complex biomolecular systems, namely the need to
quickly predict the future state of a system given noisy and high-
dimensional information. Our method implements this frame-
work through the use of a unique linear encoder-stochastic
decoder model, where the latter is a deep neural network with
inbuilt noise. Here we demonstrated the applicability of the
method by studying conformational transitions in a model pep-
tide in vacuum and ligand dissociation from a protein in explicit
water, with both systems in all-atom resolution. Through extre-
mely short and computationally cheap simulations, we obtained
thermodynamic and kinetic observables for slow biomolecular
processes in excellent agreement with other methods, experi-
ments and long unbiased MD. Last but not the least, by virtue of
having captured the most predictive degrees of freedom in the
system, we could also make, arguably for the first time, direct
predictions of how protein sequence can impact dissociation
dynamics—namely, which mutations in the protein would be
most deleterious to the dissociation process.

We would also like to discuss here some obvious limitations of
our approach. The RC learnt from AI can often lack interpret-
ability. We address this issue here through the use of a simple
linear encoder, which preserves the interpretability of the RC.
However, this comes at the cost of using smartly designed non-
linear basis functions, or order parameters, which can often be
domain-dependent. For example, different classes of basis func-
tions were needed here for alanine dipeptide conformation
change (namely, torsions) and ligand dissociation (namely, dis-
tances). Using a linear encoder on distances for alanine dipeptide,
or torsions for ligand dissociation, leads to no discernible
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enhancement in sampling as we iterate through rounds of deep
learning and MD. Thus, bad choices of basis functions for the
protocol can be ruled out at least in a heuristic manner by
quantifying whether these led to more ergodic sampling or not.
We are cautiously optimistic about the applicability of this work
to even more complex systems than the ones considered here. In
addition to identifying better basis functions, one other issue that
we will need to address carefully for such systems is when one or
even two RCs are simply not sufficient to describe the process of
interest. Often these different coordinates can be entangled, and
we might have to use further deep learning machinery in order to
deal with such issues®. Overall, we believe this work marks an
important step ahead in computer simulation of molecules, and
should be useful to different communities for robust, reliable
studies of rare events.

Methods

MD simulations. The simulations were performed with the software GROMACS
5.03738, patched with PLUMED 2.4%, For alanine dipeptide, the temperature was
kept constant at 300 K using the velocity rescaling thermostat®3. The L99A T4L-
benzene simulations were done with the constant number, pressure, temperature
(NPT) ensemble with temperature 298 K and pressure 1.0 bar. Constant pressure
was maintained using Parrinello-Rahaman barostat. The integration time step
was 2 fs and order parameters were saved every time step. In each round, four
independent simulations with different initial randomized velocities as per
Maxwell-Boltzmann distribution were performed to improve the quality of the free
energy sampling. Further details about system setup can be found in Supplemen-
tary Methods.

Neural network architecture. A densely connected layer without activation
function was used to linearly encode the order parameters X to RCs y. Gaussian
noise was added to x before being passed to the decoder. Decoder consisted of two
hidden layers and an output layer, which were all densely connected. Exponential
linear unit was used as the activation function for hidden layers. We assume
Qy(Xaelx) = N (Xyr3f3(x); 0%)- fp(x) corresponds to the decoder part of the neural
network, which maps states on the RC to states in order parameter space. With this
assumption, maximizing the objective function is equivalent to minimizing the
mean square error between Xy, and network prediction fy(x).

Neural network hyper-parameters. Hyper-parameters in this work included the
variance of Gaussian noise, the number of neurons in hidden layers, initializer of
weights of each layer, and the learning rate for the RMSprop algorithm?3. In our
two case studies, all these hyper-parameters are set to be the same. The variance of
Gaussians was kept 0.005. Each hidden layer had 128 neurons. The leaning rate was
set to be 0.003. Initial weights of each layer were randomly picked from a uniform
within range [—0.005, 005]. The transferability of hyper-parameters between dif-
ferent systems without much tuning reflects that this method is not very sensitive
to the choice of neural network hyper-parameters. From our experience, we suggest
that the choice of the variance of Gaussian should not be too big as it will wash out
meaningful features. For more complicated systems, a deeper (more layers) or
wider (more neurons in each layer) decoder might be needed. The tuning of
learning rate was done by looking at how order parameter weights change during
the training process. If the learning rate was too high, order parameter weights did
not converge.

Neural network training. Independent simulations often explored different con-
figurations due to the finite and small simulation time. We considered the tra-
jectory with the highest variance to have maximum ergodic exploration and used it
to train the RC for the next round. Similar to other non-convex optimization
problems, the results could have converged to a local minimum or even a saddle
point. To safeguard against such spurious solutions learnt by the neural network,
we performed independent training runs with random initial weights in layers. The
RC was then determined as the linear encoder of the trained neural network with
smallest loss function. We will be refining this procedure in future work as strictly
speaking a lower loss function is no guarantee of reaching a better solution.

Construction of bias. Trajectories from four independent simulations were mixed
to calculate the biasing potential. The minimum bias was set to 0. The maximum of
the bias is determined as the supremum of all possible value that satisfied two
criteria: (a) the value should be smaller than the summation of maximum bias in
the last round and a preset constant AV corresponding to a confidence parameter
for poorly sampled regions; (b) no bias is added on identifiable transition states. By
doing (a) we can exclude the regions that are poorly sampled. By doing (b) we can
calculate the rates of transition from a biased MD.

Data availability

All the data and GROMACS/PLUMED input files required to reproduce the results
reported in this paper are available on PLUMED-NEST (www.plumed-nest.org), the
public repository of the PLUMED consortium*!, as plumID:19.028". Further data
including all-atom coordinates can be obtained from the authors upon request.

Code availability
The code associated with this work is available from the corresponding author on
request.
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