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Abstract

Cell subtype proportion variability between samples contributes significantly to the variation

of functional genomic properties such as gene expression or DNA methylation. Although the

impact of the variation of cell subtype composition on measured genomic quantities is rec-

ognized, and some innovative tools have been developed for the analysis of heterogeneous

samples, most functional genomics studies using samples with mixed cell types still ignore

the influence of cell subtype proportion variation, or just deal with it as a nuisance variable to

be eliminated. Here we demonstrate how harvesting information about cell subtype propor-

tions from functional genomics data can provide insights into cellular changes associated

with phenotypes. We focused on two types of mixed cell populations, human blood and

mouse kidney. Cell type prediction is well developed in the former, but not currently in the

latter. Estimating the cellular repertoire is easier when a reference dataset from purified

samples of all cell types in the tissue is available, as is the case for blood. However, refer-

ence datasets are not available for most other tissues, such as the kidney. In this study, we

showed that the proportion of alterations attributable to changes in the cellular composition

varies strikingly in the two disorders (asthma and systemic lupus erythematosus), suggest-

ing that the contribution of cell subtype proportion changes to functional genomic properties

can be disease-specific. We also showed that a reference dataset from a single-cell RNA-

seq study successfully estimated the cell subtype proportions in mouse kidney and allowed

us to distinguish altered cell subtype differences between two different knock-out mouse

models, both of which had reported a reduced number of glomeruli compared to their wild-

type counterparts. These findings demonstrate that testing for changes in cell subtype pro-

portions between conditions can yield important insights in functional genomics studies.
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Introduction

Assays that test genomic function are used to understand the cellular and genetic differ-

ences in phenotypes between individuals. In human disease studies, we invariably test sam-

ples that are composed of mixed populations of cell subtypes when performing commonly-

used functional genomic assays, including gene expression profiling and assays testing

DNA methylation. To date, several cell type deconvolution approaches for genome-wide

assays have been published, and applied to test for sample heterogeneity in gene expression

[1–7] or DNA methylation [8–15], mostly often in studies of tumors or peripheral blood

mononuclear cells (PBMCs) [2,6,7,9,12,13,15–17]. The influence of variability in cellular

composition between samples on gene expression patterns has been recognized for decades

[18], the associations between immune cell infiltration and prognosis of tumor have been

well demonstrated [19–25], and innovative approaches to identify cell-intrinsic changes

(those not attributable to cell subtype effects) have been developed [9,12,26–28]. Despite

this, many studies still omit even passing consideration of the effects of cell subtype propor-

tion when interpreting results of genome-wide assays. Furthermore, when the influence of

cell subtype variation is included in the analysis of functional genomics studies, in most

cases the cellular heterogeneity is treated as a nuisance variable, confounding the research-

ers’ ability to identify cell-intrinsic changes. By treating cell proportion variation as a nui-

sance variable to exclude, we fail to identify potentially interesting tissue compositional

differences associated with disease phenotypes.

We have recently described our interest in understanding how to use functional genomic

data in phenotypic association studies, not only testing for cellular reprogramming, reflected

by cell-intrinsic functional genomic changes, as is typically studied, but also examining the

generation of distinctive repertoires of cell subtypes in individuals with the distinctive pheno-

type, which we have described as polycreodism [29]. As each cellular model can be distinc-

tively informative in understanding how a phenotype developed, they could both be

considered valuable insights resulting from functional genomic studies.

We show in this report that re-analysis of several published studies using a cell subtype

deconvolution approach yields many additional insights not described in the original publica-

tions. We initially focus on studies of peripheral blood leukocytes, and then show the potential

for single cell RNA-seq to provide insights into cell subtype composition in less well-character-

ized tissues such as the kidney. We then compare these reference-based approaches with a

more commonly-used analysis to account for variation in samples lacking reference panels of

cell subtype properties, surrogate variable analysis (SVA) [30,31]. We test how SVA performs

to account for cell subtype proportion effects and other sources of variability in the data stud-

ied. We conclude that cell subtype proportions themselves should be estimated as a specific

goal of functional genomic studies, rather than discarded as a confounding influence, testing

both the cellular reprogramming and polycreodism cellular models in phenotypic association

studies.

Results

Datasets used in this study

We used publicly-available datasets from the Gene Expression Omnibus (GEO), focusing on

studies of peripheral blood and on embryonic day 14.5 (e14.5) mouse kidney (Table 1). All

datasets were assessed for quality, including the elimination of samples from further analysis

when there was evidence of misidentification (for example, supposedly female samples

expressing genes from the Y chromosome).
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Cell subtype proportions influence gene expression results

Our first analysis was of gene expression profiles of human peripheral blood leukocytes, in a

study initially designed to compare individuals with severe and moderate asthma and healthy

controls [32]. The authors performed the expression analyses on the total RNA extracted from

blood collected in PAXgene tubes using the PAXgene blood miRNA kit [32]. As variation in

gene expression levels between individuals can be due to a combination of alterations of gene

activity within cells (cell-intrinsic changes) as well as alterations of the proportions of cell sub-

types in the sample, our goal was to understand the degree to which each mechanism was

influencing the gene expression changes observed by the authors.

We took advantage of the availability of reference expression profiles for 22 different sub-

types of leukocytes (LM22) [5] and the CIBERSORT program, which uses a penalized multivar-

iate regression approach to infer cell subtype proportions [6], allowing us to estimate blood

cell subtype proportions in whole blood samples from 422 individuals, both patients with

severe asthma (204 females, 130 males) and healthy controls (34 females, 53 males). We then

performed a principal component analysis (PCA) to estimate the contributions to gene expres-

sion variability from disease status as well as sex, smoking, and race, in addition to the influ-

ence of each estimated cell subtype proportion (Fig 1A). To measure the contribution of each

covariate, we used a linear modeling approach. The principal components (PCs) of variation

of the expression profiles were modeled as a linear function of cell subtype proportions.

Although disease status (severe asthma) was very weakly correlated with the first two PCs of

gene expression variation (PC1 (20.9% of the variance), R2 = 0.0031 and p = 0.25, PC2 (10.68%

of variance) R2 = 0.041 and p = 2.9×10−5), cell subtype proportion variation showed a much

more significant influence on gene expression (S1 Table). These results indicate that for this

asthma dataset, the primary determinant of gene expression variation was cell subtype propor-

tion, potentially contributing to or reflective of the disease process.

Cell subtype proportion changes in asthma

We then performed a further PCA to identify the factors in the phenotypic data and metadata

that were most associated with the cell subtype proportions observed. The input, in this case,

was the matrix of estimated cell subtype proportions across samples, and the objective was to

Table 1. Summary of datasets used in this study.

Gene expression DNA methylation

Study

number

GEO project

identifiers

Study design n Authors Analyzed

tissue type

Assays Analyzed

tissue type

Assays

Study 1 Human GSE69683 Severe asthma/healthy 422 Bigler et al. [32] WB Affymetrix HT

HG-U133+PM

N.A.

Study 2 Human GSE82221 SLE/healthy 33 Zhu et al. [33] PBMC Illumina

HumanHT-12 V4.0

WB Illumina 450k

infinium

Study 3 Human GSE65219,

GSE58888

Nonagenarian/ young 154 Nevalainen et al.

[34]

PBMC Illumina

HumanHT-12 V4.0

PBMC Illumina 450k

infinium

Study 4 Mouse GSE6287 Renal vesicle, s-shaped

body, and collecting duct

8 GUDMAP

database [35,36]

e14.5 kidney Affymetrix Mouse

Expression 430A

N.A.

Study 5 Mouse GSE4230 Lim1 conditional mutant

mice

4 Chen et al. [37] e14.5 kidney Affymetrix Mouse

Genome 430 2.0

N.A.

Study 6 Mouse GSE45844 Nephron progenitor-

specific Sall1 deletion

6 Kanda et al. [38] e14.5 kidney Agilent Whole

Mouse Genome

N.A.

SLE, systemic lupus erythematosus; N.A., not analyzed; PBMC, peripheral blood mononuclear cell; WB, whole blood

https://doi.org/10.1371/journal.pone.0215987.t001
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find the most significant contributors to the variance in cell subtype proportions between samples.

We tested these correlations and the significance of the contribution of each phenotypic variable to

each PC of the expression profiles. We found no significant correlation with disease status (R2 =

0.00023, p = 0.75) and a small but significant contribution of sex (R2 = 0.01557, p = 0.011) to the

first principal component of the estimated cell subtype proportions (16.54% of variance) (Fig 1B).

We observed that the proportion of neutrophils was significantly increased in severe asthma

patients compared to healthy controls (p = 0.02, Mann-Whitney test), with a decrease in the pro-

portion of CD8+ T cells (p = 0.07, Mann-Whitney test) (Fig 1C). These results are consistent with

several prior studies that have reported associations between neutrophils and asthma severity [39–

43]. Less is known about the role of CD8+ cells in asthma. While some studies have reported fewer

CD8+ T cells in allergic asthma [44], others have found the interferon-producing CD8+ T cells

were associated with greater asthma severity and not atopy [45]. Since atopy is associated with

fewer CD8+ T cells [46], and most participants in this study were atopic (of the 334 severe asth-

matics, atopy information was available for 308, of whom 234 were positive (76.0%); of the 87 con-

trols, atopy information was available for 76, of whom 32 were positive (42.1%)), their atopic status

rather than their asthma may explain the reduced CD8+ proportions. Our re-analysis of functional

genomics data associates severe asthma in atopic individuals with significantly higher neutrophil

and lower CD8+ T cell proportions, which offers potential insights into the cellular events occur-

ring in these individuals. These results suggest that the variation of cell subtype proportions may

not be merely a confounding variable in gene expression studies but can potentially contribute use-

ful insights into the biological processes occurring in a disease.

Cell-intrinsic gene expression changes in asthma

When the effects of cell subtype proportional changes are eliminated, the changes in gene

expression that remain are more likely to represent altered levels of gene transcription within

the cells tested. We borrow a term used in the study of DNA methylation to refer to these as

‘cell-intrinsic’ gene expression changes [47], reflecting what we have also described as ‘cellular

reprogramming’ [29]. Including and adjusting for sex as a covariate in our analyses, we identi-

fied 405 differentially-expressed genes (DEGs) without adjusting for cell subtype proportions

(false discovery rate (FDR)-adjusted p-value<0.05, >1.2-fold change in expression, Fig 1D,

genes listed in S2 Table). When we performed an adjustment for cell subtype proportions

including each of the individual cell proportion values in our linear model, as is typically per-

formed in studies of DNA methylation [48–50], only 142 genes remained categorized as DEGs

(listed in S3 Table). However, this approach is not ideal, as it introduces a large number of

covariates into a multi-variable linear regression model, and these covariates are collinear with

each other (as one cell subtype proportion goes up, other proportions have to go down). We

therefore used the alternative approach of regression on PCs of cell subtype proportions

Fig 1. Deconvolution shows a strong effect of cell subtype proportions on gene expression variation in a study of blood leukocytes from asthmatics. (a)

Principal components for gene expression with significance of association of different factors shown as a heat map. The disease status of severe asthma

(ASTHMA) was very weakly associated with the variability in gene expression, accounting for only 0.31% of the first PC (which accounts for 20.9% of the

variance, p = 0.25) and 4.1% of the second PC (10.68% of the variance, p = 2.9×10−5) of expression variation. (b) The same kind of analysis was performed but

this time testing the contributions to the cell subtype proportional variability, with small contributions to principal component 1 (accounting for 16.54% of

variance) of disease status (0.023%, p = 0.75) and sex (1.56%, p = 0.01). (c) Looking into why the cell subtypes were so influential in altering gene expression, we

find the proportions of two cell types to be significantly different in patients with severe asthma, an increased proportion of neutrophils (p = 0.021, Mann-

Whitney test) and a decreased proportion of CD8+ T cells (p = 0.072, Mann-Whitney test). In (d) we show two volcano plots, the upper showing 405

differentially-expressed genes (DEGs, FDR-adjusted p value<0.05,>1.2 fold change in expression) in red, representing those identified without cell subtype

proportion adjustment. The lower volcano plot shows the 166 DEGs following adjustment for cell subtype proportions using the PCs most strongly reflecting the

cell subtype effects on expression variation. (e) The Venn diagram shows the overlap between the genes identified as differentially-expressed when adjusted for

sex (red) and after additional adjustment for cell subtype proportional variation (green).

https://doi.org/10.1371/journal.pone.0215987.g001
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[51,52] using the PCs that most strongly reflected the cell subtype proportion effects on expres-

sion variation (those with a p<0.01 and explaining >1% of the variation of cell subtype pro-

portions: PCs 1–5 and 9 in S1 Fig). We thus reduced the dimensions of the covariates and

eliminated their collinearity. This PC-based approach now defined 338 genes to be differen-

tially-expressed (Fig 1D, genes listed in S4 Table), eliminating 80 of the 405 DEGs initially

identified prior to cell subtype adjustment, and adding a further 13 genes not previously recog-

nized to be differentially expressed (Fig 1E). As would be expected, more than 85% of the

DEGs eliminated by this approach have evidence for being expressed in specific blood cell sub-

types [53–56] (S5 and S6 Tables). The 13 newly identified DEGs showed higher variances

compared to eliminated DEGs (p<0.001, permutation test).

Cell subtype effects are dominant in SLE

Systemic lupus erythematosus (SLE) is an autoimmune disease caused by cells represented in

the peripheral blood circulation [57]. We used a cross-sectional study which tests the DNA

methylation alterations in whole blood and transcription alterations in circulating PBMCs of

30 SLE patients, including 15 with lupus nephritis (LN) (SLE LN+), 15 without LN (SLE LN-),

and 25 normal controls (NC) [33]. We used NC and SLE LN- samples in our study. Our cell

subtype deconvolution revealed that the proportion of monocytes was significantly increased

and the proportion of resting natural killer (NK) cells was significantly decreased in SLE,

obtaining the same results using either DNA methylation or gene expression data (Fig 2A and

S2 Fig). These cell subtype proportion changes revealed by functional genomic data are consis-

tent with prior literature describing a lower proportion of NK cells and a higher proportion of

monocytes in patients with SLE [58]. In addition, 53.8% of the first PC of DNA methylation

variation (which accounted for 16.3% of the variance, the linear model p-value = 9.1e-14) and

94.9% of the second PC (10.6% of variance, the linear model p-value = 0.084) were attributable

to cell subtype variation (Fig 2B). Similar results were obtained from gene expression estimates

of cell subtype proportions, with 78.9% of the first (accounting for 12.5% of the variance,

p = 0.012) and 81.8% of the second principal component (9.1% of the variance, p = 0.005)

attributable to cell subtype variation (S2 Fig). When we re-analyzed gene expression differ-

ences between SLE and control subjects having accounted for cell subtype variability (using

gene expression information), we found that only 4 genes remained significantly differentially-

expressed out of the 485 DEGs (false discovery rate (FDR)<0.05 and log2 fold-change (FC)>

1.2, S7 Table) originally identified without adjusting for cell subtype proportions. In the DNA

methylation analysis, we identified 2,154 differentially methylated CGs (FDR<0.05, δbeta

(case-control)�10%, at 1,366 genes) before adjustment, but just 40 CGs (at 27 genes) after

adjusting for cell subtype proportions (Fig 2C and 2D and S8 Table). This suggests that

almost all significant differences in gene expression and DNA methylation may be attributed

to systematic cell subtype proportion variation between individuals with SLE and healthy con-

trols. When we linked the 40 CGs with the 27 nearby genes (using the Illumina microarray

design annotation) and tested gene ontology (GO) terms for enrichment, the list of most sig-

nificantly enriched GO terms changed compared with the unadjusted data (Fig 2E). The new

terms included a strong enrichment for type I interferon signaling pathways (Fig 2F), reveal-

ing a known pathogenic mechanism in SLE now being targeted therapeutically [59].

Evaluation of a reference-free approach which adjusts for nuisance

variables on cell subtype effects

The alternative to reference-based deconvolution approach is to account for heterogeneity

influencing the signal, using an approach like Surrogate Variable Analysis (SVA), which is

Estimating cell subtype proportions enhance the interpretation of functional genomic data
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probably the most commonly used approach in DNA methylation studies [60]. SVA is an

attractive choice, as it should allow the data to be adjusted for any type of confounder includ-

ing the effects of cell subtype proportion heterogeneity as well as influences like batch effects.

Therefore, it has been recommended and used for the sample types for which there is incom-

plete knowledge of cell-type composition or the presence of unknown confounders [61,62].

We explored how SVA performs in the unusual situation when insights are available from

deconvolution into cell subtype composition. We studied the DNA methylation data from a

study of aging (GSE58888; 122 nonagenarians and 21 young controls (19–30 years)), testing

how each surrogate variable was influenced by each of the metadata variables such as sex, cyto-

megalovirus infection (serostatus and titer), cell-free DNA level or batches. In Fig 3A we show

that SVA does indeed predict cell subtype proportions as surrogate variables, proportions that

we estimated using Houseman’s reference-based deconvolution approach [12,63,64], as well as

picking up a strong influence of experimental batch (R = 0.96). However, despite defining age

as the phenotype of interest, we find that the SVA also recognizes this as a source of variability

(R = 0.4), which would result in an unrecognized loss of the signal sought in these studies. To

simulate a situation in which cell subtype proportion and batch effects are not major con-

founding influences in an experiment, we re-processed the aging data to remove batch effects

on their own or in combination with cell subtype proportion effects. In those situations, the

Fig 2. Disease status associated cell subtype proportion changes reflect the DNA methylation changes between SLE and control samples and the disease-related

pathways were highlighted after the cell subtype proportion adjustment. (a) The cell subtype proportion changes in SLE were driven predominantly by two cell types.

The proportion of monocytes in increased in SLE (p = 0.0093, t-test). On the other hand, the proportion of natural killer (NK) cells is lower in patients with SLE

(p = 2.2e-08, t-test). (b) Principal components for DNA methylation with significance of association of PCs for the estimated cell subtype proportions are shown as a heat

map. The first principal components were significantly associated each other. (c-d) Two volcano plots show differentially-methylated probes (DMPs). (c) shows the

results of DMPs adjusted for age alone and (d) shows results also adjusted for cell subtype proportions. Almost all DMPs were eliminated after the adjustment for cell

subtype proportions. (e-f) GO analysis results are summarized as REVIGO scatterplots. (e) shows the results of age-adjusted and (f) the results for age and cell subtype

proportion adjusted terms. The x and y axes indicate the semantic similarity of each GO term. The bubble color indicates log10 p-values, and size represents the

percentage of genes annotated with the GO term in the human database.

https://doi.org/10.1371/journal.pone.0215987.g002

Estimating cell subtype proportions enhance the interpretation of functional genomic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0215987 April 25, 2019 7 / 21

https://doi.org/10.1371/journal.pone.0215987.g002
https://doi.org/10.1371/journal.pone.0215987


effect of SVA to capture the phenotype of interest, age, gets progressively stronger (Fig 3B and

3C). SVA therefore disproportionately affects what would be better-executed studies with

fewer cell subtype and technical artefacts.

Fig 3. The SVA approach may lead to elimination of true positive results. Heatmaps show the influences on each surrogate variable (SV) of

known covariates and estimated cell subtype proportions. We performed SVA on the unadjusted data (a), and on data after removal of batch

effect (b) and after further adjustment for cell subtype proportion variability (c). We performed multiple linear regression models to estimate the

contribution of covariates to surrogate variables. The step-wise analysis revealed that the SVA approach has effects on the phenotype of interest,

especially as we eliminate some of the sources of experimental artefact.

https://doi.org/10.1371/journal.pone.0215987.g003
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Single-cell RNA-seq data for cell subtype deconvolution

Tissues like the hematopoietic system composed of individual cells with well-characterized

surface markers are relatively easier to characterize in terms of cell subtypes compared with

the cell subtypes in solid tissues. To perform cell subtype deconvolution using reference gene

expression or DNA methylation data with solid tissues would require large amounts of tissue,

and generation of informative surface markers to sort the cell subtypes. As an alternative, sin-

gle-cell RNA-seq (scRNA-seq) can test the gene expression patterns in different cell subtypes

in a tissue without the need to isolate the cell subtypes. The cell subtype-specific genes defined

by scRNA-seq data [65] can be used to create reference panels of genes that can then be used

for deconvolution of bulk RNA-seq data. To test this approach, we used an e14.5 mouse kidney

scRNA-seq data set [66], analyzed using Seurat [65], identifying 16 cell subtype clusters in total

(Fig 4A). Based on the expression status of known cell subtype-specific genes, we identified

the cell subtypes corresponding to each cluster by known cell subtype-specific genes [66] (S9

Table). The cell subtype-specific genes were identified using the FindAllMarkers function of

Seurat (requiring�30% of cells in the cluster to be expressing the genes, with the fold change

threshold = log2(1.5)), following which the median expression of the gene in each cell subtype

was calculated. After eliminating ribosomal, mitochondrial and sex chromosome genes, we

identified 722 cell subtype-specific genes in total. The resulting cell subtype-specific gene

expression signature was used as a reference for estimating cell type proportions by

Fig 4. The estimation of cell subtype proportion using e14.5 mouse kidney scRNA-seq data showed the applicability of scRNA-seq data for the deconvolution

approach. (a) The scRNA-seq analysis of e14.5 mouse kidney identified 16 cell type clusters in total. We performed cell subtype proportion estimate on (b)

microdissected samples (collecting duct, renal vesicle, and s-shaped body) from e14.5 kidney and (c) conditional knockout mouse models.

https://doi.org/10.1371/journal.pone.0215987.g004

Estimating cell subtype proportions enhance the interpretation of functional genomic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0215987 April 25, 2019 9 / 21

https://doi.org/10.1371/journal.pone.0215987.g004
https://doi.org/10.1371/journal.pone.0215987


CIBERSORT (cell subtype-specific genes in S10 Table). We first applied this information to

gene expression data from three microdissected kidney tissue components (renal vesicle, S-

shaped body, and collecting duct, GUDMAP Series ID 8, GSE6287). Using the deconvolution

of gene expression, >99.9% of the cells in the collecting duct samples were identified as collect-

ing duct cells. In the microdissected renal vesicle samples, the dominant cell type was ureteric

tip cells, while the microdissected S-shaped body consisted of endothelium, podocytes, cap

mesenchyme and stromal cells, all findings that would be expected from these kidney sub-

structures (Fig 4B). We then used the deconvolution approach on bulk gene expression data

of e14.5 mouse kidneys from two conditional knockout mouse models (nephron progenitor-

specific Sall1 deletion [38] (Sall1-del), and Lim1 metanephric mesenchyme-specific condi-

tional mutant [37] (Lim1-del)). Both mouse models had been noted to have decreased num-

bers of nephrons, but our cell subtype studies revealed otherwise distinctive patterns. The

Sall1-del mice had a dramatically reduced proportion of renal cortical cells, with a correspond-

ing increase in collecting duct cells (Fig 4C). Histologically, these mice showed multiple glo-

merular cysts, dilated tubules, thin cortex, and significant developmental impairment of

nephron contents, consistent with the inferred lack of renal cortical cells. The Lim1-del mice

had been shown to have almost no nephrons histologically [67]. This is consistent with the

results of our deconvolution analyses, which showed almost complete loss of ureteric tip cells

(the dominant cell subtype of wild-type kidneys, and of microdissected renal vesicle samples),

with replacement by stromal cells (nephrogenic, medullary, and cortical) as the primary

remaining cell subtype of the Lim1-del mouse kidney (Fig 4C). These mouse results support

the possibility that scRNA-seq profiles can be used accurately for cell subtype deconvolution in

solid tissues.

Discussion

By using assays that test expression of genes or microRNAs, the methylation of DNA, chroma-

tin states or other indicators of genomic function, we are generally trying to understand the

innate characteristics of the cells tested. Such cell-intrinsic changes can reflect responses to

environmental perturbations or genetic mutations, and can be used as clues to the pathogene-

sis of an associated phenotype. We have referred to this as cellular reprogramming [29], the

alteration of the molecular characteristics of a canonical cell type. The possibility that cell sub-

type proportional heterogeneity could be contributing to the variability in the results of the

functional genomics assay is not always considered, but when addressed is generally treated as

a confounding variable, with the focus on cell-intrinsic changes of functional genomic

properties.

We have pointed out that the systematic alteration of cell fate decisions and the repertoire

of cell subtypes in tissue is a potential outcome of transcriptional regulatory perturbations,

potentially contributing to the development of specific phenotypes, an alternative cellular epi-

genetic model that we have called polycreodism [29]. In the current study, we sought to under-

stand the relative contribution of cellular reprogramming and cell subtype proportion changes

on gene expression and DNA methylation changes associated with different types of pheno-

types, from physiological studies of aging and the disease phenotypes of asthma and systemic

lupus erythematosus, as well as mouse conditional knockout models. Our focus was on studies

of two tissue types: 1) peripheral blood leukocytes, not only because of the technical advantages

they offered for our cell subtype deconvolution approaches, but also because many transcrip-

tomic studies and most published large-scale epigenome-wide association studies (EWAS)

testing DNA methylation have been performed on blood cells, and 2) kidney, which is a highly

complex organ with relatively less characterization of individual cell subtypes. By gaining
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insights into the relative contributions of cellular reprogramming and polycreodism in each

condition, we contributed to the interpretability of these prior studies that did not take in

account for cell subtype proportion variation.

Our studies were based on the ability to estimate cell subtype proportions from gene expres-

sion or DNA methylation data. It was helpful to have reference gene expression and DNA

methylation data on purified peripheral blood leukocytes [6,12]. Using these datasets, we

could readily estimate the cell subtype proportions of the samples tested. From the asthma

study which used whole blood samples, we found that 80 DEGs out of 405 DEGs were elimi-

nated after the cell subtype proportion adjustment, and more than 80% of those genes were

expressed in a cell-type specific way. Therefore, those variations in gene expression are attrib-

uted to cell subtype proportion variations between severe asthma and healthy controls. On the

other hand, while the 13 newly identified DEGs are also correlated with cell subtype propor-

tions, they showed higher variability in expression between samples than the genes eliminated

for being related to cell subtype proportion variation alone. This finding suggests that some

cell subtypes have differential expression of genes between asthma and controls. We note that

in tissues other than blood such reference gene expression and DNA methylation data are

unlikely to be readily available, prompting us to explore whether scRNA-seq data could be

used in these deconvolution studies. Our reference gene expression signatures derived from

scRNA-seq data from the e14.5 mouse kidney was applied to microdissected samples and con-

ditional mouse knockout data. Our results demonstrated that the estimated cell subtype pro-

portions based a reference gene expression signatures derived from scRNA-seq data showed

concordance with microdissected samples. In conditional mouse knockout studies, we suc-

cessfully predicted each case in which cell subtypes were expected to be over- or under-repre-

sented in each sample from the original analysis. For example, although the authors could

detect that deletion of Lim1 in metanephric mesenchyme-derived tissue downregulated neph-

ron-specific genes using a conventional differential gene expression analysis [37], our re-analy-

sis revealed that the deletion leads to severe loss of ureteric tip cells, but mesenchyme cells

surrounding ureteric tips remain present, and the lost proportion was replaced by stromal

cells. Their histopathological analysis using LacZ transgenic animals [67] suggested that meta-

nephros growth and ureteric bud branching were relatively normal but nephrons were

completely absent in the mutant. The authors speculated that the absence of Lim1 function

could result in the loss of a subset in the renal vesicle. Combining their results and our re-anal-

ysis, we show that the loss of Lim1 in metanephric mesenchyme-derived tissue prohibits ure-

teric tip formation in the renal vesicle. The Six2-dependent Sall1 depletion mice also showed a

reduction of nephron numbers; however, this alteration is due to reduction of cap mesen-

chyme and nephrogenic zone stroma, not due to deletion of the ureteric tip as found in the

Lim1 mutation, resulting in the collecting duct becoming the major remaining cell type. These

findings indicate that two distinct mouse models, both involving nephron depletion, showed

model-dependent cell subtype loss incompletely characterized by orthodox analyses looking

for differential expression of genes. Our results strongly suggest that scRNA-seq data, which

can be generated from scRNA-seq or will be imminently available from public datasets like the

Human Cell Atlas (https://www.humancellatlas.org), especially for less well-characterized

solid tissues, will be a helpful way of understanding the cell subtype proportion source of varia-

tion in functional genomic assays of such tissues.

There were other observations made that are of technical importance for performing func-

tional genomics studies. We were concerned that using the SVA approach had the potential to

mask some of the genuinely phenotype-associated effects, especially in better executed studies.

We note the strong concordance of results when adjusting for cell subtype proportions using

gene expression and DNA methylation data. This indicates that deconvolution using results of
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one functional genomics assay can be used to adjust for cell subtype proportions when analyz-

ing a completely different kind of assay of the same samples. This would highlight the applica-

bility of usage of a reference panel based on data from scRNA-seq analysis, which is becoming

a popular method. We were also careful to avoid using the individual cell subtype proportions

in the multivariable linear regression model, as they can be numerous and are inherently col-

linear, instead of using regression on PCs [51,52], choosing the PCs capturing most of the

effects of cell subtype variability. These insights should be generally useful when performing

and analyzing epigenetic association studies in particular and functional genomic assays in

general.

Instead of focusing on the cell-intrinsic alterations, as would be typical, we generated

two outputs from the functional genomics studies. The first was a high-confidence set of

genes or loci undergoing alterations in gene expression or DNA methylation, manifesting

changes that could not be attributed to cell subtype proportional variability, indicating cel-

lular reprogramming effects. The second was the difference in cell subtype proportions

between the comparison groups. This is not typically an output of analytical approaches

used for gene expression or DNA methylation studies, but was explicitly sought in our ana-

lytical approach, and revealed systematic changes. It should be relatively straightforward to

modify excellent software packages such as minfi [13] to allow this additional output to be

generated routinely. In particular, the study of SLE was striking for having an overwhelming

effect of cell subtypes on gene expression and DNA methylation variation. While this might

currently be considered a negative result, if cell subtype proportions are treated purely as

confounding variables, we note that the SLE patients had distinctive NK cell and monocyte

proportions, which represents the use of functional genomic data to gain an insight into cel-

lular events contributing to the disease process. These cellular changes have already been

recognized independently in SLE, with decreased NK cell activity correlating with active

disease and observed to a greater extent among those with renal involvement [68–71].

Conversely, more activated monocytes have been found in individuals with SLE [72,73]

associated with disease complications such as atherosclerosis [74]. We note that the cell

composition changes were not limited to SLE. We observed cell subtype proportion changes

in all studies we examined, including in asthma and aging. Aging is strongly associated with

T cell proportion changes [75–79], and immune cell proportion changes including neutro-

phils [39–43], T cells [80–82] as well as eosinophils [83–85] are also well-reported in the

asthma patients. Therefore, these results underscore the value of looking simultaneously for

cellular reprogramming and cell repertoire changes in functional genomics studies, as each

can be harvested from the functional genomics data generated and can be valuable in pro-

viding insights into the condition being studied. Surrogate variable analysis which does not

require a reference panel, on the other hand, eliminate this useful information, another rea-

son for caution in choosing approaches such as SVA.

We conclude that, while it should not be surprising that cell subtype proportions need

to be taken into account in the interpretation of functional genomics studies of heteroge-

neous samples, variability of cell subtype composition can also provide insights into the

phenotype being tested, and should not be discounted as merely a confounding factor

[12,86–88]. Phenotypes may indeed result from cellular reprogramming, but it is highly

plausible that the polycreodism model of altered cell repertoires in tissue is another poten-

tially very powerful mechanism for mediation of phenotypic changes. By testing simulta-

neously for the cellular models of reprogramming and polycreodism, we increase our

capacity for the discovery of new insights into the pathogenesis of diseases or the develop-

ment of other phenotypes.
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Methods

Dataset used in this study and preprocessing data

All datasets used in this study are published and publicly available through the Gene Expres-

sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), from which we downloaded the

datasets. The GEO accession numbers and study designs are described in Table 1. Phenotypic

data were extracted from the matrix tables provided by the authors on the GEO website. Before

our re-analysis, we tested the quality of data, including batch effects and possible sample swap-

ping, excluding samples when the information about sex provided by the authors was discor-

dant with the data obtained from the sex chromosomes. For the DNA methylation datasets, we

first filtered out poor quality samples by testing detection p-value distributions to see back-

ground noise level and eliminating samples with high background (average detection p-values

>0.01), and by performing PCA, which found a single sample to cluster very distinctly from

all of the others, causing us to remove it from further analysis. We then performed quantile

normalization using the preprocessQuantile() function in theminfi R package [13], and filter-

ing out probes (a) have failed to hybridize (detection p-values >0.01), (b) probes overlapping

with and around known single-nucleotide polymorphisms (SNPs) and 1000G SNPs (minor

allele frequency (MAF) >0.1), (c) probes that have been shown to be cross-reactive[89], and

(d) probes on sex chromosomes (except study 4, for which we only used female samples). For

expression datasets, we aggregated each transcript value by HUGO gene symbol to calculate

mean expression values for each gene. We describe these results in detail in the S1 File.

Reference-based estimation of cell subtype proportions

We estimated cell subtype proportions based on gene expression and DNA methylation data.

From the DNA methylation profiles, we estimated the proportions of CD8+ T cells, CD4+ T

cells, NK cells, B cells, monocytes and granulocytes using the estimateCellCounts() function

from theminfi R package [13], which is modified from the original Houseman reference-

based approach [12]. From gene expression profiles, we ran CIBERSORT [6] using two differ-

ent signature gene files, the CIBERSORT default file based on expression profiles from 22 leu-

kocyte subtypes (LM22) [5], and a signature gene profile generated from publicly-available

scRNA-seq results from 68,000 PBMCs [90] using the Seurat R package[65].

Associations between cell subtype proportions and phenotype

We performed principal component analysis (PCA) on the cell subtype proportion estimates

obtained. We tested for possible confounding influences using metadata provided by the study

authors as a matrix table, including technical (batch, sample collection date) and biological

(age, sex, phenotype) influences, using a linear modeling approach. We identified significant

confounding covariates using ANOVA.

The contribution of cell subtype proportion to functional genomic data

We performed PCA on gene expression values (aggregated expression values) and DNA meth-

ylation values (quantile normalized M values), then we tested the contribution of cell subtype

proportions to each principal component (PC) using a linear modeling approach. The degree

of contribution to each PC was estimated by the R-squared of the regression model, and the

significance of each was tested using ANOVA.
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Identifying gene expression and DNA methylation changes

To identify differentially methylated probes (DMPs) and differentially expressed genes

(DEGs), we performed regression analysis with the lmFit function of the limma R package

using the M values of DNA methylation data and the log-transformed values of expression

data [91]. We selected biological covariates provided by the authors to be included into the

model based on data from each PCA. We built models with and without cell subtype propor-

tion adjustments to test the effects of variability of cell subtype proportions. To avoid collinear-

ity and high dimensionality of cell subtype estimates [92], we used a principal component

regression instead of a linear regression approach using the actual cell proportions. The PCs

we included in the linear model are those with significant associations with DNA methylation

or expression variation (p-value<0.01) and which explain>1% of the variation of the cell sub-

type estimate. To identify significant DMPs, we retained the CpGs with FDR<0.05 and abso-

lute beta value changes >10%. The DEGs were defined as the genes with FDR<0.05 and

absolute fold changes of expression for studies asthma and SLE of>log2(1.2) and >log2(1.5)

for the aging study using the same fold-difference threshold as the original publications. The

proportional Venn diagrams were plotted using BioVenn [93].

Gene ontology analyses

To identify the enriched gene ontology (GO) terms in the DMPs, we performed GO analysis

using the Bioconductor package GOseq [94]. We used DMP corresponding gene symbols for

searching enriched GO terms in the human hg19 database. We selected the terms which false

discovery rate (FDR) adjusted p-values were less than 5% as significant GO terms. We per-

formed the analysis on both with and without adjusting for cell subtype proportions. The sig-

nificant GO terms were visualized using REVIGO [95], using the program’s default settings

(Homo sapiens database).

Surrogate variable analysis

We performed surrogate variable analysis (SVA) using the R package sva [30,31]. We selected

the phenotype of interest information (young control or nonagenarians) for the analysis. We

obtained 17 surrogate variables (SVs) on raw data, 19 SVs after the batch effect adjustment,

and 34 SVs after adjustment for batch and cell subtype proportion effects. We describe these

results in detail in the S2 File. We tested the correlations to known and estimated cell subtype

proportions using mixed linear regression analysis. We included the SVs in the linear model to

test the effects on DNA methylation status. To identify significant DMPs, we retained the

CpGs with FDR<0.05 and absolute beta value changes >10%.

Single-cell RNA-seq analyses

We downloaded the e14.5 mouse kidney scRNA-seq datasets (Drop-seq and Chromium 10x

Genomics (10x Genomics)) [66] and analyzed the scRNA-seq data using the Seurat R package

[65]. The Drop-seq data contains 22,939 genes in 200 cells, and the 10x Genomics data con-

tains 27,998 genes in 2,295 cells. After filtering out the genes with fewer than three cells

expressing the gene and cells in which fewer than 1000 genes were found to be expressed, we

merged two datasets using canonical correlation analysis. The merged data contains 19,592

genes in 4,175 cells with a median number of detected genes per cell of 2,628 (standard devia-

tion = 920.3). We then performed PCA for linear dimensional reduction. We identified 16

clusters in total, corresponding to 722 signature genes with distinctive expression status com-

pared to other clusters, with on average at least 1.5-fold differences between the clusters
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compared with other clusters, and with at least 30% of the cells in the cluster expressing the

gene using the FindAllMarkers function of the Seurat R package [65]. We calculated the

median expression values of the signature genes in each cluster to generate a cell subtype signa-

ture profile for CIBERSORT analysis. We describe these results in detail in the S3 File. We pro-

vide the lists of known reference gene expression and signature genes expression of each

cluster in S9 and S10 Tables.

Supporting information

S1 Fig. A correlation heatmap of the principal components (PCs). The PC of variation in

cell subtype proportions (y axis) are correlated with the PCs for gene expression (x axis) in a

study of asthma. In particular, the first and second PCs of cell subtype proportions are signifi-

cantly associated with the PCs of gene expression. The PCs selected for adjustment are shown

in red.

(TIF)

S2 Fig. Deconvolution of cell subtype proportions from gene expression profiles of SLE

patients and healthy control. (a) The estimated cell subtype proportions using gene expres-

sion status. A boxplot showed that proportions of T-cells regulatory and monocytes were sig-

nificantly increased and NK-cells resting was decreased in SLE patient. The significance was

calculated with Student t-test. (b) Principal component analysis for gene expression showed

significant association with PCs of cell subtype proportions estimated from expression data.

The significance was calculated by a regression approach. These results suggest that the gene

expression variations also strongly correlated to cell subtype proportion variations. We

selected PCs with significant associations with expression variation (p-value <0.01) and which

explain>1% of the variation of the cell subtype estimate for cell subtype proportion adjust-

ment. The PCs selected using these criteria are shown in red.

(TIF)

S1 Table. Contributions of each cell type for top 5 principal components obtained by PCA

on variation of the expression profiles (PC-ex).

(XLSX)

S2 Table. A list of differentially expressed genes without cell subtype proportion adjust-

ment (Healthy-Severe Asthma).

(XLSX)

S3 Table. A list of differentially expressed genes with cell subtype proportion (actual cell

proportion) adjustment (Healthy-Severe Asthma).

(XLSX)

S4 Table. A list of differentially expressed genes with PCs (PC1-PC5 and PC9) of cell sub-

type proportion adjustment (Healthy-Severe Asthma).

(XLSX)

S5 Table. A list of cell type-specific gene from PBMC scRNA-seq data.

(XLSX)

S6 Table. Lists of cell subtype proportion adjustment eliminated genes and newly identi-

fied genes.

(XLSX)
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S7 Table. Lists of differentially genes in LUPUS patients before and after the cell subtype

proportion adjustment (PC-ces).

(XLSX)

S8 Table. Lists of differentially methylated CpG site in LUPUS patients before and after

the cell subtype proportion adjustment (PC-ces).

(XLSX)

S9 Table. A list of known reference gene expression profile of each cluster and the cell type

estimate.

(XLSX)

S10 Table. A list of cell type specific genes in e14.5 mouse kidney.

(XLSX)

S1 File. Quality checks, preprocessing and estimating cells subtype proportions.

(PDF)

S2 File. Surrogate variable analysis.

(PDF)

S3 File. Generating an e14.5 mouse kidney signature profile from single cell RNA-seq

results.

(PDF)
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