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Exploratory and locomotor activity, learning and memory
functions in somatostatin receptor subtype 4 gene-deficient
mice in relation to aging and sex

Nikolett Szentes & Valéria Tékus & Violetta Mohos &
Éva Borbély & Zsuzsanna Helyes

Abstract The inhibitory neuropeptide somatostatin regu-
lates several functions in the nervous system including
memory. Its concentrations decrease by age leading to
functional alterations, but there are little known about the
receptorial mechanism. We discovered that somatostatin
receptor 4 (sst4) mediates analgesic, anti-depressant, and
anti-inflammatory effects without endocrine actions, and it
is a unique target for drug development. We investigated
the exploratory and locomotor activities and learning and
memory functions of male and female sst4gene-deficient
mice comparedwith their wild-types (WT) at ages of 3, 12,
17months in the Y-maze test, open field test (OFT), radial-
armmaze (RAM) test and novel object recognition (NOR)
test. Young sst4 gene-deficient females visited, repeated,
and missed significantly less arms than the WTs in the
RAM; males showed decreased exploration in the NOR.
Young mice moved significantly more, spend longer time
in OFT center, and visited more arms in the Y-maze than
older ones. Young WT females spend significantly longer

time in the OFT center, visited, missed and repeated more
arms of the RAM than males. Old males found more
rewards than females. Young males explored longer the
novel object than young females and older males in the
NOR; the recognition index was smaller in females. We
conclude that aging and sex are important factors of be-
havioral parameters that should be focused on in such
studies. Sst4 is likely to influence locomotion and explor-
atory behavior only in young mice, but not during normal
aging, which is a beneficial feature of a good drug target
focusing on the elderly.
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Introduction

Aging strongly influences cognitive functions, memory,
and learning. Learning slows down, but memory does
not necessarily worsen in the aging population that is
continuously increasing in the twenty-first century. Identi-
fying targets for cognitive impairment andmemory deficits
is in the focus of drug development (Martel et al. 2012).
Besides aging, sex is also a crucial factor of cognitive
performance (Ruan et al. 2017); therefore, it is important
to analyze the differences in preclinical models. It is well
established in a variety of species including humans
(Vedovelli et al. 2017), rats (Casad 1990; Tenk et al.
2017), and mice (Ashpole et al. 2017; Fang et al. 2017;
Reglodi et al. 2018; Spik and Sonntag 1989; Ungvari et al.
2017a) that peptide neurotransmitters, such as
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somatostatin, pituitary adenylate cyclase-activating poly-
peptide, corticotropin-releasing factor, insulin-like growth
factor 1, growth hormone (GH), neurotrophic factor, con-
nective tissue growth factor, play important regulatory
roles in age-related diseases, and both their brain and
peripheral concentrations change throughout aging.

Somatostatin is a 14 or 28 amino acid-containing pep-
tidewith a disulfide bridge discovered in the hypothalamus
(Guillemin 1972) and originally described as a GH or
somatotropin inhibiting factor (SRIF). Later it was charac-
terized to be a broad spectrum inhibitory neurotransmitter
with a complex effect throughout the central nervous
system (CNS) (Epelbaum 1986; Martel et al. 2012;
Viollet et al. 2008), as well as the periphery to mediate a
variety of auto- , para- or endocrine actions (Leblanc et al.
1975; Pintér et al. 2006). Two subpopulations of
somatostatinergic neurons can be distinguished in the
CNS, long-protruding somatostatinergic neurons and
short-proximal glutamate and gamma-aminobutyric acid
(GABA)-ergic interneurons (Epelbaum 1986; Gulyás et al.
2003; Tomioka et al. 2005). Somatostatin inhibits the
release of several excitatory and inhibitory neurotransmit-
ters, such as serotonin, acetylcholine, glutamate, and
GABA (Baraban and Tallent 2004). It plays a role in
sensory perception and pain, motor functions, sleep, cog-
nitive performance (Helyes et al. 2009; Matsuoka et al.
1994), and neurodegenerative disorders (Martel et al.
2012; Tuboly and Vecsei 2013), neuroendocrine and emo-
tional regulation, anxiety and depression (Engin et al.
2008; Lin and Sibille 2015). Our team has provided strong
proof-of-concept evidence for systemic anti-inflammatory
and analgesic effects of somatostatin released from the
activated capsaicin-sensitive peptidergic sensory nerves at
the periphery called “sensocrine” function (Szolcsányi
et al. 2004; Thán et al. 2000).

Brain somatostatin concentrations and its functions are
strongly influenced by aging. Early gene expression stud-
ies demonstrated a significant reduction of somatostatin
mRNA in the striatum, frontal, and parietal cortex, without
significant changes in the hypothalamus of female Wistar
rats (Florio et al. 1991). Furthermore, hypothalamic so-
matostatin immunoreactivity significantly decreases in
aged female mice (Kuwahara et al. 2004) and rats (Kim
and Choe 2018). In the frontal cortex, a certain
somatostatinergic neuronal population is remarkably
down-regulated (French et al. 2017). Somatostatin-
induced GH-release inhibition was more sensitive in old
animals (Kim and Choe 2018). Moreover, genetic deletion
of somatostatin leads to reduced hippocampal neprilysin

inactivity and increased Aβ42-formation also in young
animals, which suggests a potential protective role of
somatostatin in the development of Alzheimer’s disease
and cognitive deficits (Saito et al. 2005). Despite all these
data about the expressional and functional alterations of the
somatostatinergic systems in the aging brain, very little is
known about the regulation, sensitivity, and mechanisms
of its receptors (Kim and Choe 2018).

The broad range of actions of somatostatin is mediated
by its 5 Gi protein-coupled receptors (sst1–5) categorized
into SRIF1 (sst2, 3, 5) and SRIF2 (sst1, 4) groups on the
basis of synthetic agonist binding potentials (Hoyer et al.
1995). The SRIF2 receptors mediate the endocrine effect
of somatostatin, while the SRIF1 ones are responsible for
the anti-inflammatory, analgesic, anti-anxiety and anti-
depressant actions (Prévôt et al. 2017; Scheich et al.
2016, 2017a). We discovered that the sst4 receptor is a
very promising target to inhibit neurogenic inflammation,
neuropathic pain, and depression (Scheich et al. 2016,
2017b), which was supported by others (Schuelert et al.
2015; Shenoy et al. 2018). Therefore, small molecule sst4
agonists are potential drug candidates as novel analgesic
drugs with simultaneous anti-depressant activity (Botz
et al. 2017; Scheich et al. 2016, 2017b). It is very important
to elucidate the complex CNS functions of the sst4 receptor
from this drug development point of view as well.

Although the precise expression of sst4 is not known
due to the lack of reliable antibodies, data suggest that it is
present in the hippocampus, striatum related to behavior,
cognition, and memory (Gastambide et al. 2010;
Nakagawasai et al. 2003; Schreff et al. 2000; Viollet
et al. 1997), and a small molecule agonist was described
to improve long-term and short-term learning in a mouse
model of neurodegeneration (Gastambide et al. 2009;
Sandoval et al. 2011).

Therefore, in the present study, we investigated the
locomotor activity, anxiety, and memory functions in male
and female mice throughout aging, as well as the role of
the sst4 receptor on these parameters.

Materials and methods

Animals

We examined male and female sst4 gene-deficient mice
(knockout, KO) (Helyes et al. 2009; Scheich et al. 2016,
2017b) and wild-type (WT) counterpart of three different
ages (3, 12, 17-month-old) in different behavioral tests.
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They were bred and kept in the Laboratory Animal House
of the Department of Pharmacology and Pharmacotherapy
of the University of Pécs, Medical School. All animals
were in standard plastic cages at 24–25 °C, under a 12–
12 h light-dark cycle and provided by standard rodent
chow and water ad libitum.

All experiments were carried out in accordancewith the
recommendations of the 1998/XXVIII Act of the Hungar-
ian Parliament on Animal Protection (243/1988) and were
approved by the Ethics Committee on Animal Research of
Pécs University (license no. BA02/2000-76/2017).

Y-maze test

This test is suitable for rodent memory and route-learning
capabilities, where we investigated the exploratory behav-
ior of the mice for new ways (Holcomb et al. 1999;
Hullmann et al. 2017). They were placed in the upper
arm of the Y-shaped maze, each arm having the same
length (35 cm), width (5 cm) and height (6 cm). Mice
could freely move within the 5-min-period, the number of
visited arms and the alternation index (%) (n(arm combi-
nation))/(n(total number of visited arms-2))×100 were
determined.

Radial arm maze (RAM) test

This test is appropriate for investigating both short-term
(working memory) and long-term (reference memory)
memory functions (Frick et al. 1999; Gresack and Frick
2003).

It is constructed of eight arms with a well-defined
central region where the mice start from. Each arm is
25 cm long, 7.5 cm wide, and 6 cm tall, the central part
is 20 cm in diameter. Four sugar pellets (rewards) were
placed in four defined arms, their locations did not change
during the experiment. The entire study lasted for 4 days,
the measurement time was 5 min every day in the arena.
Mice were conditioned on the first 3 days, without and
with rewards on the first and second/third days, respec-
tively. The measurement used for evaluation was per-
formed on the fourth day. The test lasted until the animal
found all the four sugar pellets, but it was maximized for
5 min (Zhang and O’Donnell 2000). The number of
visited, repeated (when the animal reentered a previously
visited reward-containing arm), and missed arms (when
the animal entered an arm that does not contain rewards),
as well as the number of the found rewards and the time to

find all the rewards were measured (Astur et al. 2004;
Crusio and Schwegler 2005).

We determined the spatial working (the number of
repeated arms divided by all visits, then multiplied by
100) and reference (the number of missed arms divided
by all visits, then multiplied by 100) memory errors.

Novel object recognition (NOR) test

This test was carried out in a 40 × 40 cm high-walled box
(open-field box) divided into 20 sections and lasted for
3 days. On the first day, the animals are habituated for
5 min, and the test served as an open field test (OFT) when
the spontaneous locomotor activity and anxiety (time spent
by moving, in the middle and at the periphery) were
evaluated (Carola et al. 2002; Gaszner et al. 2012;
Scheich et al. 2016). On the second day, two identical
objects (smaller than the mouse) were placed in the test
area, and the mice were allowed to familiarize with these
objects for 5 min. On the third day (after 24 h), one object
was replaced with a new one of different shape and color,
and the animals have observed it for 5 min. We detected
how much time the mice spend with the discovery of the
familiar and the novel objects; the ratio of which was
determined as the recognition index (Antunes and Biala
2012).

All experiments were recorded by the Noldus system
and evaluated by the EthoVision XT software.

Statistical evaluation

Data are shown as means ± SEM, and factorial ANOVA
followed by Tukey’s HSD post hoc test was used for
statistical evaluation. Significant differences were
highlighted in all figures as follows: *p < 0.05,
**p < 0.01, ***p < 0.001 (related to age; older groups
vs. young ones); #p < 0.05, ##p < 0.01, ###p < 0.001 (re-
lates to sex; females vs. males); +p < 0.05, ++p < 0.01,
+++p < 0.001 (related to genotype; KO vs. WT).

Results

Behavior of male and female sst4 KO mice of different
ages in comparison with respective WT to controls
in the Y-maze

Young male and female WT and sst4 gene-deficient mice
visited significantly more arms than their older
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counterparts. Furthermore, the 17-month-old female WTs
visited significantly less arms compared with males. Dele-
tion of the sst4 receptor did not alter the behavior in this test
in any age groups either in males or females. There were
no significant differences in arm combinations in relation
to age, sex, and sst4 receptor deletion (Fig. 1).

Sst4 deficiency and aging worsen the RAM
performance of female but not male mice

Young sst4 gene-deficient female mice visited, repeated,
and missed significantly less arms than the WT counter-
parts. There was a remarkable sex difference in young
mice, females repeated andmissed significantly more arms
than the males, and also visited more arms, although this
parameter was not statistically significant. In the female,
but not in the male WT group, young mice visited, repeat-
ed and missed more and found significantly more rewards
than the respective old ones (Fig. 2).

Working and reference memory functions of male
and female sst4 KOmice of different ages in comparison
with respective WT controls in the RAM

Surprisingly, both aging and sst4 deletion significantly
improved the working memory of female but not of male
mice. However, the working memory of young and the
referencememory of oldWT femalemicewereworse than
these functions of age-matched male controls, respectively
(Fig. 3).

Aging decreases spontaneous locomotor activity
and increases anxiety level in both sexes independently
of the sst4 receptor in the OFT

The 12- and 17-month-old mice of both sexes and
genotypes moved significantly less during the 5-min
measurement, spend less time in the middle and more
at the periphery of the OF box than their young controls.

Fig. 1 a The total number of visited arms and b arm combination
in the Y-maze test showing spatial working memory of mice by
spontaneous alternation of male and female sst4 gene-deficient
mice and WT counterparts of three different ages (3-, 12-, 17-

months-old). c Representative heatmap pictures of male KO in the
three different age groups. Data are means + SEM, *p < 0.05,
**p < 0.01, ***p < 0.001 (vs. age); #p < 0.05 (vs. sex); factorial
ANOVA followed by Tukey’s HSD post hoc test
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It is also important to note that in the young WT group,
females spend significantly more time in the middle and

less at the periphery than the age-matched males
(Fig. 4).

Fig. 2 a The number of visited, b amount of reward found in the
RAM. c Representative heatmap pictures of female WT in the
three different age groups. Data are means + SEM, **p < 0.01,

***p < 0.001 (vs. age); #p < 0.05 (vs. sex); +p < 0.05 (vs. gene);
factorial ANOVA followed by Tukey’s HSD post hoc test

Fig. 3 a Working and b reference memory functions. Data are means + SEM, ***p < 0.001 (vs. age); #p < 0.05 (vs. sex); +p < 0.05 (vs.
gene); factorial ANOVA followed by Tukey’s HSD post hoc test
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Decreased exploratory behavior in sst4-deficient young
male, female and aged mice, but unaltered novelty
detection and recognition memory functions in the NOR
test

Young WT male mice spend significantly more time
with both the familiar and novel objects then the sst4
gene-deficient ones, as well as the female counterparts
and old ones both in cases of the first test (day 2) and the
repeated test (day 3) (Fig. 5a–d).

The older, 12-, and 17-month-old mice of both sexes
and genotypes were much less interested in exploring
both objects. The recognition index determined by the
ratio of the novel and the familiar object investigations
showing the memory function did not show any differ-
ence in any groups (Fig. 5e).

Discussion

We show here that aging and sex are very important
factors of behavioral parameters that have to be focused
on in such studies. Furthermore, the somatostatin sst4
receptor is likely to be involved in locomotion and
exploratory behaviors only in young mice and does
not influence behavior during normal aging.

Somatostatin is expressed in brain regions related to
pain and mood regulation like the dorsolateral prefron-
tal, cingulate cortex, and amygdala (Guilloux et al.
2012; Sibille et al. 2011; Tripp et al. 2011). Its important
inhibitory functions in several physiological and patho-
physiological processes, such as sensory, locomotion
and motor coordination (Zeyda et al. 2001), stress-
related and learning activities (Viollet et al. 2008), mood
regulation (Engin et al. 2008; Lin and Sibille 2015),
cognitive performance, and neurodegeneration (Saito

et al. 2005) has also been evidenced in animal models.
Furthermore, lower somatostatin levels were measured
in the cerebrospinal fluid and the brain areas of patients
with major and bipolar depressive disorders, schizo-
phrenia, Alzheimer’s, and Parkinson’s diseases (Lin
and Sibille 2013).

Somatostatin levels strongly decrease in the aging
brain to that mRNA and protein levels (Florio et al.
1991; Kuwahara et al. 2004), and its functions are also
altered (French et al. 2017; Kim and Choe 2018).

The expression of the sst4 receptor in the brain
is similar to that of somatostatin (Martel et al.
2012), but there are no data about its functions
and changes in aging. We earlier found enhanced
inflammatory and neuropathic hyperalgesia in sst4-
deleted mice (Helyes et al. 2009). Increased
depression-like behaviors and anxiety, as well as
altered neuronal activation in the central and
basolateral amygdaloid nuclei, were detected in
sst4 gene-deficient mice upon both acute and
chronic stress (Scheich et al. 2017b).

The present results clearly demonstrate that the lack
of sst4 only influences some behaviors of young mice:
females visited, repeated, and missed significantly less
arms than the WTs in the RAM, while males showed
decreased exploration in the NOR. Since the outcomes
of these behavioral tests are greatly modified by the
anxiety level of the animals, and the sst4-deficient mice
have more anxious and depressive-like phenotye
(Scheich et al. 2016), our findings might not only be

Fig. 4 a Time spend with moving, b distance moved, and c time spend in the middle in the open field box. Data are means + SEM,
*p < 0.05, **p < 0.01, ***p < 0.001 (vs. age); #p < 0.05 (vs. sex); factorial ANOVA followed by Tukey’s HSD post hoc test

�Fig. 5 a–b Time spend of familiar/familiar object, c–d the time of
familiar/novel object zone, and e recognition index in the NOR
test. f Representative heatmap pictures of male WT in the three
different age groups. Data are means + SEM, ***p < 0.001 (vs.
age); ##p < 0.01, ###p < 0.001 (vs. sex); +p < 0.05 (vs. gene);
factorial ANOVA followed by Tukey’s HSD post hoc test

636 GeroScience (2019) 41:631–641



637GeroScience (2019) 41:631–641



explained by the direct inhibition of learning and loco-
motion by somatostatin via this receptor, but higher
stress level could also be an influencing factor.

Since substantial influence of aging and sex on the
behavioral parameters in rodent experiments is well-
established (Frick et al. 1999; Sutcliffe et al. 2007), we
investigated the impact of these factors in our test sys-
tems in order to get a complex picture. The OFT (Carola
et al. 2002) and the spontaneously alternating Y-maze
test are suitable for determining spontaneous locomotor
activity, exploratory behavior, and anxiety level
(Borbély et al. 2013). Furthermore, the arm combination
in the latter test also refers to working memory func-
tions, since the animal has to remember the two arms
that visited for the previous time to get the opportunity
to choose and create a new alternative (Hughes 2004).
Locomotor activity, anxiety, exploration time in both
sexes, but working memory of females declined with
age. Young males showed worse locomotor activity,
higher anxiety, and better recognition memory, but old
ones better working memory than females. Young mice
moved significantly more, spend longer time in OFT
center, and visited more arms in the Y-maze than older
ones of both sexes. As for sex differences, we found that
young females were more active than males, but the
oldest females were less active and anxious than the
respective males.

The influence of aging and sex on behavioral and
memory parameters was investigated by others ear-
lier with C57BL/6NIA mice. They found deteriorat-
ed memory with aging in both sexes up to 25 months
in the Morris water maze, elevated plus maze, OFT
that are in agreement with our findings. The 17-
month-old mice showed less exploratory behavior,
females had higher anxiety level and better spatial
reference memory than males (Frick et al. 1999).
Cognitive tests were performed in order to assess
spontaneous movement, daily activity, distance
moved, velocity, and acceleration in a 90-h period
of time in young and old (C57B1/6J male 6, 21 and
27 months old) mice. Learning abilities and locomo-
tor activity decreased age dependently and similarly
to rats and humans. However, memory decline was
not observed in all elderly mice (Logan et al. 2018).
Furthermore, in a recent study, cognitive decline was
investigated in C57BL/6J mice in the RAM test after
brain irradiation which showed that this test is suit-
able method for assessing memory function in ro-
dents (Ungvari et al. 2017b).

In both the RAM and NOR tests, the working and
recognition memory of young animals were better,
respectively. The NOR is widely used to examine
memory processes (Bevins and Besheer 2006).
Young WT females visited, missed, and repeated
more arms of the RAM, but old males found more
rewards. In the NOR, young males spend longer
time by exploring the novel object than both young
females and older males, the recognition index was
smaller in females. Similarly to our mouse results
here, male rats were shown to perform better in the
recognition test (Sutcliffe et al. 2007).

There is a strong proof-of-concept that sst4 is a valu-
able target for the development of analgesic and anti-
depressant, as well as anti-inflammatory drugs provid-
ing a unique tool for the treatment of these common
comorbidities particularly in the elderly. Therefore,
small molecule sst4 agonists with a completely new
mechanism of action are under development for chronic
neuropathic pain, concomitant mood disorders, and neu-
rogenic inflammation that are still important unmet
medical needs (Botz et al. 2017; Pintér et al. 2006;
Scheich et al. 2016).

Synthetic sst4 agonists inhibit pain, inflammation
(Sándor et al. 2006; Schuelert et al. 2015), depression-
like behavior (Scheich et al. 2016), and as neurodegen-
eration and cognitive dysfunction via increasing
neprilysin activity leading to decreased cortical Aβ1–42

formation in rodent models (Sandoval et al. 2011,
2012). We can conclude from the present results, that
sst4 does not influence these functions during normal
aging without more severe neuronal damage. Therefore,
sst4 agonists, as novel drug candidates, are not likely to
have a major influence on locomotion and learning
ability.
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