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Abstract: Atrial fibrillation (AF) is the most common arrhythmia and has a major impact on morbidity
and mortality; however, detection of asymptomatic AF is challenging. This study aims to evaluate the
sensitivity and specificity of non-invasive AF detection by a medical wearable. In this observational
trial, patients with AF admitted to a hospital carried the wearable and an ECG Holter (control) in
parallel over a period of 24 h, while not in a physically restricted condition. The wearable with
a tight-fit upper armband employs a photoplethysmography technology to determine pulse rates
and inter-beat intervals. Different algorithms (including a deep neural network) were applied
to five-minute periods photoplethysmography datasets for the detection of AF. A total of 2306 h
of parallel recording time could be obtained in 102 patients; 1781 h (77.2%) were automatically
interpretable by an algorithm. Sensitivity to detect AF was 95.2% and specificity 92.5% (area under
the receiver operating characteristics curve (AUC) 0.97). Usage of deep neural network improved the
sensitivity of AF detection by 0.8% (96.0%) and specificity by 6.5% (99.0%) (AUC 0.98). Detection of
AF by means of a wearable is feasible in hospitalized but physically active patients. Employing a
deep neural network enables reliable and continuous monitoring of AF.

Keywords: clinical trial; wearable sensors; atrial fibrillation; photoplethysmography; deep neural
network
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1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia with rising incidence and prevalence [1,2];
the current prevalence is estimated to be between 2% to 4% [3]. AF is more common in males and
shows an increasing prevalence with age [4]. There are a number of modifiable known risk factors for
AF, including obesity, hypertension, diabetes mellitus, and smoking, as possible contributors to the
development and progression of AF [5].

AF is associated with a broad spectrum of clinical events, including ischemic stroke. The proportion
of time in AF associated with a significant risk for complications is unknown, thus requiring further
evaluation [6]. Due to the paroxysmal and often asymptomatic occurrence of AF, ECG Holter monitoring
is frequently employed to detect episodes of silent AF [7]. However, ECG Holter monitoring has
limitations: Carrying an ECG Holter limits patients in their daily activities and restricts monitoring to
relatively short periods of time. Additionally, ECG Holters are prone to movement artifacts, and thus,
not reliable during phases of physical activity [8].

Wearables that are used as medical devices (defined as having a regulatory approval like a
Conformité Européenne (CE) mark for Europe) offer an affordable non-invasive screening option
for AF [9–13]. Photoplethysmography (PPG) is frequently employed in such wearables [14]. It is
an optical method to measure volume changes in the tissue. PPG is used to calculate clinically
relevant parameters, e.g., heart rate, inter-beat intervals (IBI—the interval between two pulse waves in
milliseconds) [15]. Intervals between heartbeats are a parameter often used for the detection of AF.
PPG derived IBI show a high correlation to the ECG derived heart rate intervals (gold-standard) [16].
Technologies employed in wearables and evaluated for the detection of AF are most often based on
single-lead ECG or PPG and can be separated into active and passive approaches: Active monitoring
requires that the patient initialized a recording, e.g., individuals have to place their fingers on the
electrodes of a smartphone like device. In contrast, wearables with a passive monitoring approach do
not require patient intervention. With this approach, measurements are performed continuously or
semi-continuously (e.g., every 5 min). In a previous clinical trial with an active approach, wearable
detection of AF was possible with a sensitivity of 91.5% and specificity of 99.6% [13]. In clinical
trials with a passive approach, equivalent results were shown in patients where physical activity
was restricted while recording. However, there was a risk of missing asymptomatic episodes of AF.
When such wearables are used for ECG recordings, usage of adhesives or bandages is needed, and there
are limitations regarding diagnostic adherence [9]. In the Huawei Heart Study, more than one-third of
individuals with suspected AF were primarily detected with a periodical passive PPG approach [12].
However, a recent trial using a passive approach showed that there is a gap in detecting AF under
controlled and uncontrolled conditions, most likely due to periods of physical activity with an increase
in heart rate and movement artifacts [17]. Some wearables under evaluation had varying sampling
rates, with considerable risk of missing AF [10].

A novel upper arm medical wearable (Everion®, Biovotion AG, Switzerland) employs a passive
PPG approach, allowing reliable long-term, high-resolution data recording. This device records of
patients’ physical activities during recording and provides information about the proportion of the
automatically interpretable time.

The aim of this study was to evaluate the performance of a medical wearable by means of
employing a PPG technology for AF detection in patients with paroxysmal or persistent AF study
during inpatient conditions.

2. Materials and Methods

This study was an open-label, single-arm, inpatient, single-center trial. The clinical investigation
plan was approved by the Ethical Committee of the University Witten/Herdecke, Germany, and was
registered in the German clinical trials register (DRKS00014821).

Patients were recruited consecutively at the Department of Cardiology, University Hospital
Wuppertal between September and December 2018 (Figure 1).
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Figure 1. Flow-chart of patient disposition for algorithm development and group classification for
the trial.

The primary outcome of this trial was the evaluation of sensitivity and specificity of non-invasive
AF detection by a medical wearable at rest and during moderate physical activity. The secondary
outcome was the determination of the proportion of recording time interpretable by algorithms.

All patients gave written informed consent prior to enrolment in this trial. Admitted patients with
documented AF (e.g., prior to electrical cardioversion) or known paroxysmal AF were screened
for eligibility for trial participation. Inclusion criteria were patients admitted for AF by their
treating cardiologist and emergency room show ups with age ≥ 18 years and an indication for
ECG Holter monitoring. Exclusion criteria were any cardiac implants or conditions which might
impair measurements (e.g., upper arm tattoos, skin diseases).

Patients had no restrictions on their physical activity. At the end of the monitoring period,
a safety assessment was performed. Patients answered a short questionnaire at the study end to
evaluate wearable usage (discomfort, pain, sense of safety, design, willingness to perform inpatient,
and outpatient monitoring).

In line with the standard of care in the hospital, patients carried a three-lead ECG Holter (Lifecard
CF, Spacelabs Healthcare GmbH, Germany) for detection of AF over 24 h. ECG Holter data were
reviewed for atrial arrhythmias by two cardiologists independently using a standard of care software
tool (Sentinel 10, Spacelabs Healthcare, Snoqualmie, WA, USA). In the case of differing diagnoses, a third
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cardiologist was consulted. Heart rhythm was classified into either sinus rhythm, AF, or atrial flutter,
and this classification served as the gold standard for further analysis (Figure 2). ECG datasets were
discarded if more than 50% of recorded data was not interpretable as defined by our independent raters.
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In parallel, a commercially available medical wearable (Everion, Biovotion AG, Switzerland) was
worn by the patients. The wearable was attached to the preferred upper arm of the patients by the
investigator. The time base of the wearable was synchronized to the ECG Holter. The wearable is a CE
marked medium-risk device (class IIa), according to the Directive 93/42/EEC (firmware used was for
clinical investigation only). It has different sensors for non-invasive monitoring of vital signs (e.g., PPG,
accelerometry, gyroscope), memory storage of 16 MB Flash and a battery life of up to 32 h. Parameters,
such as heart rate, IBI, the morphology of the pulse wave, and a physical activity index (based on the
accelerometry data), are calculated using proprietary algorithms of the manufacturer implemented
in the firmware. PPG-Signals were acquired with a sampling rate of 51.2 Hz. IBI were calculated
permanently and stored approximately every 40 s. The device also provides recording quality indices
for each data point. Data stored in the wearable were downloaded via a Bluetooth connection.

Two different approaches for detecting AF from the downloaded data were investigated: First,
an established metric for AF detection, the normalized root mean square of successive differences
(nRMSSD) of the IBIs, to differentiate between sinus rhythm and AF was used [11]. Second, a deep
neural network (DNN) to detect episodes of AF was applied. Data with an insufficient quality based
on the point-in-time accuracy estimate in the pre-processed data were excluded. Sufficient quality was
defined when such an estimate for the IBI values could be calculated.

nRMSSD classification: Data was split into successive five-minute periods, and nRMSSD was
calculated for all of these. For determining the optimal nRMSSD threshold, the dataset was split into a
‘training cohort’ consisting of the first 80% of the recruited patients and a ‘testing cohort’ consisting
of the remaining 20%. Receiver operating characteristics (ROC) were calculated for five-minute
periods in the ‘training cohort’, and the threshold with the highest Youden’s J statistic was determined.
This threshold was then applied to calculate the sensitivity and specificity of nRMSSD based AF
detection in the ‘testing cohort’. Algorithms presented were not trained to differentiate between AF
and atrial flutter, only to discriminate AF.

Deep neural network classification: As data source, the same five-minute periods of IBI values
were used as for the nRMSSD-model described above. As the dataset contained significantly more
non-AF periods than AF periods, oversampling was performed by replicating the randomly selected
samples to achieve a balanced dataset. The IBI values were encoded together with their associated
quality scores into a multi-dimensional vector space, where IBI values with different quality scores are
taken orthogonal to each other. A DNN was trained unsupervised on the dataset to extract the relevant
features for AF detection. The training objective was given by maximizing the mutual information
between IBI values that were separated by a randomly chosen time point within the five-minute
period. The algorithmic details for computing of mutual information can be found in the appendix
(see Appendix B) [18]. The unsupervised classification was carried out by one-nearest neighbor
classification (Figure 3). Additionally, a second DNN (classifier) was trained on the extracted features
from unsupervised learning using annotated data. The evaluation of the DNNs were carried out by
randomly splitting the pre-processed data into the train (80%)/validation (10%)/test datasets (10%).
Subsequently, sensitivity and specificity were calculated using ten-fold cross-validation. For testing,
the unbalanced original data was used.
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Figure 3. First two principle components of the latent space from the unsupervised Deep Learning
approach for five-minute periods. Results of one-nearest neighbor classification for individual periods
are shown that would be interpreted as AF (orange) or non-AF (blue).

A prerequisite for reliable detection of AF over time in clinical practice is sufficient data quality
and that the recording time is maximal, e.g., a given patient might carry a wearable for 24 h; however,
the proportion of recording time automatically interpretable by algorithms (=interpretable time) may
be decisively less. [19,20] From the data obtained, the percentage of ‘good quality data’ was assessed by
aggregating the time periods during which data were available that enabled an automatic IBI analysis.
Others have used a cut-off value of 90% analyzable data for each five-minute period in resting patients;
however, in order to apply a pragmatic approach in potentially active patients value of 80% was used
for this trial. A threshold of ≥ 80% of the interpretable time was considered to be sufficient for clinical
monitoring. Logistic regression analysis was used to evaluate which factors have an impact on the
analyzable time. To evaluate the success of wearable data recording, the total recording time, as well
as total interpretable time (time with accepted quality indices), were calculated.

Due to the known effect of patients’ physical activity on the detection of AF, an activity index over
time was calculated for each patient. Based on the activity classification provided by the wearable,
any classification besides ‘resting’ was considered as physical activity (e.g., walking flat). From the
activity data provided by the wearable subsequent five-minute periods were labeled as ‘active’ or
‘resting’. The activity index is expressed as a percentage of each hour of recording. It was analyzed if
detection of AF was possible with the wearable used during periods with and without physical activity.

For accuracy testing of heart rate estimation by the wearable in patients with different underlying
heart rhythms, in each patient, one hour of ECG recording with a low rate of artifacts was selected
manually (see Appendix B). Accuracy evaluation was performed as described elsewhere [21]. For data
analysis, a standard software tool was used (MATLAB R2018b; MathWorks, Natick, MA, USA).
Statistical Analysis

The confidence interval was set to 95% for all statistical analyses. Non-parametric categorical
distributed variables were tested with a 2-tailed Fishers exact test or Chi-Square test. Continuous
variables were tested with the Mann-Whitney test. For analyses of variables that have an impact
on interpretable time, logistic regression was performed. For the primary outcome of AF detection
Receiver Operating Characteristics (ROC) analysis for nRMSSD was performed, and the area under
the curve (AUC) of the ROC-analysis was calculated.
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3. Results

Five of the 107 patients enrolled were excluded, due to missing data or poor ECG Holter data
quality. The 102 patients analyzed (age 71.0 ± 11.9 years; 52% male) had a mean CHA2DS2-VASc-Scores
of 2.7. Demographical data, comorbidities, and concomitant medication of these patients are given in
Table 1.

Table 1. Demographics, comorbidities, concomitant medication, and CHA2DS2-VASc Score of
patients enrolled.

Patient Characteristics No. (%)

Sex
Male 53 (52.0)

Female 49 (48.0)

Age [years] 71.0 ± 11.9

Height [cm] 176.6 ± 10.8

Weight [kg] 86.1 ± 20.0

BMI [kg/m2] 28.8 ± 5.4

Arm circumference [cm] 29.6 ± 3.7

Comorbidities

Arterial hypertension 82 (80.4)

Diabetes mellitus 20 (19.6)

Stroke/ Myocardial infarction 21 (20.6)

Reduced left ventricular ejection fraction 32 (31.4)

Peripheral vascular disease 2 (1.9)

CHA2DS2-VASc-Scores
0 8 (7.8)
1 15 (14.7)
2 17 (16.7)
3 30 (29.4)
4 23 (22.5)
5 9 (8.8)

>5 0 (0.0)
Mean 2.7 ± 1.4

Concomitant medication

Anticoagulants 90 (88.2)

Antiplatelet 14 (13.7)

Beta-blocker 82 (80.4)

Calcium channel blocker 23 (22.5)

Renin-angiotensin system inhibitors 68 (66.7)

Other antihypertensive drugs 52 (51.0)

Other antiarrhythmic drugs 16 (15.7)

Glycosides 9 (8.8)

Heart rhythm by ECG Holter reads

Sinus rhythm 43 (42.2)
Atrial fibrillation 48 (47.0)

Atrial flutter 11 (10.8)
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By means of ECG Holter recording the patients were diagnosed (Cohens kappa 0.87) as having:
Only sinus rhythm (n = 43, 42.2%), AF (n = 48, 47.0%), or atrial flutter episodes (n = 11, 10.8%).
Patients with sinus rhythm were younger compared to those with AF (p = 0.026). There were no
significant differences between patients with different heart rhythms with respect to comorbidities and
concomitant medication.

The mean data recording time was 23.0 ± 3.3 h, comprising 2306 h of total recording time. In 62
out of the 102 patients (60.8%), the interpretable time was ≥80%; for the algorithms applied 1781 h
(77.2%; average of 17.7 h) were evaluable (Tables 2 and 3); however, the time varied considerably
among patients (SD 23.2%).

Table 2. Mean interpretable time, sensitivity, specificity, positive predictive value, negative predictive
value, and AUC of ROC-analysis for detection of AF by using PPG analysis overall and during moderate
physical activity and the average sensitivity/ specificity with SD estimated with 1-nearest neighbor
classification and a deep neural network trained on five-minute periods on different training and
validation test splits.

Method Sensitivity [%] Specificity [%] PPV
[%]

NPV
[%] AUC

nRMSSD
-periods in physical activity

95.2
92.9

92.5
85.5

70.1
63.1

97.8
97.7

0.97
-

1-nearest neighbor classification
-periods in physical activity

96.0 ± 0.4
96.8 ± 0.6

99.0 ± 0.2
96.9 ± 0.5

94.7 ± 0.6
94.3 ± 0.4

99.3 ± 0.0
99.3 ± 0.1

0.98 ± 0.2
-

DNN
(classifier trained on annotated data)

-periods in physical activity

97.0 ± 0.3
97.0 ± 0.3

95.0 ± 0.4
95.8 ± 0.4

81.0 ± 1.3
83.8 ± 1.2

99.3 ± 0.1
99.3 ± 0.1

0.99 ± 0.2
-

nRMSSD = normalized root mean square of the successive difference, DNN = deep neural network, PPV = positive
predictive value, NPV = negative predictive value, AUC = area under the receiver operating characteristics curve,
ROC = receiver operating characteristic.

Table 3. Differences in demographics, medical characteristics, concomitant medication, and measurement
conditions (below the bold line) of patients with interpretable time < 80% and ≥80%. (Significant
differences are marked in bold, Continuous variables are given as mean ± SD).

Characteristics
Interpretable Time < 80% Interpretable Time ≥ 80%

p Value
No. (%)

Count 40 (39.2) 62 (60.8)

Sex
Male
Female

18 (45.0)
22 (55.0)

35 (56.5)
27 (43.5)

0.312

Age [years] 74.3 ± 9.8 68.9 ± 12.8 0.023

Height [cm] 168.6 ± 10.2 175.1 ± 10.6 0.003

Weight [kg] 86.8 ± 23.5 85.7 ± 17.6 0.619

Arterial hypertension 35 (87.5) 47 (75.8) 0.203

Diabetes mellitus 9 (22.5) 11 (17.7) 0.614

Stroke/myocardial
infarction 10 (25.0) 11 (17.7) 0.454

Reduced left ventricular
ejection fraction 17 (42.5) 15 (24.2) 0.080

Peripheral vascular
disease 1 (2.5) 1 (1.6) nA
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Table 3. Cont.

Characteristics
Interpretable Time < 80% Interpretable Time ≥ 80%

p Value
No. (%)

CHA2DS2-VASc-Scores
0
1
2
3
4
5

2 (5.0)
2 (5.0)
6 (15.0)
13 (32.5)
12 (30.0)
5 (12.5)

6 (9.7)
13 (21.0)
11 (17.7)
17 (27.4)
11 (17.7)
4 (6.5)

0.172

Anticoagulants 36 (90.0) 54 (87.1) 0.760

Antiplatelet 4 (10.0) 10 (16.1) 0.557

Beta-blocker 37 (92.5) 45 (72.6) 0.020

Calcium channel blocker 13 (32.5) 10 (16.1) 0.088

Renin-angiotensin
system inhibitors 32 (80.0) 36 (58.1) 0.031

Heart rhythm
Sinus rhythm

Atrial fibrillation
Atrial flutter

14 (35.0)
23 (57.5)
3 (7.5)

29 (46.8)
25 (40.3)
8 (12.9)

0.225

Arm circumference [cm] 29.9 ± 2.9 29.9 ± 4.7 0.559

Activity index (median) 14.7% 14.9% 0.204

1 nRMSSD-based algorithm

Detection of AF in the algorithm testing dataset was possible with a sensitivity of 95.2% and
a specificity of 92.5% (Table 2) based on nRMSSD algorithm. Data obtained with the ECG Holter
contained 5156 five-minute periods of AF. For 4469 of these episodes, simultaneous wearable data
of sufficient quality was available. Of these 4,469 periods (algorithm training and algorithm testing),
4141 were correctly classified (true positive) as AF. In total, 1905 periods were classified false-positive,
328 periods were false-negative. Of the 1905 false-positive periods, 88 (4.6%) had a positive activity
index. During 3,464 five-minute time periods with physical activity, AF was present in 755 (21.8%)
periods. Of these, 701 periods were correctly classified as AF with a minor decrease in sensitivity
(92.9%) and specificity (85.5%).

2 DNN-based algorithm

Further improvement in the detection of AF was achieved by means of the DNN (Table 2). On 10
different training /validation splits, the best model achieved a sensitivity of 96.9% and specificity of
95.4% (AUC 0.99). With ten-fold cross-validation of the models applied to the test set resulted in an
average sensitivity of 96.9 ± 0.3% and a specificity of 95.0 ± 0.4% (AUC 0.99 ± 0.1). Applying a fully
unsupervised approach to the complete datasets resulted in a sensitivity of 96.7% and a specificity
of 98.6% (AUC 0.98). With the same cross-validation methods applied to the test set on average,
a sensitivity of 96.0 ± 0.4% and a specificity of 99.0 ± 0.2% (AUC 0.98 ± 0.2) was achieved. In the
five-minute periods with a positive physical activity index, sensitivity (96.8 ± 0.6), and specificity
(96.9 ± 0.5; AUC 98.9 ± 0.1) of AF detection remained unchanged with the DNN.

3 Further analysis

Patients with an interpretable time ≥ 80% were allocated to one group, and differences in
comorbidities, concomitant medication, arm circumference, and activity index were compared to
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those with an interpretable time < 80% (Table 3). Descriptive characteristics between the two groups
differed as follows: Patients with an interpretable time < 80% were older (p = 0.023) and used more
antihypertensive agents (beta-blockers, p = 0.020; renin-angiotensin system inhibitors, p = 0.031).
Logistic regression analysis showed that age (p = 0.039, OR 0.95, CI 0.904–0.997) had a negative impact
on interpretable time. In contrast, height had a positive impact (p = 0.002, 1.10, 1.034–1.162).

Measurement conditions in both groups with respect to heart rhythm, side of recording,
arm circumference, and activity index were comparable (Table 3). The physical activity level of
all patients during 24 h was 16.1% based on a positive activity index in five-minute periods.

The activity index showed peaks after breakfast and in the afternoon (Figure 4).
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Figure 4. Percentage of five-minute periods with a positive physical activity index of all patients for
24 h.

Carrying the wearable did not induce any discomfort or pain in 97.5% of the patients. More than
70% of the patients could envisage using such a wearable for home monitoring. No serious adverse
effects were observed during the trial; however, one device-related adverse effect was observed; a skin
irritation after wearing the device was fully reversible after six days.

4. Discussion

Our study suggests that reliable detection of AF in high-risk patients for AF is possible with the
medical wearable used, also during time periods with physical activity. The deep neural network
approach showed an even better ability of AF detection than the established nRMSSD algorithm.
The DNN approach enables a reliable computer-based analysis, and thereby, the option of a real-time
AF detection. Using a passive measurement approach, a high interpretable time proportion (77.2%)
was achieved.

The high-risk population studied was comparable with respect to age and cohort distribution
in terms of heart rhythm to the population of the multicenter trial of Brasier et al. [13]; however,
the population in their trial had a higher mean CHA2DS2-VASc-Scores reflecting a higher prevalence
of comorbidities.

Detection of AF with nRMSSD in five-minute periods showed higher sensitivity, but lower
specificity than in other studies conducted with an active measurement approach; however, our results
were obtained in a not physically restricted population [11,13]. Detection of AF within periods of
physical activity represents a challenge for wearables (also with ECG Holter monitoring). In some trials,
there was a gap in the detection of AF during physical active vs. restricted physical conditions [17].
In other trials, like the Apple Heart study, no measurements were performed while participants were
physically active [10]. In our trial, the overall physical activity index (as provided by the wearable)
observed probably does not reflect real-world physical activity, since only inpatients were enrolled.
Nevertheless, also in periods with a positive activity index, detection of AF was feasible with good
reliability. However, it is a limitation that the activity index used was not assessed with a standardized
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reference method in parallel. There is a difference between the number of available five-minute periods
in AF in ECG Holter and wearable data., i.e., due to the interpretable time of wearable data.

The deep learning setup applied-consisting of unsupervised feature extraction followed by
unsupervised classification-showed higher sensitivity and specificity in detecting AF. These results were
comparable to Tison et al. [17]; additionally, they were achieved with unlabeled data. Large amounts
of unlabeled data were accurately classified with no cumbersome annotation of data performed.
Furthermore, no data-pre-processing steps were needed, such as rescaling mean and variance of
IBI values, and noise is mostly discarded in the encoding IBI values with respective quality indices.
DNNs are preferably trained on raw-data, as they can extract information from data that human
observers would miss; however, even with the use of pre-processed data, such approaches improve
detection of AF. The wearable utilized in this study employed proprietary algorithms and only provided
pre-processed data. This might impact the information content originally contained in the raw data.
Especially in a medical context, it should be mandatory to perform context-related accuracy testing
when using pre-processed data (see Appendix A). Testing the pre-processed data revealed a comparable
correlation for ECG and PPG derived heart rate estimation [21]. For practical application of such
medical wearables, utilization of pre-processed data may represent the more frequent use case.

In this trial, the recording time was identical to the monitoring time (=time device was used
by patients), driven by the fact that the wearable was attached and dismantled by the investigator.
However, this might be different in daily practice, as patients might, e.g., wear the device while the
battery is empty. It is of interest to note that in other studies, no clear time definitions and data are
provided, e.g., in the Apple Heart and Huawei Heart study [10,12]. An analysis of variables that have
an impact on interpretable time in this trial is at least partly in accordance with published data [22].
The impact of age and height on the interpretable time shown by the logistic regression was modest.

The European Society of Cardiology guidelines on the management of AF recommends screening
for silent AF with ECG-based devices in selected patient populations [4]. New technologies, such as
smar watches (ECG and PPG based), are not yet recommended in the guidelines as no formal
evaluation of these devices has been performed yet. Passive monitoring approaches with wrist-worn
smartwatches (as those used in the Apple Heart and Huawei Heart studies) showed an acceptable
diagnostic performance in a non-risk population. However, the performance of such devices is
not sufficient for screening for silent AF, due to their low interpretable time with respect to a 24 h
measurement. It is known that recording of ECG Holter is hampered by noisy measurements and/or
artifacts induced by physical activity, thus potentially leading to under-diagnosis of AF episodes. In a
recent analysis, an elimination rate of 30% (i.e., not interpretable ECG recording time) of data was
observed [23]. A disadvantage of conventional adhesive ECG-patches used until now is the limited
adherence of patients, due to discomfort, visibility, and skin reactions.

The wearable used in this trial was chosen because of a tight upper arm fit in order to reduce
artifacts induced by probe-tissue movement, e.g., due to physical activity [15]. In this respect, it is
worth mentioning that the activity index had no significant impact on interpretable time. Moreover,
ambient light emitted by external sources interference is minimized by a sensor location most often
covered by clothing. The medical wearable could be connected to secure web-based services, and thus,
provide immediate feedback. The respective results of the questionnaire used in this trial showed that
the patients appreciated the non-invasive wearable; however, it was used for one day only. It remains
to be studied if patients are willing to wear such a medical wearable for long-term monitoring (=high
adherence rate) as it is not a ‘lifestyle-device’. Nevertheless, patients might favor the comfort of such a
wearable in contrast to other options.

Till today it is still under discussion which duration of AF burden is associated with an increased
risk for clinical complications, such as ischemic stroke [6]. Considering the commercially available
wearables and the studied device, data acquisition is based on a block-wise approach (i.e., five-minute
time periods). It is not clear which time resolution (=number of data points per time unit) is needed in
order to be able to detect all AF episodes with sufficient diagnostic accuracy.
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In summary, medical wearables with such specifications offer the option of permanent surveillance,
i.e., live monitoring of the patients by health care professionals. The workload of specialized clinics
may be reduced if live remote patient monitoring was enabled by modern wearables. This could be a
contributively brick for structured disease management applications [24].

This trial evaluated only hospitalized patients at high risk for AF in a proof of concept approach.
Sensitivity and specificity have to be further evaluated in a population at a lower risk for AF. For this
study, we evaluated a population with a high risk of AF. Importantly, patients at ‘moderate’-risk of
AF might represent the most relevant population, in whom longer monitoring times are required to
detect AF episodes. Compliance and adherence were only tested in patients carrying the wearable for
24 h. It remains to be studied how good the acceptance of the wearable is over longer time periods.
Such studies would also help to see how limits of the current version of this wearable can be handled.
If these and other exogenous factors can be overcome, this would achieve a high interpretable time to
maximize high-resolution data. A limitation of our study was that we had to rely on data acquisition
and raw data analysis that was implemented in the wearable and on proprietary quality indices. It is
acknowledged that the signal quality index is critical for AF detection, as noisy sinus rhythm might be
mis-detected as AF. A preliminary accuracy testing was performed (see Appendix B).

5. Conclusions

In conclusion, detection of AF with a medical wearable attached to the upper arm is a feasible and
reliable approach, also during physical activity for remote monitoring purposes. The results presented
encourage the performance of long-term clinical trials with a focus on everyday conditions. Assuming
a positive outcome of such studies, monitoring of patients with AF might move away from Holter
ECG towards medical wearables.
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Appendix A

Table A1. Accuracy of heart rate measurements of the upper-arm wearable (PPG based) compared to
ECG Holter recording. AF, atrial fibrillation.

Cohort Rho r2 % ±10-Beat

All 0.89 0.66 0.88

Sinus rhythm 0.94 0.85 0.97

AF 0.80 0.51 0.80

A-flutter 0.83 0.64 0.88



Sensors 2020, 20, 5517 13 of 15

Sensors 2020, 20, x FOR PEER REVIEW 12 of 15 

 

Author Contributions: Conceptualization, M.J., T.A.D., A.-P.Z., N.D., M.S., G.K., S.I. and L.H.; methodology, 
M.J., T.A.D., R.G., M.K. and C.B.; software, T.A.D., R.G., and C.B.; validation, M.J., T.A.D., R.G., M.K. and C.B.; 
formal analysis, M.J., T.A.D., R.G., M.K. and C.B.; investigation, M.J, A.-P.Z., N.D., S.I., M.S; resources, M.K., S.I., 
M.S; data curation, M.J., T.A.D.; writing—original draft preparation, M.J., T.A.D., L.H., S.I., and M.S.; writing—
review and editing, G.K., D.M-W., A.N. and N.M.; visualization, M.J., T.A.D., R.G. and C.B; supervision, D.M-
W., N.M. and S.I.; project administration, M.J., L.H. and M.S.; funding acquisition, M.J., S.I., and M.S. All authors 
have read and agreed to the published version of the manuscript. 

Funding: This research received funding from the internal grant program (PhD Program Biomedicine) of the 
Faculty of Health at Witten/Herdecke University, Germany and by a grant of HELIOS Kliniken GmbH  
(Grant-ID 047476), Germany. 

Acknowledgments: We would like to thank A.Caduff, A. Uhde, P. Vettel, R. Amacher, G. Haas, the clinical staff 
of the Department of Cardiology, Helios University Hospital of Wuppertal and the Centre for Clinical Studies 
(P. Thürmann, K. Graf, W. Eglmeier, R. Geißen, S. Schmiedl, F. Hohmann), University Witten/Herdecke for  
their support. 

Conflicts of Interest: The author declares that there is no conflict of interest. This trial was an Investigator 
Initiated Trial. This study used the wearable “Everion”-Device provided by Biovotion AG, Switzerland. 
Biovotion did not provide any financial support for the research and had no impact on writing of the manuscript. 
Biovotion did not participate in the analysis of the data or influence the conclusions in any sense. 

Appendix A 

Table A1. Accuracy of heart rate measurements of the upper-arm wearable (PPG based) compared to 
ECG Holter recording. AF, atrial fibrillation. 
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Sinus rhythm 0.94 0.85 0.97 
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Figure A1. (a–c) The accuracy of heart rate estimation by the medical wearable compared to ECG was
calculated by using the Spearmen correlation (left figure). Additionally, a Bland–Altman graph was
plotted with 95% LoA (Limits of Agreement) (right figure). Automated ECG processing was performed
using an open-source algorithm (Sedghamiz H. Complete Pan Tompkins Implementation ECG QRS
detector. In: MATLAB Central File Exchange 2019.).

Appendix B. Deep Neural Network

Data preparation: We split recordings of inter-beat intervals (IBI) values into five-minute periods,
which are manually classified into AF, A-flutter, and non-AF. We extract periods that have at least 80%
reliable IBI values (quality score of IBI values ≤ 13, with 1 indicating best quality and 16 worst quality)
and split them into a training set and validation set. We encode the IBI values together with their
quality score into a 16 dimensional vector, e.g.,

→
zt = [0, . . . , IBI-value, . . . , 0,], where IBI values with

different quality score are orthogonal to each other. As the dataset contains more non-AF examples
than AF examples, we simply oversample the AF class to make the dataset balanced. For the analysis,
we took all five-minute periods that contain at least 200 IBI values and could be uniquely assigned to
the non-AF or AF class.
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Neural Network Model: We trained deep neural networks to maximize the mutual information
I
(
→
ct ;
→
zt
)

between the first t IBI values and the subsequent k IBI values within a five-minute periods,
with t a randomly chosen time point. Computation of the mutual information is realized by first
encoding the sequence of IBI vectors

(
→
z1, . . . ,

→
zt
)

by recurrent neural network to encode the information

into a vector
→
ct and make use of the InfoNCE objective [18] to estimate the mutual information between

→
ct and

→
zt+k for k ∈ {1, 2, 3, 4}. As a result,

→
ct contains all information that can be used to predict the next

4 IBI values. Using mutual information as objective for unsupervised learning has the advantage that
no data-pre-processing steps are needed, such as rescaling mean and variance of IBI values, and that
noise is mostly discarded in the encoding of

→
ct . To classify the training set into AF and non-AF we train

a fully connected network with two hidden layers that takes
→
ct at the end of the period as input and

predicts the labels from the manual classification. This deep learning setup (consisting of unsupervised
feature extraction followed by a classifier on the relevant features) is especially valuable for cases
where large amounts of unlabeled data can be recorded easily, and accurate classification is expensive
or time-consuming.
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