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Abstract

MicroRNAs (miRNAs) have been shown to be promising biomarkers in predicting cancer prognosis. However, inappropriate
or poorly optimized processing and modeling of miRNA expression data can negatively affect prediction performance. Here,
we propose a holistic solution for miRNA biomarker selection and prediction model building. This work introduces the use
of a neural network cascade, a cascaded constitution of small artificial neural network units, for evaluating miRNA
expression and patient outcome. A miRNA microarray dataset of nasopharyngeal carcinoma was retrieved from Gene
Expression Omnibus to illustrate the methodology. Results indicated a nonlinear relationship between miRNA expression
and patient death risk, implying that direct comparison of expression values is inappropriate. However, this method
performs transformation of miRNA expression values into a miRNA score, which linearly measures death risk. Spearman
correlation was calculated between miRNA scores and survival status for each miRNA. Finally, a nine-miRNA signature was
optimized to predict death risk after nasopharyngeal carcinoma by establishing a neural network cascade consisting of 13
artificial neural network units. Area under the ROC was 0.951 for the internal validation set and had a prediction accuracy of
83% for the external validation set. In particular, the established neural network cascade was found to have strong immunity
against noise interference that disturbs miRNA expression values. This study provides an efficient and easy-to-use method
that aims to maximize clinical application of miRNAs in prognostic risk assessment of patients with cancer.
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Introduction

MicroRNAs (miRNAs) belong to a class of small (,22 nt)

endogenous non-coding RNA molecules. MiRNAs play vital roles

in regulating mRNA expression and fine-tuning protein levels

posttranscriptionally [1,2]. Substantial evidence has shown that

miRNAs may serve as promising therapeutic targets for clinical

cancer treatment in the near future [3–5]. Meanwhile, the

potential clinical applications of diagnostic and prognostic

biomarkers are also widely studied and strongly suggest the utility

of measuring circulating and biopsy tissue miRNAs [6–8]. Due to

continual technological innovations in the past years, high-

throughput methods such as miRNA microarray have been

successful in the identification of potential biomarkers from

thousands of mature miRNAs in humans [9,10]. As a result, such

efforts have led to an increasing accumulation of miRNA

expression data in the public Gene Expression Omnibus (GEO)

database [11].

Simultaneous detection of many miRNAs generates a huge

dataset of biological data that requires significant computational

analysis. Although the current miRNA detection technologies are

already very well established, there is still no widely recognized

method for analyzing the massive amount of data obtained by

high-throughput methods [12]. The vast majority of previous

studies assumed a linear relationship between miRNA expression

and disease phenotype [13–15]. This led to wide application of

straightforward statistical methods such as Student’s t-test or the
analysis of variance test for between-group comparison of miRNA

expression values. However, this assumption has not been

specifically tested, or shown to be valid. Alternatively, rather than

a linear relationship, we speculated that a nonlinear association

may be possible between miRNA expression and disease

phenotype. This assumption is primarily based on the knowledge

that miRNAs play multi-faceted and complex roles in many

biological processes [16]. If the nonlinear relationship is valid, it

may imply that traditional miRNA expression data processing,

analyzing, and modeling with linear methods are insufficient.

The improper selection of statistical or modeling methods may

harm the potential performance of miRNAs as biomarkers and

result in poor discrimination of patients [17,18]. We propose one

feasible way to address this issue through transforming miRNA

expression values into a linear variable before establishing a

diagnostic or prognostic model. Using this proposed method, the

present study aims to provide a holistic and generic solution for

miRNA biomarker selection and prediction model construction.

In recent years, artificial neural network (ANN) modeling has been

successfully applied in cancer diagnosis and management [19–21].

Herein, a novel artificial neural network (ANN) modeling method
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was established for this purpose: the neural network cascade

(NNC), an extensible and pyramid-like cascade of small ANN

units. Each small ANN unit has simple network architecture and is

limited to dealing with only one task, such as data transformation,

data integration, or prediction output. In theory, an NNC model

can simultaneously accommodate and process large amounts of

information in parallel. Even if a single input has poor predictive

performance, as long as sufficient input information is given, an

accurate final prediction is guaranteed. The number of input

parameters included in the model depends on the accuracy

requirements placed on the final prediction.

To better illustrate our method, we developed an NNC

prognostic model for death risk assessment in patients with

nasopharyngeal carcinoma (NPC) using a miRNA expression

dataset retrieved from GEO (dataset ID: GSE32960). Our results

suggest a nonlinear association between miRNA expression and

the death risk of patients diagnosed with NPC. The established

NNC model showed good prediction performance by accurately

identifying high-risk patients, even in the case where miRNA

expression levels were artificially disturbed. In summary, such an

effort aims to analytically enhance the utility of miRNAs as clinical

biomarkers for achieving accurate diagnosis and individualized

cancer treatment. Our successful case study analysis of NPC

prognosis using the novel NNC model suggests that this model will

also be applicable to diagnosis and prognosis of other human

diseases.

Materials and Methods

miRNA expression data: acquisition and pre-processing
The miRNA expression dataset for patients with NPC

(GSE32960) was retrieved from GEO. Only the 312 NPC samples

were included in our study. We downloaded the preprocessed

microarray expression values for 873 miRNAs for each sample

and recorded the survival status (alive: 0 or dead: 1) of the

corresponding patient. The original microarray expression values

of each miRNA were then normalized as numbers between 0 and

1 as calculated below:

Normalized value~

(Value{MIN Value)=(Max Value{MIN Value)

Max_Value and Min_Value are the maximum and minimum

original miRNA expression values in the whole collection of

samples, respectively. After that, the samples were randomly

divided into two sets: a model training set (n = 208) and an

external validation set (n = 104). For samples in the training set,

the ANN software STATISTICA Neural Networks (SNN, Release

4.0E) was used to build ANN units, which transform miRNA

expression values into miRNA scores for each of the 873 miRNAs.

The ANN units have three layers: the input variable, output

variable, and a function to connect the two. We used the imported

normalized miRNA expression values as the input variable and

survival status as the output variable. For the middle layer, the

advanced version of Intelligent Problem Solver (IPS) tool was

applied to build a radial basis function (RBF)-ANN with 11 hidden

units. Network output values were referred to as miRNA scores,

which were thought to be linearly associated with the death risk of

patients. The nonparametric Spearman correlation coefficient

(Spearman R) was calculated to assess the linear relationship

between the normalized miRNA score and survival status for each

patient.

miRNA biomarker selection and ANN model building
Putative miRNAs biomarkers were ranked and selected on the

basis of Spearman R values. In this study, we chose to retain only

Figure 1. miRNA biomarker selection results. A) A significant
linear relationship exists between the normalized miR-93 scores and
patient survival status. Spearman R = 0.3091; p,0.0001. B) No
significant linear relationship was found between normalized let-7e-
star scores and patient survival status. Spearman R=0.0075; p,0.895.
C) AUROC comparison between the death risk prediction models using
miR-93 and let-7e-star scores. A significant difference was observed
(p= 0.0001). D) A perfect linear correlation relationship was found
between Spearman R values and AUROCs (n = 9). p,0.0001.
doi:10.1371/journal.pone.0110537.g001
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the nine miRNAs with the highest R values and discard the others.

The normalized miRNA expression values and normalized

miRNA scores of three miRNAs with the best Spearman R values

(miR-29c, miR-34c-5p, and miR-93) were used to build the

untransformed neural network models (UNN) and transformed

neural network (TNN), respectively. Both models had the same

network architecture (3-11-1). All of the miRNA scores of the nine

miRNAs were then used for building the novel ANN model, which

we named the neural network cascade (NNC). An NNC is

composed of many ANN units. Each ANN unit is an independent

ANN model. In an NNC model, the primary nine ANN units were

used for the selected nine miRNAs to transform them from

miRNA expression levels into miRNA scores. Each unit had a 1-

11-1 network architecture. After that, a secondary ANN unit with

a 3-11-1 framework was then built to integrate the outputs of the

three data transformation units. A total of three such secondary

units were needed for the nine miRNAs. Finally, a tertiary ANN

unit was built to combine the outputs of the above three secondary

ANN units. The ultimate output is a numerical prediction of the

death risk of patients with NPC based on their miRNA gene

expression signatures. Notably, we named all model outputs as

miRNA scores, regardless of their origin from the ANN units or

the composite models. Additionally, a detailed description of NNC

model building was provided in Text S1.

Internal and external validation
The holdout cross-validation method was used to conduct

internal validation for each ANN unit by using the default settings

of the IPS tool. The 208 training model samples were randomly

divided into three sets, including training set, verification set, and

testing set in a ratio of 2:1:1. Linear regression was used to assess

the consistency of the training and testing set outputs. Similar

correlation coefficients for the training and testing sets implies the

given ANN unit has good generalization ability and vice versa.
Furthermore, an independent set that consisted of 104 samples

was used to perform external validation of the prediction

accuracies of the NNC model. In addition to linear regression, a

receiver operating characteristic (ROC) curve analysis was also

performed to assess the prediction effects of the UNN, TNN, and

NNC models by using the software MedCalc (version 13.0). The

positive predictive value (PV) at each miRNA score criterion was

calculated and used to estimate the probability of poor prognosis

for the 104 patients in the external validation set.

Statistical analysis
Student’s t-test was used for comparisons between two survival

status groups of patients with NPC from various aspects, including

miRNA expression, miRNA score, and probability of poor

prognosis. Analysis of the area under the ROC curve (AUROC)

was used to compared each risk prediction performance by

miRNA scores of different miRNAs, miRNA expression, and

scores of the same miRNA, or final outputs of different ANN

models [22]. Differences were considered as statistically significant

when p,0.05 for all the statistical methods used in this study.

Results

Nine miRNAs were selected as NPC prognostic
biomarkers from the 873 measured miRNAs
First, we normalized and processed the original miRNA

expression values that were downloaded from the GEO dataset

of gene expression in patients with NPC (GSE32960). Next, the

312 patient samples were randomly divided into a model training

set and an external validation set at a ratio of 2:1. In the model

training set, small ANN models with network architecture of 1-11-

1 was applied to convert miRNA expression values into miRNA

scores for each miRNA analyzed. The software GraphPad Prism

6.0 was then used to calculate the Spearman R between miRNA

scores and patient survival status for each of the 873 miRNAs.

Finally, among the 873 miRNAs, nine miRNAs with the highest

Figure 2. miRNA expression is non-linearly related with NPC
patient death risk. A) Illustration of the relationship between
normalized miRNA expression and normalized miRNA scores of the
selected nine miRNA biomarkers. B) No significant difference was
observed in normalized miR-15b expression between patients with
survival statuses of ‘alive’ and ‘dead’. Mean 6 SEM; p= 0.61. C) The
miRNA scores of miR-15b were significantly different when patients
with survival statuses of ‘alive’ and ‘dead’ were compared. Mean6 SEM;
p,0.0001. D) AUROC comparison between the death risk prediction
models using miRNA expression and miRNA scores of miR-15b,
respectively. A significant difference was found (p=0.0011).
doi:10.1371/journal.pone.0110537.g002
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Spearman R values were highlighted: miR-93, miR-29c, miR-34c-

5p, miR-202, miR-145-star, miR-1292, miR-26a, miR-30e, and

miR-15b (in descending order of Spearman R value). The miR-93

miRNA score showed the best linear correlation with survival

status (Figure 1A, Spearman R=0.3091). Comparably, the let-7-

star miRNA score was found to be unrelated with NPC patient

survival (Figure 1B, Spearman R=0.0075). This result was further

confirmed by our ROC analysis (Figure 1C). The AUROC of the

prediction model using the miR-93 miRNA score was significantly

higher than that of the prediction model using the miRNA score of

let-7e-star (p=0.0001). Furthermore, we calculated AUROCs for

the other eight miRNAs that were selected as potential biomarkers

for NPC prognosis. A stringent correlation relationship was

revealed between the values of Spearman R and those of

AUROCs (Figure 1D). This result suggests calculating Spearman

R or AUROC leads to similar effectiveness in the ability to detect

preferred biomarkers from miRNA microarray experiments.

Expression of nine candidate miRNAs biomarkers was
nonlinearly related with survival status
Scatter plots were drawn to illustrate the relationship between

miRNA expression and miRNA scores (Figure 2A). As a result, no

linear relationship was detected between miRNA expression and

miRNA scores for the nine selected candidate miRNA biomarkers.

As the miRNA score is a linear variable assessing the death risk of

patients with NPC, such a result indicates a nonlinear relationship

between miRNA expression and patient survival statuses. This

finding also implies that direct between-patient comparison of

miRNA expression may not be suitable for predicting prognosis.

The miRNA miR-15b was used to further examine this point.

According to the Spearman R value, miR-15b was selected as one

of the nine preferred miRNA biomarkers indicating NPC

prognosis. However, we did not find any difference in miR-15b

expression between the two patient groups with different survival

statuses by Student’s t-test (Figure 2B). In contrast, our method of

transforming miRNA gene expression values into the miRNA

score enabled us to successfully distinguish between the two patient

groups (Figure 2C). Compared with miRNA expression, the

miRNA score gave a positive prediction, which was further

verified by the ROC analysis (Figure 2D). Similar results were also

observed in miR-34c-5p, miR-145-star, miR-202, and miR-1292

(Figure S1).

The NNC model showed the best prediction of patient
death risk
In this study, we built three ANN models to further demonstrate

the significance of linear transformation of miRNA expression

values into a miRNA score. The UNN model was a traditional

ANN model with a 3-11-1 network framework constructed using

the normalized miRNA expression values of miR-29c, miR-34c-

5p, andmiR-93 as input variables. With the same network

framework, the TNN model used the normalized miRNA scores

of these three miRNAs as input variables. ROC analysis reveals a

better predictive performance of the TNN model than that of the

UNN model (Figure 3A). The last ANN model we built was an

NNC model, which had the most complex network framework,

incorporating 13 ANN units as shown in Figure 3B. The NNC

model has an AUROC of 0.951, which indicates this model has

the best predictive ability to distinguish patients with different

survival statuses (Figure 3A). Internal validation indicates that it

has good generalization ability for prognosis prediction of patients

beyond the modeling training set (Figure 3B).

The NNC model showed strong immunity against
disturbed miRNA expression
Scatter plots more clearly display the discriminative effect of

different ANN models (Figure 4A). Compared with UNN or

TNN, it is easy to identify that NNC had the best performance,

despite the fact that all three models could significantly distinguish

patients with the survival status of ‘‘dead’’ from those with the

‘‘alive’’ status (p,0.0001). The high predictive performance of

Figure 3. AUROC comparison of three ANN models (A) and
results of internal validation of the NNC prediction model (B).
UNN: untransformed neural network; TNN: transformed neural network;
NNC: neural network cascade. Tr and Te represent correlation
coefficients between the output variable and miRNA score of training
set and testing set in each ANN unit, respectively.
doi:10.1371/journal.pone.0110537.g003
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NNC was confirmed when tested on the 104 patients used for

external validation (Figure 4B). Further ROC analysis showed that

the prediction accuracy was 83% for identifying high-risk patients

by using the NNC model established here. Considering the

diversity of the actual patients in the clinic, we also investigated the

anti-interference capability of different models by replacing the

miR-93 miRNA expression values with those of let-7e-star. In this

study, the let-7e-star miRNA score had shown no relationship to

the death risk of patients diagnosed NPC (Figure 1B and C). The

result of this swap found that the UNN could not survive if the

miR-93 expression values were seriously disturbed (Figure 4C).

There is no significant difference in miRNA scores between two

patient groups in this model (p=0.20). Comparably, the other two

Figure 4. Scatter plots of miRNA scores exported from different ANN models (normalized). Comparisons of miRNA scores were
performed between patients with different survival statuses in the model training set (A) and the external validation sets with normal miR-93
expression input (B) and with disturbed miR-93 expression input (C). UNN: untransformed neural network; TNN: transformed neural network; NNC:
neural network cascade.
doi:10.1371/journal.pone.0110537.g004

Optimazation of MicroRNA Biomarkers for Cancer Prognosis

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e110537



models, especially the NNC model, still showed robust perfor-

mance in distinguishing patients’ status.

Additionally, we evaluated the probability of a bad prognosisfor

each patient with NPC. The mean probability of the patients with

the survival status of ‘alive’ was 0.50, indicating that the death risk

still exists for this group of patients (Figure 5A). Compared with

UNN or TNN, NNC most accurately estimated the death risk of

patients with the survival status of ‘dead’, even in the situation

where the expression of miR-93 was seriously disturbed (Fig-

ure 5B). This finding suggests that the NNC model may have

strong immunity against noise interference caused by unknown

factors.

Discussion

MiRNAs are widely thought to be the most promising class of

endogenous substances for clinical diagnostic and prognostic

biomarkers for cancer [23]. This conviction has prompted

researchers worldwide to perform disease-specific miRNA expres-

sion profiling in an extensive field of cancer research [24,25]. In

this study, we attempt for the first time to present a generic method

for translating miRNA expression data into clinically relevant

language, such as the possibility of having cancer or the risk of bad

prognosis due to suffering from cancer. Briefly, a computational

model was constructed by integrating many small single-function

ANN units into a cascaded network system. We named it the

neural network cascade. We demonstrated that the neural network

cascade was efficient for identifying the death risk of patients

diagnosed with NPC.

The theoretical cornerstone for the NNC model established

here is the assumption that miRNA expression may not be linearly

associated with clinical phenotype indicators. This hypothesis is

reasonable and realistic given the complexity of miRNAs

involvement in human biology [16,26,27]. Based on this

assumption, miRNA expression should be transformed into a

linear variable before using it to evaluate the possibility of clinical

consequences, such as that whether a patient is at high risk of

death due to cancer. Our results support the validity of the

hypothesis. We found a nonlinear relationship between miRNA

expression and the death risk of patients with NPC. This finding

implies the importance of miRNA expression data preprocessing

before any miRNA-based clinical decisions are made.

Distinct from traditional artificial neural networks previously

used in cancer diagnosis and management [19–21], the NNC did

not directly use miRNA expression. Rather, the NNC first

transforms miRNA gene expression into an miRNA score, a

linear variable for assessing clinical phenotype. As a result, the

miRNA score instead of miRNA expression was used for the

purpose of selecting potential miRNA biomarkers and final

decision-making. In the NNC model, the transformation and

integration of data and final prediction output was achieved

stepwise. This ensures overall computational simplification of the

model’s operation. Another advantage of the NNC is that every

miRNA is assigned an independent channel for information input.

By such a design, if more miRNAs are needed for better

prediction, one may expand the scale of the NNC model without

increasing the network complexity of a single unit. This makes the

NNC model freely expandable according to specific requirements.

Expression data of different miRNAs can be considered as diverse

information contributing to our existing knowledge of the death

risk of patients. In our study, inclusion of more miRNAs was

resulted in better predictions. The TNN contained three miRNAs

and had an AUROC of 0.862. In contrast, the NNC model had

an AUROC of 0.951, which contained 9 miRNAs. However, it is

also possible that a larger NNC model for NPC prognosis could

contain more than nine miRNAs. The nine miRNAs used in the

NNC model here simply served as a methodology illustration.

Our external validation results of UNN and TNN indicate that

linear transformation of miRNA expression notably improves the

prediction effect of the model. Importantly, this procedure did not

increase the number of miRNA biomarkers required, implying the

advantage of using a cascaded structure of ANNs. Additionally, we

found that the cascaded ANN constitution had a more robust

performance than the traditional ANN model, where unexplained

variability in miR-93 expression caused one ANN unit malfunc-

tion. Although unable to estimate the degree of such interference

on disease prognosis in actual clinical settings, it remains possible

that this variability will be an important factor that hinders

miRNA-based prediction models in practice. Comparison of the

TNN and NNC models suggests that inclusion of more miRNAs

would increase robustness of the established ANN model against

noise disturbance.

In conclusion, our study provided a rational and feasible

method for miRNA biomarker selection and prediction model

establishment. The advantage of a cascaded construction of small

artificial neural network units is reflected from several aspects,

including scalable capacity and flexible combination of miRNA

expression inputs, better prediction with robust stability, and

greater opportunities for meaningful modeling if the number of

miRNA biomarkers is unrestricted. In the future, more attempts

should be made to further validate the application of our approach

by translating miRNA expression data into clinically relevant

information for the diagnosis and prognosis of cancer.

Figure 5. Comparison of bad prognosis likelihood between
external validation patients with different survival statuses. A)
Normal miR-93 expression input. B) Disturbed miR-93 expression input.
UNN: untransformed neural network; TNN: transformed neural network;
NNC: neural network cascade. All data are expressed as mean 6 SEM.
doi:10.1371/journal.pone.0110537.g005
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Supporting Information

Figure S1 Comparison of miRNA expression and
miRNA scores between the two patient groups with
different survival statuses. A) miR-26a; B) miR-29b; C)
miR-30e; D) miR-34c-5p; E) miR-93; F) miR-145-star; G) miR-

202; H) miR-1292. All data are expressed as mean 6 SEM.

(TIF)

Text S1 A step-to-step procedure for NNC model
building.
(DOCX)
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