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Abstract: Neutrophils form sticky web-like structures known as neutrophil extracellular traps
(NETs) as part of innate immune response. NETs are decondensed extracellular chromatin filaments
comprising nuclear and cytoplasmic proteins. NETs have been implicated in many gastrointestinal
diseases including colorectal cancer (CRC). However, the regulatory mechanisms of NET formation
and potential pharmacological inhibitors in the context of CRC have not been thoroughly discussed.
In this review, we intend to highlight roles of NETs in CRC progression and metastasis as well as the
potential of targeting NETs during colon cancer therapy.
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1. Introduction

Colorectal cancer (CRC) is the second most common cause of cancer-related deaths
in the western world [1]. Every year, the management of CRC imposes a huge economic
burden towards the health care system in Europe and other countries in the world [2]. CRC
originates from benign, precancerous proliferative growth known as polyps [3]. During the
slow development phases of polyp, different mutations start to accumulate and transform
some of the polyps into malignant carcinoma [3]. Early stages of CRC are curable by
surgery, however, when cancer metastasizes to lymph nodes or other distant organs, the
prognosis of CRC becomes poor [4]. Furthermore, about 20% of CRC patients have already
progressed into a metastatic state at the time of presentation and more than 30% of patients
with early CRC have been reported to develop metastatic disease eventually [5,6]. The most
common site of CRC metastasis is found to be the liver (about 70% of patients), followed
by lung, distant lymph nodes, and peritoneum [7]. Once CRC is metastasized to multiple
organs, its treatment becomes palliative rather than curative. During metastasis, cancer
cells express certain characteristics, which include elevated expression of cell adhesion
molecules, chemokine receptors, and increased cytoskeletal changes to favor migration in
response to chemotactic signals to distant organs [8–10].

Accumulating studies suggest that approximately 25% of all tumors originates from
chronic inflammation [11–13]. It is possible that inflammation can generate numerous
growth factors and chemo-attractants to promote cancer cell proliferation, adhesion, and
migration. During innate immune response, neutrophils play a key role by engulfing the
invading pathogens directly or releasing antimicrobial agents to kill them. Interestingly,
the increased accumulation of neutrophils was observed in pre-metastatic organs [14,15].
In addition to phagocytosis, neutrophils can form sticky web-like structures of decon-
densed chromatin filaments, decorated with histones and neutrophil granule proteins
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known as neutrophil extracellular traps (NETs) [16]. NETs have been reported to be in-
volved in cancer development [17–19] and metastasis [20,21]. A study has revealed the
association of NET formation inside the microvasculature by systemic inflammation with
trapping of cancer cells in both liver and lung [22]. In addition, intravascular NET in-
creases vascular permeability and promotes cancer cell extravasation from blood vessels to
organs [23]. Interestingly, surgical stress facilitates cancer metastasis through associating
it with inflammation [24,25]. Furthermore, immunostaining of tissue samples from CRC
patients revealed the presence of NETs in primary tumor and associated metastatic lymph
nodes [26]. Based on this evidence, it could be suggested that NETs might be involved in
colon cancer cell proliferation and metastasis. This review will focus on the roles of NETs
in CRC progression and metastasis, as well as the possibility of targeting NETs during
cancer therapy.

2. Mechanism of NET Formation

The process in which NET formation occurs is known as NETosis. Initially, NETosis
was referred to as the new type of defensive neutrophil death, however, later it was
found that pathogenic stimulation could also induce vital and rapid production of NETs
without effecting neutrophil viability [27]. Two types of mechanism have been proposed to
elucidate NET formation: NADPH-oxidase (NOX)-dependent lytic NET formation and
NADPH-oxidase (NOX)-independent non-lytic NET formation [28] (Figure 1).
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Figure 1. Mechanisms of NET formation. (a) NADPH-oxidase (NOX)-dependent lytic NET formation: After activation,
neutrophils produce reactive oxygen species (ROS) via the NADPH-oxidase complex. ROS activates or upregulates protein-
arginine deaminase type 4 (PAD4, which promotes citrullination of histones and subsequent chromatin de-condensation).
Myeloperoxidase (MPO) helps translocate neutrophil elastase (NE) into the nucleus, which leads to further chromatin
de-condensation, finally the nuclear membrane is disrupted, and NETs decorated with granular and cytosolic proteins are
released in extracellular space. Neutrophils die after NET formation. (b) NADPH-oxidase (NOX)-independent non-lytic
NET formation: After neutrophils activation by pathogens or DAMPs, PAD4 promotes chromatin de-condensation. NETs
decorated with granular and cytosolic proteins are released outside via vesicular transport without plasma membrane
disruption. After the release of NETs, neutrophils remain viable, and capable of phagocytosis and chemotaxis.
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2.1. NADPH-Oxidase (NOX)-Dependent Lytic NET Formation

The process of lytic NET formation initiates with the recognition of pathogens or
sterile stimuli by various cellular receptors including toll-like receptors (TLRs), antibody
fragment (Fc) receptors, complement receptors, etc. [27]. The initial activation via cellular
receptors triggers calcium release from endoplasmic reticulum (ER), which in turn activates
protein kinase C (PKC) and NADPH-oxidase complex, finally forming reactive oxygen
species (ROS) [29]. In particular, ROS can activate protein-arginine deiminase 4 (PAD4),
an enzyme that decondenses nuclear chromatin by converting arginine to citrulline [30].
Furthermore, neutrophil granular protein, myeloperoxidase facilitates neutrophil elastase
translocation to the nucleus and unfolds chromatin [31]. This results in the breakdown of
nuclear membrane and the release of decondensed chromatin into cytosol where released
DNA is further decorated with granular and cytosolic proteins [32]. Finally, NETs are
released through disruption of the plasma membrane, and when the neutrophil dies.
Interestingly, some studies showed that mitochondrial DNA could also be expelled as
NETs in response to inflammation [33,34].

2.2. NADPH-Oxidase (NOX)-Independent Non-Lytic NET Formation

Several studies have revealed that the formation of NETosis is independent of cell
death [35,36]. The process of NET formation without cell death is known as non-lytic or
vital NETosis which usually occurs in the absence of NADPH-oxidase pathway and does
not lead to the formation of oxidants [27]. The major difference between lytic and non-lytic
NETosis is that non-lytic NETosis takes place within minutes of stimulation without ROS
formation while lytic NETosis needs several hours of stimulation and ROS formation.
In non-lytic NET formation, neutrophils activation is induced by bacteria or bacterial
products or activated platelets or complement proteins [27]. Chromatin de-condensation
and neutrophil elastase translocation to the nucleus take place in a similar manner to lytic
NET formation. However, chromatin decorated with cytosolic and nuclear proteins is
discharged by the blebbing nuclear envelope rather than the overt breakdown of the nuclear
membrane. Nuclear membrane blebbing and vesicle-mediated extracellular transport of
NETs occur independent of plasma membrane disintegration [37,38].

3. NETs in Gastrointestinal Inflammation

NETs have been implicated in many gastrointestinal diseases including inflammatory
bowel diseases (IBDs) [39–41], liver disease [35], and acute pancreatitis [42–44]. A chronic
abiding repetitive event of inflammation in intestinal epithelium is portrayed as IBD [39].
Aberrant NET accumulation and the deterioration of inflamed intestinal barrier integrity
can be correlated with IBD [39], as in ulcerative colitis (UC) [40]. Neutrophils and NET-
associated molecules are found in abundance in both colonic biopsies of UC [45,46] and
Crohn’s disease (CD) [41], which indicate intestinal inflammatory aggravation, epithelial
exasperation, and elevated thrombotic impulse [47]. Administration of dextran sulfate
sodium (DSS) [36,46] or 2,4,6-trinitrobenzene sulfonic acid (TNBS) [40] can induce murine
UC, principally by disrupting intestinal epithelial barrier and eliciting a number of chronic
immunologic responses. In the mouse model, increased DSS consumption can elevate the
plasma level of extracellular DNA (ecDNA) in the form of NETs, which in turn induces
UC [39]. The elevated response is correlated with the amplitude of disease severity and
relative proportion of cells undergoing NETosis. However, the initial administration of
protein-arginine deaminase type 4 (PAD4) inhibitors, Cl-amidine and streptonigrin can curb
the formation of NETs, and in turn decrease the plasma ecDNA level in UC [39]. Some other
studies have reported that the systemic administration of DNase can lead to amelioration
of DSS-induced colitis by dissolving NETs [39,47]. In addition, the elevated level of NET-
inducing protein, PAD4 is found in colon biopsies of active UC and CD cases compared to
healthy patient samples [46]. The detrimental consequence of abnormal NET formation
can lead to intestinal laceration and mortality, which can be curtailed by inhibiting PAD4
in a murine model of necrotizing enterocolitis [48,49]. Severe inflammation, intestinal
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necrosis, ulceration, as well as NET formation can be detected by light and fluorescence
microscopy in the specimen of colonic resection from drug-crystal induced gastrointestinal
complications [50]. In addition, NETs can produce numerous pro-inflammatory granular
proteins, which may indirectly evoke the inflammation of local intestinal mucosa and
eventually cause necroinflammation [51,52].

NETs also elicit a detrimental immune response leading to IBD through the production
of neutrophil-driven granular proteins, including NE, MPO, histones, cathepsin G, and
proteinase 3 (PR3), which can promote anti-neutrophil cytoplasmic auto-antibodies (AN-
CAs) production [53]. ANCAs are known to activate, complement, and cause endothelial
damage [54]. In addition, they are also reported to generate a positive pro-inflammatory
feedback loop by inducing NET formation [55]. Moreover, several studies have reported
the presence of ANCA in serum of patients with IBD and/or in a murine model, which may
be triggered by dendritic cells or MPO or PR3 [56,57]. In contrast, a recent review proposed
beneficial roles of NETs in IBD [58]. Authors indicated favorable roles of circulating NETs
in clearing damage associated molecular patterns based on previous studies [59–61]. How-
ever, none of these studies were conducted on NETs. In fact, they investigated the possible
effects of bacterial DNA (bactDNA) and translocation of gut bacteria in IBD [59–61]. Since
various gastrointestinal inflammation and diseases have been shown to be correlated with
NET formation and NETs can be reciprocally related with an increased risk of developing
intestinal malignancies, further studies are required to explore the axis of gastrointestinal
inflammation and CRC in the context of NETs.

4. NETs in Cancer Progression and Metastasis

Over the years, NETs have been implicated in various types of cancer where they are
involved in cancer growth or clearance, depending on cancer type, status of the immune
system or tumor microenvironment [20,27]. Interestingly, higher levels of plasma NETs are
present in cancer patients including lung, pancreatic, and bladder cancer [62]. In addition,
NETs are found in lung tissues, serum, and sputum of lung cancer patients [63]. In the
mice model, installation of cancer cells in the lung induces neutrophil recruitment and
NET formation, suggesting that cancer cells itself can induce NET formation, perhaps by
facilitating cancer cells adhesion and growth. Higher levels of NETs were observed in
the liver metastases of patients with breast cancer, and serum NETs were identified as
a predictive marker for the onset of liver metastases in patients with early-stage breast
cancer [64]. In addition, it was revealed that CCDC25, a transmembrane protein, of breast
cancer cells have the ability to sense distant NETs and navigate cancer cells to NETs [64].
An in vitro experiment has shown that NETs can induce breast cancer cells invasion and
migration, and subsequent digestion of NETs by DNase I-coated nanoparticles reduces
metastasis of breast cancer cells to lung in mice [65].

NET formation is observed during lung inflammation induced by smoke exposure or
nasal instillation of lipopolysaccharide in animal models. NET associated proteases, neu-
trophil elastase, and matrix metalloproteinase 9, can cleave basal laminin and thus facilitate
dormant cancer cells growth by activating integrin alpha-3 beta-1 signaling [66]. NETs can
act as a trap to catch circulating cancer cells in the microvasculature of distant organs. In a
murine model of sepsis, circulating lung carcinoma cells are reported to be trapped by NETs
in the microvasculature of liver and cause gross metastatic burden after injection of tumor
cells [22]. In addition, treatment with DNase or a neutrophil elastase inhibitor reduces
cancer metastasis [22]. CD16high and CD62low neutrophil subpopulation possess higher
NETs producing capacity and in head and neck squamous cell carcinoma patients, this
subpopulation shows better survival [67]. Another study indicates that tumors can release
granulocyte colony-stimulating factors into the bloodstream and promote the accumulation
of intratumoral NETs and tumor growth by priming circulating neutrophils [68].

In gastric cancer (GC), the analysis of blood samples has revealed higher levels of
NETs in patients with benign gastric disease than healthy controls [69]. The results indicate
a better diagnostic value of NETs than carcinoembryonic antigen (CEA) and carbohydrate
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antigen 19-9 (CA19-9). These findings suggest the pivotal roles of NETs in the carcinogene-
sis of GC. In another study, it has been reported that low density neutrophils (LDN) from
postoperative lavage generate a massive amount of NETs during the in vitro culture. In
addition, the co-transfer of the peritoneal LDN with human gastric cancer cells enhance
peritoneal metastasis in vivo [70].

5. COVID-19 and Cancer Progression

In recent times, due to the prevalence of ongoing worldwide COVID-19 pandemic, a
considerable scientific interest has grown to determine the interdependence of COVID-19
in cancer progression and investigation of increased risk for potential and life-threatening
outcomes from COVID-19 infections in the underlying medical condition of cancer. A
recent systematic review involving 52 studies on COVID-19 and cancer has revealed
that patients with cancer have a high probability of mortality due to the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [71]. One of the studies has indicated
the presence of NETs in the lungs of autopsied COVID-19 patients [72], while another report
has demonstrated the role of NETs in the initiation of immunothrombosis in COVID-19
patients [73]. It has been found that cancer patients could be more susceptible to SARS-
CoV-2 infections due to the immunosuppression caused by chemotherapy or cancer itself.
Furthermore, a meta-analysis has revealed that lung cancer and CRC patients are most
susceptible to SARS-CoV-2 infection over other cancer types including breast, esophagus,
bladder, pancreatic, and cervical cancer [74]. It is well documented that the expression of
Angiotensin I-converting enzyme 2 (ACE2) on pulmonary epithelial cell plays the vital role
in entering the virus into the body and interestingly, the expression of ACE2 is found to be
higher in CRC tissues than matched normal tissues [75]. Furthermore, a higher expression
of ACE2 has been observed in lung metastases from CRC than in normal lungs, suggesting
that CRC patients are more vulnerable to SARS-CoV-2 infection [75]. The SARS-CoV-2
infection can be related to cancer pathogenesis as the progression of infection can alter the
expression of the proteins involved in cell-cycle checkpoints, metabolism, and epigenetic
regulation [76]. On the other hand, as hypoxia due to the SARS-CoV-2 infection can lead to
poor oxygen supply to different organs, it can alter cancer cell metabolism and promote
epithelial to mesenchymal transition [77]. For example, in breast cancer, hypoxia has been
shown to promote gene expression involved in dormancy and drug resistance [78,79]. An
alternative mechanism of cancer progression and metastasis during or after SARS-CoV-2
infection has been proposed, which indicates lowering of natural killer cells and T cells
in the peripheral blood [80]. Taken together, it is our speculation that NET formation and
lung inflammation by SARS-CoV-2 infection might trigger colon cancer cell migration and
adhesion to inflamed organs.

6. NETs in Colorectal Cancer

Several studies have confirmed that patients with CRC can release elevated levels of
NETs both in vivo and in vitro [25,81,82], which are mostly dispersed within the primary
tumor sites and over the tumor boundary of CRC [26]. Although chemoradiotherapies
and screening programs for early CRC detection are universal, about half the patients
undergoing resection with therapeutic resolution tend to develop metastatic illness [83].
Accumulating evidences suggest that preoperative systemic inflammation could be in-
volved in CRC recurrence following surgical resection [84]. In addition, several murine
models and human observational studies demonstrated potential prognostic significance
and association of NETs with CRC progression [84]. The recurrence and metastasis can be
correlated with NETs production by perioperative systemic inflammation, such as sepsis
or NETs production on the site of surgical wounds.

Several mechanisms have been proposed that can trigger NET formation in the CRC
microenvironment (Figure 2). For instance, polyphosphate (polyP) expressed by CD68+
mast cells are shown to stimulate neutrophils to produce NETs in human colon carci-
noma ex vivo [85]. KRAS, a small G protein of RAS family acts as a molecular switch
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in signal transduction pathways [86]. Activation of mutated KRAS regulates oncogenic
malignant transformation and subsequent proliferation of cancer cells through activation
of RAS/MAPK signaling pathway [82,87,88]. In 40–50% of CRC cases, KRAS mutations
have been documented, hence, several studies have acknowledged it as a potential CRC
prognostic and predictive marker [87,89]. Malignant cells can secrete exosomes to control
the cellular microenvironment and KRAS mutant CRC cells have been shown to transfer
mutant KRAS to neutrophils via exosomes [82]. The transfer of KRAS mutant protein by
CRC cells induces neutrophil recruitment and subsequent NET formation by the upreg-
ulation of interleukin-8 (IL-8/CXCL8) both in vivo and in vitro [82]. The production of
elevated levels of IL-8 and NET formation can act as a stimulator of CRC cell proliferation
and can ultimately worsen the cancer condition [82]. IL-8 is known to recruit neutrophils
and other myeloid leukocytes to converge at the site of infection via its receptors CXCR1
and CXCR2 [90,91]. IL-8 acts as a multifaceted chemotactic stimulus utilized by neoplastic
cells to foster transmigration and angiogenesis concurrently [92,93]. Tumor cell-driven
expression and excretion of IL-8 can also augment proliferation and survival of cancer cells
by activating the autocrine system, promoting angiogenesis and infiltrating neutrophils
into the malignant cells [90,91,94]. There is a clear correlation between IL-8 and NETosis
in cancer progression and IL-8 mainly abets cancer progression, metastatic spread, and
angiogenesis by directly priming the NET formation [82,90]. IL-8 along with its receptor
CXCR2 is observed to provoke neutrophils towards the release of NETs by activating Src,
ERK, and p38 signaling and the resultant released NETs can directly upregulate TLR9
pathways to stimulate cancer progression [95]. Moreover, IL-8 stimulates myeloid-derived
suppressor cells via expressing CXCR1 and CXCR2 on their surfaces to extrude NETs which
are shown to entrap cancerous cells [92]. Additionally, serum levels of IL-8 and its receptor
CXCR2 are shown to highly upregulate in different phases of CRC compared to the normal
samples. The secreted IL-8 profoundly stimulates human and murine CRC cell prolifera-
tion, incursion, migration, and amplifies angiogenesis around the tumor [91]. Moreover,
IL-8-stimulated neutrophil-extruded NETs further advance the invasion and proliferation
of CRC [91]. Lesions of CRC show a divergent surge of IL-8 where the upregulated IL-8
induces the activation of neutrophils and NET formation in CRC microenvironment [91,94].

It has been found that NET formation not only increases CRC cells proliferation but
also stimulates the metastasis process [94,96]. NETs prime circulating tumor cells (CTC)
adherence to hepatic or pulmonary endothelial surfaces [89,96,97] and thus, are involved
in increased migratory pattern of CRC cells to the major critical regions of the body, such
as liver, lung, and peritoneal cavity [25,96,98]. Surgical interventions for CRC are known to
promote peritoneal carcinomatosis [99]. In fact, a recent study in mouse has shown that
surgical trauma promotes colon cancer cells adhesion and growth in the peritoneal wall
via CXCR2 signaling [100]. Population-based researches have reported that about 25–30%
of CRC patients develop coetaneous liver metastasis and most of them show remarkably
increased NET formation [25,96,101]. NETs show no cytotoxicity to the trapped CTCs in
the liver but can raise their malignancy by enriching tumorous interleukin (IL-8) which in
turn primes more NET formation, hence creating a positive loop for liver metastasis [94].
Furthermore, NET-associated carcinoembryonic antigen-related cell adhesion molecule
1 (CEACAM1) has been shown to stimulate the relocation of CRC cells to the liver both
in vitro and in vivo [102].

A cohort of patients with analeptic liver resection for metastatic colorectal cancer
has demonstrated the association of elevated postoperative NET formation with a lower
survival rate [25]. In the same study, in a mouse model of liver metastasis and surgical stress,
it has been shown that the inhibition of NET formation by DNase I reduces postoperative
development of gross metastases [25]. Furthermore, several other studies demonstrate that
diminishing of NETs using DNase reduces metastatic progression of CRC [82,94,101,102].
Table 1 summarizes the major outcomes of the studies describing NETs in CRC.
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Table 1. Summary of the included studies of NETs in CRC.

Study Design Animal Models Cell Type Major Outcomes/Findings Authors

Both in vivo
and in vitro Mouse

Human colon carcinoma
cell line (HT-29), murine
colon carcinoma

NET-associated protein CEACAM1 is
an inducer of metastatic progression
of CRC and blocking of NETs
significantly reduce CRC cell
adhesion, migration, and metastasis in
murine model.

Rayes et al. [102]

Both in vivo
and in vitro Mouse

DKs-8 (WT allele) cells,
DKO-1 (KRAS mutant)
cells

Exosomes from KRAS mutant CRC
increase IL-8 production and provoke
NET formation. Released NETs
increase CRC cells growth both
in vivo and in vitro.

Shang et al. [82]

In vivo, in vitro,
and ex vivo

Human and
Mouse

Human hepatocellular
carcinoma, human
cell line HT29, and mice
cell line MC38

NETs raised colorectal malignancy by
enriching tumorous interleukin IL-8,
which in turn induce more NET
production by creating a positive loop
along with advancing CRC-driven
liver metastasis. Digestion of NETs by
DNase I reduced liver metastasis.

Yang et al. [94]
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Table 1. Cont.

Study Design Animal Models Cell Type Major Outcomes/Findings Authors

Both in vivo
and in vitro Mouse

Human hepatoma
cell line HepG2, murine
colon carcinoma MC38

Neutrophil infiltration and NET
formation reduced by
adeno-associated virus (AAV) based
DNase I gene therapy and reduced
liver metastasis in a mouse model of
CRC liver metastasis.

Xia et al. [101]

Both in vivo
and in vitro Mouse

Murine Lewis Lung
carcinoma cell subline H59,
Murine colon carcinoma
cell line MC38

Primary colon cancer cells provoked
NETs generation that prime adhesion
of CTCs to the liver and degradation
of NETs decreased CRC cell adhesion
and spontaneous metastasis to the
liver and lung.

Rayes et al. [96]

Both in vivo
and ex vivo

Human and
Mouse

Murine colorectal (MC38)
cells,
HCT116, Hepa1-6, and
Huh7 cell lines

Patients undergoing curative resection
with colorectal metastases to the liver
showed an elevated level of NET
formation. Increased citrullinated
histones and circulating MPO-DNA
levels were related to poor survival of
CRC patients.

Yazdani et al. [98]

Ex vivo Human CRC cells

CD68+ mast cells expressed
polyphosphates (PolyP) in colorectal
adenomas and/or carcinomas and
suggested that CD68+ PolyP
expressing mast cells could be used as
prognostic marker.

Arelaki et al. [85]

Ex vivo Human /

Systemic neutrophils isolated from the
CRC patients showed higher levels of
NETs producing ability than healthy
controls in vitro. In vitro increased
NET production is correlated with
patients’ major complications than
minor complications.

Richardson et al.
[81]

Ex vivo Human /

Neutrophils isolated from patients
undergoing resectional surgery for
CRC showed lower NET forming
ability in vitro than preoperative
neutrophils.

Richardson et al.
[103]

In vitro and Ex
vivo Human

Human acute myeloid
leukemia (AML) cells,
Caco-2 cells

Confirmed presence of NETs within
the primary tumor sites of CRC and
gradually dispersed to the tumor
boundary, particularly to nearby
metastatic lymph nodes.

Arelaki et al. [26]

In vivo, in vitro,
and ex vivo

Human and
Mouse

MC38 and
Luciferase-expressing
MC38 cells (MC38/Luc)

Increased postoperative NETs
generation after curative liver
resection of colorectal metastasis
patients. NETs further fuel the
metastasis condition and reduce more
than 4-fold disease free survival.

Tohme et al. [25]

7. Therapeutic Potential of Targeting NETs in CRC

Accumulating evidence suggest that cancer pathology is correlated with NET for-
mation. Until now, many therapeutic agents targeting NETs or NET formation or NET-
associated components are successfully used in clinic and experimental diseases. It is
our expectation that some of these agents could be useful to mitigate CRC progression
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and metastasis. For instance, several studies have successfully utilized DNase to degrade
DNA backbone of NETs in different types of diseases including cystic fibrosis [104], coli-
tis [39,105], IBD [47], CRC [82,94,101,102], breast cancer [65], and pancreatic cancer [106]. A
recent meta-analysis of Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Regis-
ter reveals that the use of aerosolized recombinant DNase enzyme (Pulmozyme) improves
the lung function with patients with cystic fibrosis compared to the placebo [107]. The
DNase treatment effectively reduces viscoelasticity of DNA released by neutrophil with
improved pulmonary function and well-being of patients. One advantage of using DNase
is that the DNase-mediated NETs digestion does not hamper the physiological functions
of neutrophils [28,108]. Furthermore, long before NETs were discovered several studies
reported that DNA could act as a protective shield for harmful proteases [109,110]. Thus,
elimination of DNA structure might neutralize the activity of NET-associated harmful
proteases and enzymes and protect organs from damage and inflammatory events. In
contrast, one recent study has reported the failure of DNase to eliminate NET associated
harmful proteases or histones [108], which are known to cause tissue damage [111].

In addition to targeting NETs by DNase, alternative novel approaches targeting NETo-
sis have been shown to reduce NET formation in several preclinical inflammatory disease
models. For example, inhibition of ROS [112–114], PAD4 [39,115,116], NO/NOS [117],
and Gasdermin D [118], have shown to reduce NETosis and/or disease progression. ROS-
dependent formation of NET activates several sets of kinases (e.g., PKC, ERK, p. 38) via
the activation of transcription factors (TFs), which in turn enables de-condensation of
chromatin by PAD4 [28,35]. The inhibition of TFs does not hamper the immunological
function of neutrophils but inhibits NET formation [112], thus it could be a suitable ther-
apeutic approach to reduce NET-mediated CRC progression and metastasis. Moreover,
the administration of PAD4 inhibitors (Cl-amidine and streptonigrin) showed promising
therapeutic effects in DSS-induced UC [39]. Furthermore, the treatment with a high-affinity
monoclonal antibody (infliximab) to TNF-α, diminishes the expression of PAD4 and TNF-
α-driven NETosis in UC [46], suggesting that infliximab could also be used as a potential
therapy targeting NETs in CRC. Gasdermin D (GSDMD) is a pore forming protein that
facilitates NETs extrusion by puncturing granules which can be inhibited by employing
a tiny size particle based on the pyrazolo-oxazepine scaffold that competently halts NE-
Tosis [118]. A NET-driven granular protein MPO has also been investigated as a target of
anti-NETosis therapy. The inhibition of MPO has shown to lessen neutrophil recruitment
and NETosis in the murine model of vasculitis and in vitro experiments [119,120]. Higher
levels of inducible nitric oxide synthase (iNOS) expression and activity were detected
in colon cancer specimens as compared to normal mucosa [121,122] and the use of NOS
inhibitors together with 5-fluorouracil has shown enhanced reduction of colon cancer cells
proliferation and migration [123]. Notably, the inhibition of NOS has shown to reduce
nitric oxide (NO)-mediated NET formation in vitro [117], suggesting that the NOS inhibitor
could also be used as a potential therapy in CRC management. Interestingly, metformin,
a well-known clinically established antidiabetic drug, has been reported to reduce NET
formation via the inhibition of PKC-NADPH-oxidase pathway [34,124]. In addition, the
nanocarrier based combination treatment, such as Oshadi D (DNase in an Oshadi carrier)
and Oshadi R (RNase in an Oshadi carrier), has shown promising anti-cancer effects in
phase II clinical trial (ClinicalTrials.gov Identifier: NCT02462265), possibly by targeting
NETs. Autophagy inhibitor, hydroxychloroquine, was also shown to reduce NET-mediated
hepatic ischemia/reperfusion (I/R) injury by inhibiting PAD4 and Rac2 expression [125].
It should be noted that neutrophil plays a key role in innate immune response, therefore,
targeting NETs or mechanisms of NETosis or NET-driven products should be implemented
in such a way that the intervention should insulate the fundamental physiological func-
tion of neutrophils. Table 2 summarizes studies and therapeutics used to target NETs in
various diseases.

ClinicalTrials.gov
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Table 2. List of studies targeting NETs in various diseases.

Studies Therapeutic Agents Targets Mechanism of
Action Major Findings Disease/Model

Yang et al. [94] DNase 1 DNA backbone of
NETs Digestion of NETs Diminished colorectal cancer

liver metastasis. CRC (in vivo)

Xia et al. [101]

Adeno-associated
virus
(AAV)-mediated
gene transfer of
DNase I

DNA backbone of
NETs Digestion of NETs

Reduced liver metastasis in a
mouse model of CRC liver
metastasis.

CRC (in vivo)

Rayes et al.
[102]

DNase DNA backbone of
NETs Digestion of NETs Inhibited CRC cell adhesion

and migration in vitro.
Reduced liver metastasis of
CRC cells.

CRC (in vivo and
in vitro)CEACAM1 blocking

antibody
NET-associated
CEACAM1

Blocking of
CEACAM1 on NETs

Shang et al.
[82] DNase DNA backbone of

NETs Degradation of NETs
Reduced KRAS mutant
exosome-induced CRC cells
adhesion.

CRC (in vitro)

Shah et al.
[104] DNase DNA backbone of

NETs Degradation of NETs
Reduced viscoelasticity of
sputum and improved
pulmonary function.

Cystic fibrosis
(clinical trials)

Li et al. [47] DNase DNA backbone of
NETs Degradation of NETs

Lessened cytokine levels,
attenuated thrombus
formation and activation of
platelet.

DSS-induced colitis
(in vivo)

Park et al. [65] DNase DNA backbone of
NETs Degradation of NETs

Inhibited NET-induced
invasion and migration of
breast cancer cells in vitro.
Reduced breast cancer cells
metastasis to lung.

Breast cancer
(in vitro and
in vivo)

Xiao et al. [126] AZD7986 (inhibitor
of Cathepsin C) Cathepsin C

Inhibit
CTSC-PR3-IL-1β axis
mediated reactive
oxygen species
production

Reduced lung metastasis of
breast cancer in a mouse
model.

Breast cancer
(in vivo)

Wen et al. [106] DNase Extracellular DNA
(exDNA)

Degradation of
exDNA

Suppressed metastasis of
pancreatic cancer cells in an
orthotopic xenograft model.

Pancreatic cancer
(in vivo)

Sollberger et al.
[118]

Gasdermin D
Inhibitor (LDC7559)

Pore-forming protein
Gasdermin D
(GSDMD)

LDC7559 binds to
GSDMD and
prevents pore
formation in granule
membrane

Decreased phorbol
12-myristate 13-acetate
(PMA)-induced NET
formation.

In vitro

Khan et al.
[112]

Actinomycin D and
Topoisomerase I
inhibitor

Promoter region of
DNA

Inhibit protein
transcription
initiation

Blocking of transcription
suppresses NETosis without
affecting ROS generation.

In vitro

Lood et al.
[113]

MitoTEMPO ROS

MitoTEMPO
scavenge
mitochondrial
superoxide

Mitochondrial ROS inhibition
reduced NET formation and
systemic lupus
erythematosus (SLE) disease
severity. SLE (in vivo and

in vitro)
Apocynin ROS Block superoxide

production
Reduced PMA-induced NET
formation.

VAS2870 ROS
Inhibit
NADPH-oxidase
(NOX)

Reduced PMA-induced NET
formation.

Van Avondt
et al. [114]

Diphenyleneiodonium
(DPI) NADPH-oxidase Inhibit ROS

generation
Reduced PMA-induced NET
formation. In vitro
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Table 2. Cont.

Studies Therapeutic
Agents Targets Mechanism of Action Major Findings Disease/Model

Knight et al. [115] Cl-amidine and
BB-Cl-amidine PAD4 Inhibit PAD4

PAD inhibition diminished
NET formation and showed
protection against
lupus-related damage to
vasculature, kidney in murine
lupus model.

SLE (in vivo)

Maronek et al. [39] Cl-amidine and
Streptonigrin PAD4 Inhibit PAD4

Reduced plasma level of
ecDNA but could not
lessened total UC condition in
mice.

DSS-induced UC
(in vivo)

Dinallo et al. [46]
Infliximab
(anti-TNF-α
antibody)

TNF-α Block TNF-α Reduced PAD4 expression
and TNF-α-driven NETosis. UC (in vivo)

Zheng et al. [119] PF-1355 MPO Inhibition of MPO Decreased neutrophil
recruitment and NETosis. In vitro

Parker et al. [120]

ABAH
(4-aminobenzoic
acid hydrazide)

MPO Inhibition of MPO Reduced PMA-induced NET
formation.

In vitro

TX1 (3-isobutyl-2-
thioxo-7H-purine-
6-one)

Smith et al. [127] Chloroquine Reduced LPS-induced NET
formation. In vitro

Fuchs et al. [128] Heparin Histones
Remove histones from
NETs and destabilize
NETs

Reduced NET formation. In vitro

Manda-Handzlik
et al. [129]

Apocynin and DPI NADPH-oxidase
Inhibit
NADPH-oxidase
activity

Reduced S-nitroso-N-acetyl-
D,L-penicillamine
(SNAP)-induced
NET formation. In vitro

N-acetylcysteine
(NAC) ROS scavenger

Interfere with the levels
of hydrogen peroxide
and hydroxyl radical

Inhibited NO-dependent
NETosis

Li et al. [117]

SMT Inducible NO
synthase (iNOS)

Block NO synthesis Inhibited NO-mediated NET
formation

In vitro
L-NAME Endothelial NO

synthase (eNOS)

L-NMMA Total NOS

Wang et al. [34] Metformin
(antidiabetic)

Inhibit mitochondrial
respiratory chain
complex I and
NADPH-oxidase
activity, thus decrease
ROS production

Reduced PMA-induced NET
formation In vitro

Menegazzo et al.
[124]

Metformin
(antidiabetic)

Inhibit membrane
translocation of
PKC-βII and activation
of NADPH-oxidase

Reduced NET components
elastase, proteinase-3,
histones, and double strand
DNA in the plasma of
pre-diabetes.

Pre-diabetes
(in vivo and
in vitro)

Zhang et al. [125]
Hydroxychloroquine
(autophagy
inhibitor)

Inhibit PAD4 and Rac2
expressions by
blocking TLR9

Reduced hepatic
ischemia/reperfusion (I/R)
injury by inhibiting NET
formation.

Hepatic I/R injury
(in vivo and
in vitro)
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Table 2. Cont.

Studies Therapeutic
Agents Targets Mechanism of Action Major Findings Disease/Model

Phase II clinical
trial (NCT02462265,
https://
clinicaltrials.gov)
Accessed on 30
June 2021

Oshadi D (DNase)
and Oshadi R
(RNase)

DNA and RNA
Showed antitumor activity
and a good safety profile in
leukemia patients.

Acute myeloid
leukemia or acute
lymphoid leukemia

8. Conclusions

Despite significant preclinical and clinical research on CRC, mortality remains high
when cancer progresses to multiple organs. This could be due to poor understanding of
pathological mechanism of CRC in the context of inflammation and NET formation. Inflam-
mation plays a profound role throughout the whole process of carcinogenesis staring from
initiation of primary tumor to metastasis. Moreover, neutrophils and neutrophil-released
products have been implicated in various types of cancer progression and metastasis. Al-
though some studies showed anti-tumor roles of neutrophils, higher levels of neutrophils
numbers in primary cancer and pre-metastatic organs were shown to associate with cancer
progression and metastasis. The formation of NETs is an indispensable mechanism of host
response where neutrophils kill and trap pathogens. However, in various cancer types,
NETs were found to promote cancer cells growth and metastasis by trapping circulating
cancer cells in distant inflamed organs. Although, a small number of studies investigated
possible roles of NETs in CRC, increasingly a robust body of evidence indicated that NETs
might play a significant role in the pathophysiology of colon cancer. In recent times, sev-
eral experimental studies targeting NETs and NET-associated proteins showed promising
results in mitigating disease progression and metastasis. Thus, it could be suggested that in
conjunction with surgery and adjuvant chemotherapy, new treatment strategies in order to
prevent NET-mediated CRC progression and metastasis would be a promising approach in
the clinical settings. It should be noted that recombinant human DNase I has been used for
patients with cystic fibrosis and systemic lupus erythematosus, respectively and appears
to be safe and effective. Therefore, targeting NETs or NET formation could provide a
promising strategy to inhibit both progression and metastasis of CRC.
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