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We examine E/I balance based on the two primary, oppos-
ing central neurotransmitters, glutamate and γ-amino-butyric 
acid (GABA). Their respective excitatory and inhibitory synapses 
are characteristically divergent in a range of features (Boeckers, 
2006; Craig et al., 2006; Okabe, 2007; Tretter and Moss, 2008; 
Tyagarajan and Fritschy, 2010). First, the cellular position of 
the synapses differs dramatically. Glutamatergic synapses form 
almost exclusively on dendritic spines after preferential asso-
ciation with, and stabilization of, an incoming, exploratory 
filopodial scout (Lohmann and Bonhoeffer, 2008). In contrast, 
GABAergic synapses do not form on spines, but rather reside 
on dendritic shafts, nerve cell somata and axon initial segments. 
These inhibitory synapses arise from predecessor axon-dendrite 
contacts without any apparent protrusive activity from either 
axon or dendrite (Wierenga et al., 2008). Second, ultrastructural 
properties of pre- versus post-synaptic specializations are readily 
distinguishable between synaptic classes (Gray, 1959; Colonnier, 
1968; Peters and Palay, 1996). Excitatory contacts maintain dis-
crete asymmetry with an electron-dense postsynaptic density 
opposing a presynaptic active zone. Inhibitory contacts, however, 
appear relatively symmetric with presynaptic vesicles clustered 
opposite a synaptic cleft without a robust postsynaptic density. 
Third, the molecular constituents of the synapses differ consid-

IntroductIon
The integration of excitatory and inhibitory inputs at the level of the 
individual neuron, and in the organization of functional units con-
stituting neural circuits, is fundamental to the information process-
ing that mediates brain function. Establishing and maintaining the 
appropriate ratio of excitatory versus inhibitory synapses (E/I ratio) 
is a critical factor that enables circuit threshold definition and bal-
ances measured output responsiveness. Disruption of the E/I set 
point beyond acceptable tolerances leads to aberrant hyper/hypo-
transmissive states, which when chronically unresolved cause severe 
dysfunction. A growing body of evidence suggests that disrupted 
E/I ratios within the central nervous system may be implicated 
in a range of neurodevelopmental disorders. Contributing factors 
may include the selective loss of either excitatory or inhibitory 
synapses, without compensatory changes, or genetic conditions 
that actively favor the formation or maintenance of one class of 
synapse relative to the other. Such imbalances may arise during 
initial neural circuit formation, as a failure of ‘refinement’ mecha-
nisms that address balance during preliminary circuit use periods, 
or as a selective inability to maintain the E/I ratio into maturity, 
perhaps owing to defective plasticity properties. This review will 
discuss these alternate possibilities in the context of genetic models 
of neurodevelopmental disorders.
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erably. Beyond the ionotropic and metabotropic glutamate and 
GABA receptors that confer  transmitter specificity,  presynaptic 
transporters responsible for vesicle  loading and  organizing 
 postsynaptic scaffolding molecules often serve as reporters 
for immunohistochemical synapse discrimination (Boeckers, 
2006; Craig et al., 2006; Okabe, 2007; Tretter and Moss, 2008; 
Tyagarajan and Fritschy, 2010). Excitatory synapses maintain 
vesicular glutamate transporters (VGLUTs) and the postsynaptic 
density protein-95 kDa (PSD-95), whereas inhibitory synapses 
are marked by the presence of the vesicular GABA (VGAT) and 
vesicular inhibitory amino acid (VIAAT) transporters and the 
postsynaptic adaptor protein gephryin.

In considering the overall ratio of excitatory to inhibitory 
neurons, in the mammalian cortex roughly 80% of neurons are 
excitatory and 20% inhibitory (Rubenstein and Merzenich, 2003). 
However, this compositional ratio may vary dramatically with 
brain region, development or aging, and it does not necessarily 
reflect the E/I synaptic balance per individual neuron. The E/I 
ratio influencing a given neuron is often functionally studied 
at an electrophysiological level by examining the contribution 
of glutamatergic and GABAergic synaptic inputs. The ratio can 
be determined by variably clamping the membrane potential 
to differentially record excitatory and inhibitory postsynaptic 
currents (EPSCs or IPSCs) (Liu, 2004). In addition, anatomical 
methods can be employed to structurally characterize the E/I 
ratio. Postembedding immunostaining or assays of symmetrical 
versus asymmetrical synapses via electron microscopy can assess 
the prevalence of excitatory and inhibitory synapses amongst con-
vergent contacts (Megias et al., 2001). Serial electron microscope 
reconstructions have shown that in vivo rat hippocampal CA1 
pyramidal cell dendrites receive approximately 30,000 excitatory 
inputs and 1,700 inhibitory inputs, yielding an E/I ratio of ∼18:1 
(Megias et al., 2001). Notably, in vitro hippocampal cultures dis-
play an immature dendritic compartment ratio of ∼3:2 at 16-days 
shifting to ∼4:1 by 19 days (Liu, 2004), which nevertheless remains 
strikingly different from the in vivo condition. Examination of 
the local inhibitory interneurons in the hippocampus reveals sali-
ent differences: Parvalbumin-containing neurons receive 16,000 
inputs of which 6% are inhibitory (E/I = ∼14:1); calbindin D 
(28 k) neurons receive 4,000 inputs of which 30% are inhibi-
tory (E/I = ∼2:1); and calretinin-positive neurons maintain 2,000 
inputs of which 20% are inhibitory (E/I = ∼3:1) (Gulyas et al., 
1999). Clearly then, considerable differences in E/I ratios are 
discernable between, and even amongst, neurons of particular 
classes, and ratios may be highly dynamic as a function of devel-
opmental stage.

As studies have shown the relative excitatory drive upon each 
neuronal subtype is likely quite distinct, the E/I ratio therefore 
must be carefully regulated. Establishing this balance is further 
complicated by the developmental and activity-dependent shifts 
influencing ratio modulation. For example, Xenopus tectal neu-
rons can bidirectionally modify GABAergic inputs as a function of 
the prevalent E/I ratio, with the level of convergent glutamatergic 
input appearing to be the determining factor (Liu et al., 2007). 
Indeed, GABA can serve as a depolarizing, excitatory transmitter 
in immature neurons (Ben-Ari, 2002; Akerman and Cline, 2007), 
and, when coupled with the relatively limited glutamateric inputs 

at this stage, repetitive stimulation can lead to attenuating long-
term depression (LTD) in GABAergic inputs (Liu et al., 2007). 
However, with the developmental elevation of glutamatergic 
strength and transition of GABAergic inputs to their canonical 
inhibitory role, similar stimulation at maturity yields GABAergic 
long-term potentiation (LTP) (Liu et al., 2007). An excitatory role 
for GABA is also prevalent in the developing murine neocortex. A 
combination of the resting membrane potential (E

m
) and reversal 

potential for GABA (E
GABA

) in immature animals (postnatal days 
2–10) leads to pyramidal neuron and interneuron depolarization 
that mediates action potential generation within cortical layers 
5/6 (Rheims et al., 2008). Moreover, excitatory and inhibitory 
neurotransmitters can be employed coincidentally with their co-
release critical to proper circuit refinement (Noh et al., 2010). 
In the mammalian auditory system, VGLUT3 and glutamate are 
found at developing inhibitory GABA/glycinergic synapses in the 
sound localization pathway of the lateral superior olive, prior to 
the onset of hearing (Gillespie et al., 2005). Genetic disruption 
of the glutamatergic component in a Vglut3−/−mouse impairs the 
coordinate, requisite synaptic strengthening and silencing neces-
sary for normal tonotopic map organization (Noh et al., 2010). 
Thus, successfully implementing a strategy to influence the E/I 
ratio depends upon not only synapse enumeration but also how 
specific neurotransmitters function as a consequence of devel-
opmental progression.

How then do neural circuits establish and maintain balanced 
excitation and inhibition? For the sake of stable, long-term effec-
tiveness and integrity, network activity is proposed to be main-
tained within a given dynamic range by compensatory alterations 
preventing runaway signaling, a concept termed ‘synaptic home-
ostasis’ (Turrigiano and Nelson, 2004; Davis, 2006; Maffei and 
Fontanini, 2009). The initial characterization of this phenomenon 
was done in cultured cortical neurons (Turrigiano et al., 1998). 
Pharmacological activity blockade with tetrodotoxin resulted in 
an upregulation of miniature excitatory postsynaptic current 
(mEPSC) amplitudes to 192% of control; whereas, disruption 
of GABAergic inhibition with bicuculline resulted in a 2.5-fold 
increase in neuronal firing and decreased mEPSC amplitudes to 
70% of control (Turrigiano et al., 1998). Thus, in response to 
influences forcibly altering activity, compensatory mechanisms 
are enlisted in an apparent attempt to restore the initial circuit 
set point. In addition to the modulation of synaptic strength, bal-
ance may be achieved through adaptation of synaptic efficacy, 
membrane excitability and/or synapse number. For example, in 
independent studies, activity deprivation also reduced miniature 
inhibitory postsynaptic current (mIPSC) amplitudes with a con-
comitant 50% reduction in synapses reactive for the ionotropic 
GABA

A
 receptor (GABA

A
R) (Kilman et al., 2002), and diminished 

activity in hippocampal cultures has been shown to increase the 
prevalence of synaptic pairing in efforts to enhance connectivity 
(Nakayama et al., 2005). Nevertheless, many conditions exist that 
permanently alter the E/I balance, indicating regular failure of the 
apparent homeostatic mechanism. This fact suggests either that 
homeostasis is far from a universal property of circuits, or that 
many, disparate defects can prevent appropriate compensation 
mechanisms from being engaged or maintained, compromising 
neurological function.
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to tactile and auditory stimulation (APA, 2000; Levy et al., 2009; 
O’Hare, 2009). Autism is clinically obvious typically by 3 years 
of age; however, abnormalities in socialization and play can be 
ascertained as early as 12 months (Landa et al., 2007; Barbaro 
and Dissanayake, 2009; Zwaigenbaum, 2010). The early onset of 
ASD implicates defects in either fetal brain development or the 
earliest phases of postnatal maturation. Thus for effective inter-
vention, it is critical that we push downward the age of effective 
diagnosis as early as possible. In addition, autism often presents 
with other neurological disorders (Figure 1). Approximately 5% 
(2–7%) of ASD children have the common mutation causing FXS 
(Rogers et al., 2001; Hagerman, 2008b; Harris et al., 2008). Thirty 
percent of ASD patients also struggle with epilepsy (Tuchman 
and Rapin, 2002; Tuchman et al., 2009), and though current 
classification guidelines prevent comorbid diagnoses of autism 
and RTT, a recent study indicated that approximately 50% of 
RTT patients have been shown to meet ASD criterion employ-
ing the Developmental Behavior Checklist and the Diagnostic 
Interview for Social and Communication Disorders (Wulffaert 
et al., 2009).

Defects in synaptogenesis, synaptic refinement and connectiv-
ity have long been postulated to be a leading cause of the autism 
spectrum (Rubenstein and Merzenich, 2003; Rippon et al., 2007). 
Specifically, autism has been suggested to result from ‘an increased 
ratio of excitation/inhibition in sensory, mnemonic, social and 
emotional systems’ (Rubenstein and Merzenich, 2003). This puta-
tive imbalance is thought to contribute to the prevalence of poor 
signal-to-noise ratios, whereby hyperexcitable, non-tunable corti-
cal circuits lead to critical developmental periods passing without 
appropriate differentiation being achieved, resulting in systemic 
instability (Rubenstein and Merzenich, 2003; Rippon et al., 2007). 
In support of this hypothesis, cytological abnormalities in the 

A host of devastating neurological diseases have been proposed 
to result from underlying E/I imbalance, ranging from neuropsy-
chiatric conditions such as schizophrenia (Kehrer et al., 2008) and 
Tourette’s syndrome (Wassef et al., 2003), to neurodegenerative 
conditions like Parkinson’s and Huntington’s diseases (Choonara 
et al., 2009; Cummings et al., 2009). In particular, a large number 
of neurodevelopmental diseases are proposed to result from an E/I 
shift. This review will specifically highlight a subset of such disor-
ders that harbor identifiable genetic components and have been 
successfully modeled to enable rigorous preclinical investigations. 
Neurodevelopmental disorders include a myriad of conditions, 
which share the common theme that symptomatic presentation 
and disease onset is identifiable in early postnatal years, prior to 
full brain maturation, when critical periods of activity-dependent 
refinement and circuit remodeling are vulnerable. Such disor-
ders include the autism spectrum, epilepsy, Rett syndrome (RTT), 
and Fragile X syndrome (FXS) (Figure 1). For each case, we will 
survey indicative E/I imbalance conditions and then provide a 
more thorough discussion of FXS as our prime example. We will 
then discuss a range of causative genetic alterations that skew 
E/I balance by interfering with various aspects of normal gene 
expression programs and synaptic formation, organization and 
maintenance.

neurodevelopmental dIseases wIth E/I Imbalance
autIsm
With an incidence that some recent estimates place as high as 1:110 
(Mulvihill et al., 2009), autism spectrum disorders (ASDs) are 
diseases of neurodevelopment with pervasive impact. The spec-
trum is characterized by compromised communication, social 
skills and cognition, often coupled with stereotypic repetitive 
behaviors and perception anomalies including hypersensitivity 

FiGure 1 | relationships of neurodevelopmental diseases with E/I 
ratio synaptic imbalance. Rett syndrome (RTT, red), autism spectrum 
disorder (ASD, green), epilepsy (gray) and Fragile X syndrome (FXS, blue) 
manifest pathological E/I ratio imbalance with comorbidities indicated 
pair-wise in black. Epilepsy often presents with the other three conditions, 

but comparable associative statistics (dashed gray line) are not well 
documented in the literature. The interconnectivity amongst these 
disorders emphasizes the clinical significance of E/I ratio disruption and 
suggests that this imbalance likely renders a higher susceptibility to 
further dysfunction.
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et al., 2009). Epilepsy is often discussed as resulting from disrup-
tion in the balance of neuronal excitation and inhibition coupled 
with asynchrony generating episodic periods of abnormal activity 
(Fritschy, 2008) and can be caused by neurological channelopathies 
with mutations in voltage-gated (N+, K+, Ca2+ and Cl−) and ligand-
gated (nicotinic acetylcholine and GABA

A
R) channels (Kang and 

Macdonald, 2009; Reid et al., 2009; Kullmann, 2010). Furthermore, 
epilepsy is often strikingly associated with other neurodevelop-
mental disorders (Figure 1). Epilepsy develops in 60–70% of RTT 
patients (Huppke et al., 2007; Moser et al., 2007), and abnormal 
electroencephalographs (EEGs) are observed in 60% of autistic 
children with 30% having recurrent seizures (Tuchman and Rapin, 
2002; Tuchman et al., 2009; Coury, 2010). Likewise, altered EEGs are 
observed commonly in FXS children, and 10–20% display benign 
focal epilepsy with childhood seizures, typically remitting in late 
adolescence (Musumeci et al., 1999; Sabaratnam et al., 2001; Berry-
Kravis, 2002; Qiu et al., 2008; Hagerman and Stafstrom, 2009). 
This remission prevalence and the incidence of other childhood 
epilepsies that wane with age are indicative of higher epileptogenic 
susceptibility to E/I imbalance in the immature brain (Rakhade 
and Jensen, 2009). During development, homeostatic mechanisms 
may not be effectively engaged, or may require a substantial tem-
poral window to effect the functional compensation necessary to 
offset alterations in activity. However, resolution is not a consist-
ent feature of epileptic disease progressions, indicating an insuf-
ficiency and/or failure of long-range homeostatic influence under 
certain circumstances.

The clear propensity of E/I imbalance involvement in epilepsy 
obviates the need to explore and define this in effective epilepsy 
model systems (Fritschy, 2008). In rodents, experimental cor-
tical dysplasia induced via in utero irradiation mirrors altered 
cortical abnormalities seen in intractable epilepsy (Roper, 1998; 
Porter et al., 2003). Initial findings showed reduced inhibitory 
synaptic currents in pyramidal cells (Zhu and Roper, 2000) and 
reduced density of inhibitory interneurons (Roper et al., 1999) 
with depressed excitatory drive (Xiang et al., 2006). A more recent 
study specifically assessed the inhibitory synaptic activity in fast-
spiking (FS) interneurons in these animals, showing a reduc-
tion in frequency, though not amplitude, of spontaneous IPSCs 
(sIPSCs) and aberrant short-term facilitation upon evocation 
(Zhou et al., 2009). Moreover, simultaneously monitoring exci-
tatory and inhibitory postsynaptic currents revealed an E/I shift 
favoring inhibition in these interneurons, which typically serve to 
temper activity, thus leading to a net circuit effect of unchecked 
excitation. Altered E/I parameters are also seen upon modeling 
temporal lobe epilepsy, which is characterized by neuron loss 
in the hippocampal dentate gyrus (Dudek and Sutula, 2007). A 
recent study of the  pilocarpine-elicited status epilepticus model 
revealed a preliminary loss of GABAergic neurons and decrement 
of inhibitory synapses to minimally 70% of control levels with 
concomitant excitatory synaptic loss onto the granule cells (Thind 
et al., 2010). Excitatory synapses were reported to later reestablish 
normally, whereas the surviving interneurons initiate robust syn-
aptogenesis and supersede control levels by 120–150%. However, 
it was previously shown that disrupted chloride regulation, via 
loss of Cl− extrusive function in the K+/Cl− KCC2 co-transporter, 
leads to a reduction in inhibition efficacy and enhanced granule 

organization of mini-columns have been observed in neocortical 
post-mortem tissue. These vertical arrays of functionally related 
glutamatergic and GABAergic neurons process thalamic input 
and, in the autistic cortex, are smaller, more numerous and dis-
play disordered peripheral neuropil space (Casanova et al., 2002, 
2003; Casanova, 2006). Also potentially contributing to unchecked 
hyperexcitability, post-mortem studies have revealed that neurons 
in autistic patients likely display depressed GABA production as 
the level of glutamic acid decarboxylase (GAD), the rate limiting 
enzyme in GABA synthesis, is reduced by half (Fatemi et al., 2002). 
Additionally, GABA responsiveness may itself be compromised as 
GABA

A
R subunit depression is also observed with mRNA and pro-

tein studies showing altered α1–5 and β1 subunits (Fatemi et al., 
2009, 2010). These studies suggest a shift in the E/I ratio favor-
ing an elevated preponderance of glutamatergic connections with 
inhibitory insufficiency.

In addition to FXS and RTT, a number of genetic susceptibili-
ties have been linked to elevated autism risk including maternal 
15q11–13 chromosomal duplications, anomalies in the tumor 
suppressor genes NF1, TSC1/TSC2, and PTEN that activate mam-
malian target of rapamycin (mTOR)/phosphatidylinositol 3-kinase 
(PI3K) signaling pathways, and mutations in a range of synaptic 
genes such as the neurexins, neuroligins, SHANK3 and CNTNAP2 
(Betancur et al., 2009; Bourgeron, 2009; Kumar and Christian, 
2009). For example, mutations in the postsynaptic cell adhesion 
molecule neuroligin-3 (NLGN3), particularly a single amino acid 
substitution at the Arg451 to Cys451 (R451C), have been well-
characterized (Jamain et al., 2003). This genetic variant has been 
introduced in mice and behaviorally produces impaired social 
interaction, albeit with a surprisingly enhanced capacity for spatial 
learning (Tabuchi et al., 2007). At the E/I level, the R451C–NLGN3 
knock-in shows increased VGAT and gephyrin levels. Although 
no change in inhibitory synapse number was observed, a 50% 
increased mIPSC frequency and increased amplitude of evoked 
IPSCs in whole-cell recordings of layer 2/3 somatosensory bar-
rel cortex slices was observed in the absence of any accompany-
ing changes in excitatory transmission (Tabuchi et al., 2007). 
Interestingly, these changes did not occur in the complete NLGN3 
knockout (KO), indicating R451C–NLGN3 presumably represents 
a gain-of-function variation. In vitro connectivity studies employ-
ing dissociated rat hippocampal cultures indicated that NLGN3 
introduction enhances optically observable spontaneous syn-
chrony, whereas R471C-NLGN3 reduces this capacity (Gutierrez 
et al., 2009). Further, studies of axonal topography revealed R471C-
NLGN3 expression results in shorter, less interconnected neurons 
and the preferential degeneration of inhibitory neurons. Thus, the 
overall network influence trends toward a reduction of inhibitory 
activity (Gutierrez et al., 2009). Collectively, these ASD model stud-
ies indicate that E/I imbalance can present differentially in various 
circuits; and, importantly, structural and functional changes do 
not always coincide.

epIlepsy
Epilepsy refers to a family of chronic neurological disorders with 
a frequency of approximately 7:1,000 individuals (Hirtz et al., 
2007), characterized by a tendency toward recurrent non-provoked, 
spontaneous seizures (Scharfman, 2007; Jacobs et al., 2009; Reid 
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However, the MECP2 KO displays a 20%  reduction in excitatory 
synapses in the stratum radiatum of hippocampal CA1 neurons 
in vivo, although this appears to resolve by 5 weeks of age (Chao 
et al., 2007). Thus, as in ASD, E/I imbalance in RTT may be circuit 
specific and temporally modulated.

FragIle X syndrome
Fragile X syndrome (FXS) is the leading monogenic heritable 
cause of intellectual disability and ASD, conservatively affecting 
1:4,000 males and 1:8,000 females (O’Donnell and Warren, 2002; 
Penagarikano et al., 2007; Cornish et al., 2008; Garber et al., 2008), 
although recent estimates place the full mutation frequency as high 
as 1:2,500 in the general population (Hagerman, 2008a). Clinical 
FXS symptoms include delayed and depressed developmental tra-
jectories (Bailey et al., 2001a,b; Hall et al., 2008), short-term work-
ing memory deficits (Munir et al., 2000; Cornish et al., 2001; Kwon 
et al., 2001; Lanfranchi et al., 2009), disordered sleep (Gould et al., 
2000; Miano et al., 2008), seizures (Kluger et al., 1996; Musumeci 
et al., 1999; Singh et al., 1999; Sabaratnam et al., 2001; Berry-Kravis, 
2002; Di Bonaventura et al., 2006; Qiu et al., 2008), elevated anxi-
ety (Tsiouris and Brown, 2004), and attention-deficit hyperactivity 
disorder (Hatton et al., 2002; Sullivan et al., 2006). Significantly, 
30% of FXS patients are also diagnosed with autism (Figure 1) 
(Kau et al., 2004; Hagerman, 2008b; Harris et al., 2008).

FXS is caused by the loss of fragile X mental retardation 1 
(FMR1) gene function (Verkerk et al., 1991), most commonly due 
to unstable CGG-trinucleotide repeat expansion in the 5′ regu-
latory region that leads to hypermethylation and transcriptional 
silencing (Sutcliffe et al., 1992). The FMR1 product (FMRP) is an 
mRNA-binding, polysome-associated protein that typically acts 
as a negative regulator of protein translation (Laggerbauer et al., 
2001; Li et al., 2001; Sung et al., 2003; Zalfa et al., 2003; Lu et al., 
2004; Qin et al., 2005; Tessier and Broadie, 2008), facilitates mRNA 
trafficking (Dictenberg et al., 2008; Estes et al., 2008), and influences 
mRNA stability (Zalfa et al., 2005; Zhang et al., 2007). Murine and 
Drosophila FXS models allow mechanistic examinations into the 
disease (Bakker et al., 1994; Zhang et al., 2001; Mientjes et al., 2006), 
and both models recapitulate numerous clinical FXS features, dis-
playing neuronal overgrowth, altered synaptogenesis and synaptic 
plasticity coupled with defective circadian rhythms, learning and 
memory (Bassell and Warren, 2008; Gatto and Broadie, 2009b; 
Mercaldo et al., 2009; Pfeiffer and Huber, 2009).

In light of E/I balance, it is important to note that FMRP is 
 activity-regulated. Downstream of glutamatergic neurotransmission, 
metabotropic glutamate receptor (mGluR)-mediated translational 
induction elevates FMRP levels (Weiler and Greenough, 1993; Weiler 
et al., 1997). Moreover, peak endogenous FMRP levels in vivo cor-
relate with postnatal periods of significant use-dependent synaptic 
refinement and later plasticity (Singh et al., 2007; Tessier and Broadie, 
2008). As we have discussed previously (Gatto and Broadie, 2009b; 
Tessier and Broadie, 2009), considerable work has shown that sen-
sory stimulation also serves as an effective means to elicit activity-
 responsive FMRP enhancement and can be achieved via exposure to 
complex, stimulating environments and motor skill training (Irwin 
et al., 2000, 2005). Levels of sensory stimulation directly impact FMRP 
levels and function. In rodents, whisker stimulation increases FMRP 
expression in synapse- and polysome-containing fractions (Todd and 

cell excitability (Pathak et al., 2007). These results suggest that 
the E/I quantitative ratio is not always solely indicative of the 
exerted circuit influence, and coordinate functional determina-
tions remain imperative.

rett syndrome
Rett syndrome (RTT) is a relatively rare (1:10,000) but insidious, 
progressive X-linked neurodevelopmental disease that is a leading 
cause of intellectual disability in females (Glaze, 2002; Percy and 
Lane, 2005; Segawa and Nomura, 2005; Chahrour and Zoghbi, 2007; 
Monteggia and Kavalali, 2009). Development appears to progress 
normally in RTT children until 6–18 months of age, when symp-
tomatic presentation begins. The disorder is then associated with 
developmental reversion involving loss of acquired proficien-
cies including expressivity and motor skills, continuing cogni-
tive impairment, autistic behaviors and seizures (Figure 1). The 
most common etiology is de novo mutation in the transcriptional 
regulator, methyl-CpG-binding protein 2 (MECP2) (Amir et al., 
1999). MECP2 disruptions account for up to 90% of RTT cases, 
although MECP2 duplication events (Shi et al., 2005; Van Esch 
et al., 2005; del Gaudio et al., 2006; Bunyan and Robinson, 2008; 
Smyk et al., 2008) and mutations in cyclin-dependent kinase-like 
5 (CDKL5) (Weaving et al., 2004; Mari et al., 2005; Sprovieri et al., 
2009) and the Forkhead family transcriptional repressor FOXG1 
(Ariani et al., 2008; Jacob et al., 2009a; Mencarelli et al., 2010) have 
also been implicated.

Rett syndrome has been successfully modeled in mice via dele-
tion of all or the third exon of MECP2 (Chen et al., 2001; Guy 
et al., 2001; Shahbazian et al., 2002). Mutant animals display age-
progressive motor impairment, tremors, increased anxiety and sei-
zures. In agreement with analyses of post-mortem tissue samples 
(Belichenko et al., 1994; Chapleau et al., 2009), MECP2 mutants dis-
play a significant reduction in dendritic spine number (Belichenko 
et al., 2009; Chapleau et al., 2009), suggesting decreased excitatory 
synapse capacity. Electrophysiological examinations of cortical 
slices from the MECP2 KO mouse indicate a reduction in spontane-
ous pyramidal neuron activity resulting from a reduction in mEPSC 
amplitude as compared to maintained mIPSCs, thus favoring inhi-
bition (Dani et al., 2005). Deficits in LTP upon MECP2 truncation 
have also been reported (Moretti et al., 2006); however, cortical LTP 
induction mechanisms appear to be retained in early-symptomatic 
MECP2 KO animals though with fewer and weaker connections, as 
revealed by a 50% reduction in connection probability and a 45% 
reduction in excitatory postsynaptic potential (EPSP) amplitude, 
respectively (Dani and Nelson, 2009). Recent in utero transfection 
of short hairpin RNA (shRNA) constructs directed against MECP2 
support these findings with intracortical networks showing at least 
30% reduction in excitatory synaptic input from cortical layers 
L3/5A (Wood et al., 2009). Glutamate uncaging coupled with laser 
scanning photostimulation likewise revealed a 40% reduced excita-
tory input to layer 2/3 neurons (Wood et al., 2009). In addition, 
impaired hippocampus-dependent spatial memory, contextual fear 
memory, social memory, and LTP arise with MECP2 truncation 
(Moretti et al., 2006). In contrast to cortical studies, hippocampal 
network examination of the MECP2 KO animals revealed a ten-
dency toward hyperexcitability, as spontaneous inhibitory rhythmic 
activity was selectively reduced in frequency (Zhang et al., 2008). 
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brain region specific. GluR1-containing α-amino-3-hydroxyl-5-
methyl-4-isoxazole-propionate receptors (AMPAR) and LTP are 
depressed in the mouse FXS model cortex (Li et al., 2002; Zhao 
et al., 2005; Desai et al., 2006; Wilson and Cox, 2007), whereas 
mGluR-mediated LTD is enhanced in the hippocampus (Huber 
et al., 2002; Nosyreva and Huber, 2006). Moreover, in conditioned 
hippocampal slices from FMR1 KO mice, synaptically released 
glutamate induced prolonged group I mGluR-mediated epileptic 
discharges, whereas induction of this type of activity in wild-type 
animals normally requires mGluR activation with (RS)-3,5-
dihydroxyphenylglycine (DHPG). The induced epileptiform activ-
ity in the KO mouse could be blocked with translational inhibitors 
and suppressed with mGluR antagonists (Chuang et al., 2005). 
In Drosophila fmr1 (dfmr1) mutants, electrophysiological studies 
have indicated increased glutamatergic vesicle fusion event fre-
quency and enhanced exocytic vesicle cycling (Zhang et al., 2001; 
Gatto and Broadie, 2008). High frequency stimulation paradigms 

Mack, 2000) as does visual experience in  dark-reared/light-exposed 
animals (Gabel et al., 2004). Consistently, in Drosophila, sensory dep-
rivation yields depressed dFMRP levels, as does genetic disruption 
of visual or olfactory sensory modalities (Tessier and Broadie, 2008). 
Thus, activity positively regulates FMRP, and FMRP functions in 
activity-dependent synaptic mechanisms.

E/I balance In FXs
The above studies suggest that conditions favoring an excitation-
dominant E/I ratio elevate FMRP levels and function. Conversely, 
FMRP itself may impinge upon the balance of excitatory and 
inhibitory synapse formation during the genesis and maintenance 
of neural circuits (Figure 2). Post-mortem examinations in FXS 
patients reveal aberrant, supernumerary cortical dendritic spines, 
suggesting an architectural framework for elevated glutamatergic 
synaptogenesis (Rudelli et al., 1985; Hinton et al., 1991). However, 
as with the potential E/I ratio variability, FMRP function may be 

FiGure 2 | Fragile X syndrome is a disease of excitation-dominance. 
FXS models have been established via mutation of mouse and Drosophila 
FMR1. Both systems manifest a shift in synaptic E/I ratio with hyperexcitation 
favored. Model-specific alterations are diagrammed for glutamatergic and 

GABAergic circuits. Both models share the prevalence of increased numbers of 
excitatory synaptic boutons, elevated glutamatergic transmission, susceptibility 
to hyperexcitability and decreased GABAAR expression. FXS is thus 
characterized by glutamatergic elevation as well as GABAergic depression.



Frontiers in Synaptic Neuroscience www.frontiersin.org June 2010 | Volume 2 | Article 4 | 7

Gatto and Broadie Balancing excitatory and inhibitory synaptogenesis

transduction stimulates synaptic translation via FMRP (Weiler and 
Greenough, 1993; Weiler et al., 1997, 2004; Greenough et al., 2001; 
Job and Eberwine, 2001; Muddashetty et al., 2007; Westmark and 
Malter, 2007). In wild-type mice, mGluR-dependent LTD requires 
stimulus-responsive protein synthesis (Massey and Bashir, 2007), 
but FMR1 KO mice do not display mGluR-triggered polysome 
assembly or activity induced protein synthesis (Todd et al., 2003; 
Weiler et al., 2004; Muddashetty et al., 2007; Westmark and Malter, 
2007; Park et al., 2008). The result is elevated mGluR-triggered LTD 
(Huber et al., 2002; Nosyreva and Huber, 2006), suggesting that 
FMRP usually contributes feedback by repressing LTD-enhancing 
elements. mGluR5 antagonists rescue many FMR1 KO defects, 
including audiogenic seizure susceptibility, open-field exploratory 
hyperactivity and prepulse startle inhibition (Yan et al., 2005; de 
Vrij et al., 2008). Similarly, genetic reduction of mGluR5 signaling 
(mGluR5/+ heterozygotes) in the FMR1 null background alleviates 
most defined neurological dysfunctions, including altered ocular 
dominance plasticity, cortical neuron dendritic spine density, 
increased basal protein synthesis, inhibitory avoidance extinction 
and audiogenic seizure sensitivity (Dolen et al., 2007).

Despite the clear importance of the mGluR signaling mechanism, 
it alone does not account for the full range of FXS abnormalities. 
More recent work has established links to fast cholinergic trans-
mission and slow modulatory transmission mediated by biogenic 
amines (e.g. dopamine) and neuropeptides (Zhang et al., 2005; 
Wang et al., 2008). Examination of M

1 
muscarinic acetylcholine 

receptor (mAChR) activated-LTD revealed a protein synthesis-
 dependent mechanism and AMPAR internalization associated with 
elevated FMRP levels (Volk et al., 2007). mAChR-mediated LTD was 
enhanced in FMR1 KO mice, associated with misregulation of FMRP 
targets, i.e. elongation factor 1α (EF1α) and calcium/ calmodulin-
dependent kinase II (CaMKII), uncoupling LTD induction from 
requisite protein synthesis. Thus, Gq-coupled ACh and glutamate 
receptors both appear to mediate protein synthesis-dependent syn-
aptic changes mechanistically involving FMRP. Moreover, female 
FMR1 KO mice display increased dopamine turnover in cortical 
regions, striatum and hippocampus (Gruss and Braun, 2004), 
although this is reported not to occur in KO males (Gruss and 
Braun, 2001). A proteomic approach employing 2D electrophoresis 
in dfmr1 mutants indicated elevations in phenylalanine hydroxy-
lase and GTP cyclohydrolase, driving the upregulated biosynthe-
sis of dopamine and serotonin (Zhang et al., 2005). Critically, as 
dopamine D1 receptors contribute to ionotropic glutamate AMPAR 
trafficking, D1 stimulation in FMR1 KO cultured prefrontal cortex 
neurons caused a 37% decrease in GluR1-containing AMPAR sur-
face expression and compromised phosphorylation (Wang et al., 
2008). Moreover, D1 receptor signaling was itself impaired, and the 
redistribution of its G protein-coupled receptor kinase 2 (GRK2) to 
the membrane was also observed, likely yielding D1 receptor hyper-
phosphorylation and disrupted function. The in vivo relevance of 
these studies was highlighted by finding that amphetamine intro-
duction in the FMR1 KO mouse elevated dopamine release in the 
prefrontal cortex and improved object recognition (Ventura et al., 
2004), and D1 agonist treatment reduced open-field hyperactiv-
ity (Wang et al., 2008). These results indicate that FMRP’s mode 
of action is more complex than being solely mGluR-reactionary 
and, in fact, suggest that FMRP serves more generally as part of a 

revealed multiple synaptic transmission events in response to 
discrete stimuli and periodic amplitude cycling during the high 
frequency challenge. These defects are partially rescued in dfmr1; 
DmGluRA double null mutants, which lack all mGluR-mediated 
signaling (Repicky and Broadie, 2008). Taken together, these stud-
ies indicate exaggerated mGluR signaling function in FXS models, 
establishing a hyperexcitable state (Figure 2).

The FXS hyperexcitable state resulting from an E/I imbalance 
was recently demonstrated in acute neocortical slices isolated from 
the FMR1 KO mouse (Gibson et al., 2008). In layer 4 recordings, 
mutants showed ∼50% reduction in excitatory drive onto FS inhib-
itory neurons, with EPSC frequency and amplitude diminished 
due to compromised connectivity. In addition, there was a ∼20% 
decrease in excitatory drive onto excitatory neurons (Gibson et al., 
2008). Together, these conditions foster an inhibition of inhibi-
tory neurons within the circuit promoting an E/I balance in favor 
of elevated excitation. Moreover, the intrinsic excitability of the 
excitatory neurons was itself enhanced yielding a 2-fold increase in 
epochs of persistent activity, or ‘UP’ states, albeit with altered syn-
chrony ascribed to the disrupted FS circuitry (Gibson et al., 2008). 
Consistently, the FMR1 KO may yield more cells that are responsive 
to mGluR activation (Castren et al., 2005) and increased neocortical 
glutamatergic cell differentiation (Tervonen et al., 2009), further 
predisposing the FXS state for hyperexcitation.

In addition to enhanced excitation, dysfunction in FXS neuronal 
circuits can also be attributed to more direct GABAergic involvement 
(Figure 2). In FMR1 KO animals, initial examination of subicular 
neuron function, located in the most inferior aspect of the hippoc-
ampus, revealed electrophysiological responses indicating decreased 
GABAergic inhibition (D’Antuono et al., 2003). Further functional 
characterization with patch-clamp recordings in FMR1 null orga-
notypic slice cultures revealed a 91% decrease in current density for 
tonic, but not phasic, inhibition in subicular pyramidal cells, suggest-
ing a defect in peri- and extra-synaptic GABA receptors (Curia et al., 
2009). This tonic depression was associated with corollary α5 and 
δ GABA

A
R subunit under-expression, with mRNA levels depressed 

26 and 35% by real-time RT-PCR and protein levels depressed 13 
and 28% by Western blot, respectively (Curia et al., 2009). In the 
somatosensory neocortex, there was a 20% reduction in parvalbumin-
reactive GABAergic interneurons, and GABAergic neurons were also 
decreased in Layers II/III/IV (Selby et al., 2007), suggesting aberrant 
local inhibitory contributions. These changes are clearly brain region 
specific and may be absent, or even opposite, in other brain regions. 
In fact, in light of frontostriatal circuit disruption reported in clinical 
FXS evaluations (Menon et al., 2004b), striatal slices from the FMR1 
KO reveal abnormal GABA-mediated transmission in spiny neurons, 
although within this region inhibitory transmission was enhanced 
with an increased frequency of sIPSCs and mIPSCs (Centonze et al., 
2008). Interestingly, this change was not due to increased GABAergic 
synapse number, as VGAT-reactive puncta were actually decreased, but 
rather an enhanced release probability as evidenced by the reduced 
paired-pulse ratio of evoked IPSCs (Centonze et al., 2008).

mechanIstIc theorIes behInd E/I Imbalance In FXs
The ‘mGluR Theory of FXS’ places FMRP function downstream of 
mGluR activation at the synapse (Bear et al., 2004; Bear, 2005), based 
on observations that Group I mGluR1/5 signaling via Gq-mediated 
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and a 46% reduction in EPSC amplitude, whereas transgenic 2-fold 
over-expression of MECP2 yields a 60% increase in synapse number 
with a 116% increase in EPSC amplitude (Chao et al., 2007). As 
a range of neurodevelopmental disorders display compromised 
MECP2 levels, and thus potentially favor depressed excitatory syn-
apse formation and function, how these findings align with the 
network-specific hyperexcitability characteristic of RTT, FXS and 
autism remains a confounding issue.

The myocyte enhancer factor 2 (MEF2) family of transcrip-
tion factors, initially implicated in muscle development (Buskin 
and Hauschka, 1989; Gossett et al., 1989), also regulates excita-
tory synapse number (Flavell et al., 2006; Barbosa et al., 2008). 
In contrast to MECP2, however, the MEF2 family serves a sup-
pressive role. In cultured hippocampal neurons, RNAi-mediated 
knockdown of MEF2A and D caused a significant increase in 
the number of synapsin/PSD-95 reactive synapses and increased 
mEPSC frequency (Flavell et al., 2006). These effects are attributed 
to MEF2 promoting the transcription of targets that negatively 
regulate excitatory synapse development, including activity-
regulated cytoskeletal-associated protein (Arc) and synaptic Ras 
guanosine triphosphate activating protein (synGAP), as indicated 
by real-time quantitative PCR and Western blotting (Flavell et al., 
2006). MEF2-dependent negative regulation of excitatory synapse 
number and function was confirmed in vivo using a brain-specific 
deletion of MEF2C (Barbosa et al., 2008), although surprisingly, 
neurons formed normal synapses in culture. Behaviorally, MEF2C 
deletion significantly impaired hippocampal-dependent learning 
and memory (Barbosa et al., 2008). Thus, there is a correlation in 
this case between increased excitatory synapse number, potentiated 
synaptic transmission, and impaired behavioral output.

Inhibitory synapse development appears to be independently 
driven by a different dedicated set of transcription factors. The 
basic helix-loop-helix Per-ARNT-Sim (bHLH-PAS) family mem-
ber Npas4 was identified in a screen for neuronal genes induced 
upon membrane depolarization via calcium influx (Lin et al., 2008). 
Target genes were selected based on excitatory activity being tem-
porally coordinated with inhibitory synapse development. RNAi 
against Npas4 in vitro significantly reduced inhibitory synapse 
number, to less than 50% of control, whereas Npas-minigene over-
expression doubled inhibitory synapse density (Lin et al., 2008). 
These studies showed no impact on excitatory synapse number, 
suggesting Npas4 activity is specifically driving inhibitory synapse 
formation. Functionally, deletion of Npas4 in organotypic slice 
cultures decreased inter-event intervals (increased frequency) of 
spontaneous mEPSCs, while over-expression increased their inter-
event interval (decreased frequency) and decreased their amplitude 
(Lin et al., 2008). Thus, Npas4 selectively and positively regulates 
inhibitory synaptogenesis. Taken together, the above studies show 
that different transcription factors control excitatory and inhibi-
tory synapse formation independently and, apparently, without a 
detectable level of E/I balance compensation.

translatIonal regulators
Downstream of transcription, activity-dependent regulators of pro-
tein expression are prime candidates to modulate the E/I ratio. The 
importance of spatially restricted, local translation modulating func-
tional synapse changes is well documented, particularly in mediating 

feedback loop linking neurotransmitter signaling via Gq-coupled 
receptors for a range of neurotransmitters and neuromodulators. 
This model is described as the ‘Gq Theory of FXS’.

Disruption of inhibitory GABAergic signaling is also a vitally 
important component of the disease state (Figure 2), as expressed 
by the ‘GABA

A
R Theory of FXS’ (D’Hulst and Kooy, 2007, 2009). In 

addition to the functional defects in inhibitory signaling discussed 
above, GABA

A
R subunit mRNA and protein levels are depressed in 

both murine and Drosophila FXS models, suggesting that FMRP 
must contribute to the stability and/or translation of GABA

A
R tran-

scripts (El Idrissi et al., 2005; D’Hulst et al., 2006, 2009b; Gantois 
et al., 2006). The Drosophila model further manifests reduced 
mRNA levels for the GABA synthesizing enzyme GAD (D’Hulst 
et al., 2009b), and likewise, the FMR1 KO mouse has been reported 
to show decreased GAD mRNA in the cortex (D’Hulst et al., 2009b). 
However, in sharp contrast, the FMR1 KO displays increased GAD 
protein expression where decreased GABA

A
R β subunits are detected 

(i.e. in cortex, hippocampus, diencephalon and brainstem), perhaps 
indicating a partial compensatory mechanism (El Idrissi et al., 2005). 
Most notably, GABA administration in the Drosophila FXS model 
reportedly blocks glutamate toxicity and rescues microtubule-
 associated protein 1B (MAP1B)/Futsch over-expression, neuronal 
overgrowth defects and courtship memory impairment (Chang 
et al., 2008). Thus, FXS is likely a disease of neuronal hyperexcita-
tion, not only due to overactive Gq-signaling downstream of gluta-
mate and other transmitters, but also due to hypoinhibition, due to 
reduced expression and function of GABA

A
Rs.

genetIc mechanIsms regulatIng E/I balance
Although homeostatic mechanisms and corrective programs may 
be in play to address synaptic stability, E/I imbalance remains as a 
prevalent underpinning in many types of neurological dysfunction. 
It is therefore critical to understand at what level the genetic and 
molecular regulation goes awry to compromise circuit integrity. 
In recent years, a growing number of genes have been identified 
as participating in sculpting and maintaining the delicate balance 
of excitatory and inhibitory synaptogenesis, in different animal 
models and in different classes of circuit. These factors range from 
transcriptional and translational regulators, to specific resident syn-
aptic proteins; moreover, mutations in these same genes are often 
clinically linked to the manifestation of the neurodevelopmental 
diseases discussed above (Figure 3).

transcrIptIonal regulators
To keep the synaptic E/I ratio balanced, transcriptional regula-
tors likely provide a first line of defense (Figure 3). For example, 
MECP2 binds methylated DNA to mediate recruitment of a repres-
sor complex including Sin3A and histone deacetylases; its mutation 
is the leading cause of RTT (Amir et al., 1999). Exemplifying the 
interconnectedness of neurodevelopmental dysfunction, MECP2 
mRNA levels are also dramatically misregulated in FMR1 KO mice; 
decreased in hippocampus, cortex, diencephalon and brain stem, 
and conversely elevated in the cerebellum (Zhang et al., 2009). 
Reduced MECP2 expression is also noted in the frontal cortex in 
non-FXS autism (Nagarajan et al., 2006). To control E/I balance, 
MECP2 serves to promote excitatory synapse formation. MECP2 
null neurons maintain a 40% reduction in VGLUT/PSD-95 puncta 
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(Figure 3). The double-strand RNA-binding protein Staufen has 
been implicated in mRNA localization, translational control and 
decay in dendrites important for long-term memory formation 
(Tang et al., 2001; Dubnau et al., 2003; Dugre-Brisson et al., 2005; 
Kim et al., 2005). Staufen co-purifies with FMRP in ribonucleopro-
tein complexes (Villace et al., 2004), which are dendritically recruited 
in an activity-dependent mechanism (Kim and Kim, 2006). More 
significantly, in Drosophila, dfmr1 and staufen (stau) interact to 
mediate long-term memory consolidation (Bolduc et al., 2008). 
Coincident reduction in double heterozygotes (stauD3/+; Fmr13/+) 
showed defective 1-day memory after spaced training in an olfactory 
conditioning paradigm. With respect to E/I balance, examination in 
cultured hippocampal neurons demonstrated that RNAi-mediated 
Staufen2 knockdown decreased the number of PSD-95-reactive syn-
apses by ∼70% (Goetze et al., 2006). This postsynaptic effect was 
associated with a less marked ∼25% decrease in presynaptic synapsin 
puncta, indicating compromised excitatory connectivity. In addition 
to synapse loss, there was a significant reduction in the amplitude of 
recorded mEPSCs (Goetze et al., 2006). Similarly, downregulation 
of Staufen1 in hippocampal slice cultures decreased mEPSC fre-
quency and amplitude (Lebeau et al., 2008). Interestingly, Staufen1 
disruption caused structural changes resulting in elongated den-
dritic spines without altered density (Lebeau et al., 2008). Notably, 
as previously indicated, similar immature-type dendritic spines are 
a clinical hallmark in the cytological presentation of FXS (Rudelli 
et al., 1985; Hinton et al., 1991).

The mRNA-binding protein Pumilio has been shown to serve 
as a sequence-specific translational repressor and, like Staufen and 
FMRP, facilitates long-term memory formation (Dubnau et al., 2003; 

plasticity (Steward and Schuman, 2001; Sutton and Schuman, 2006; 
Bassell and Warren, 2008; Waung and Huber, 2009). The FMRP 
translational regulator perhaps represents the archetypal example. 
FMRP was initially proposed to bind ∼4% of human fetal brain 
mRNAs in vitro (Ashley et al., 1993), but thus far only a handful of 
in vivo targets have been validated. The best-supported FMRP targets 
include Arc, PSD-95, AMPAR subunits GluR1/2, GABA

A
R subunit 

δ, actin-binding profilin, MAPIB and CaMKII (Bassell and Warren, 
2008; Gatto and Broadie, 2009b). While much attention had been 
paid to the morphological phenotypes associated with FXS model 
neurons, including the excessive formation of dendritic filopodia/
immature spines and supernumerary bouton formation (Comery 
et al., 1997; Nimchinsky et al., 2001; Zhang et al., 2001; Morales 
et al., 2002; Galvez et al., 2003; Michel et al., 2004; Pan et al., 2004; 
Gatto and Broadie, 2008, 2009a; Tessier and Broadie, 2008), relatively 
little information is available regarding any corollary alteration in 
E/I ratio at the level of synapse number. One recent study indicated 
FMR1-deficient neurons manifest 10% fewer excitatory synapses 
and 50% more inhibitory synapses in the hippocampus CA1 region 
(Dahlhaus et al., 2009). Importantly, FMRP re-introduction in a 
range of FXS model systems, from mammalian dissociated FMR1 
null hippocampal cultures to the Drosophila dfmr1 mutant NMJ 
and circadian circuits (Pfeiffer and Huber, 2007; Gatto and Broadie, 
2008, 2009a), has been shown to rescue synapse over elaboration by 
inducing synapse loss. These findings highlight the normal function 
of FMRP in restricting synapse number.

Numerous other translational regulators, many with direct or 
indirect interactions with FMRP, similarly regulate E/I balance 
in developing neuronal circuits, including Staufen and Pumilio 

FiGure 3 | Molecular players influencing E/I ratio and commonalities in 
neurodevelopmental disorders. (A) Molecular regulators of E/I synaptic 
balance include transcriptional regulators (red), translational regulators (green), 
scaffolding proteins (blue), cell adhesion molecules (magenta) and receptors 
(gray). Components that promote excitatory synapse formation (E > I) are 
evident when knockout (KO) or knockdown yields depressed E or elevated I; 
likewise, over-expression (OX) of an excitation-favoring element yields elevated 
E or depressed I. With the converse class of regulators, inhibitory synapse 

formation is favored (E < I ) when KO yields elevated E or depressed I, and OX 
yields depressed E or elevated I. (B) Regulators implicated in 
neurodevelopmental disease states illustrating the molecular overlap in RTT, 
ASD, FXS and epilepsy. The list includes players based on clinically implicated 
genetic influence and/or identification in neurodevelopmental model systems. 
As indicated in Figure 1, robust inter-relationships suggest that several of these 
players are likely more widespread in their involvement, especially pertaining 
to epilepsy.
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1998; Xiao et al., 2000; Duncan et al., 2005). As a putative E/I 
 modulator, Homer functions bidirectionally depending on its 
prevailing isoform. Homer1b has been shown to induce synaptic 
growth and maturation cooperatively with SHANK (Sala et al., 
2001), whereas Homer1a, lacking the coiled-coil domain and 
potentially serving as an endogenous dominant negative incapa-
ble of dimerization, induces a 50% reduction in excitatory spine 
density (Sala et al., 2003). Homer1a over-expression also results in 
the redistribution of SHANK away from its synaptic clusters and 
a reduction in the size of PSD-95 and GKAP (a PSD-95/SHANK 
linker) clusters by 30% (Sala et al., 2003).

SHANK proteins are multi-modal adaptors that harbor ankyrin 
repeats, SH3, PDZ and proline rich motifs (Sheng and Kim, 
2000). These scaffolds multimerize and couple to actin-binding 
proteins and mGluR through interaction with Homer (Naisbitt 
et al., 1999; Tu et al., 1999). Mutations in SHANK3 are linked to 
autism (Durand et al., 2007; Moessner et al., 2007). Importantly, 
SHANK1 is elevated in FMR1 KO mice at 2 weeks of age in the 
neocortex and in the hippocampus by 2 months, and SHANK3 
is elevated in the FMR1-deficient neocortex at 2 months (Schutt 
et al., 2009). In vitro, SHANK is required for spine maintenance in 
hippocampal neurons and transgenic over-expression induces de 
novo functional spine formation in aspiny cerebellar granule cell 
cultures (Roussignol et al., 2005). In addition, the SHANK1 KO 
displays altered postsynaptic density composition with reduced 
GKAP and Homer1b/c levels, smaller dendritic spines and weaker 
basal synaptic transmission (Hung et al., 2008). Thus, in concert, 
Homer and SHANK appear to mediate both structural and func-
tional synaptic alterations in establishing E/I balance.

Different scaffolds reside at inhibitory synapses. Gephyrin is a 
key tubulin-binding scaffold restricted to inhibitory synapses that 
establishes a hexagonal lattice serving to anchor both glycine and 
GABA

A
 receptors (Kirsch et al., 1991; Schrader et al., 2004; Sola 

et al., 2004; Fritschy et al., 2008; Tretter et al., 2008); although, some 
controversy remains as to whether gephyrin is obligatory in medi-
ating GABA

A
R clustering (Kneussel et al., 1999; Levi et al., 2004). 

Knockdown experiments with shRNAs and titration of endogenous 
gephyrin with an aggregating gephyrin-EGFP fusion in cultured 
hippocampal neurons yield depression of GABA

A
R clusters, with-

out affecting the number of glutamatergic synapses (Yu et al., 2007; 
Yu and De Blas, 2008). This impairment was associated with the 
loss of ∼50% of GAD-positive GABAergic innervating boutons and 
corollary reduction in the sIPSC amplitude and frequency (Yu et al., 
2007). Importantly, there was no disruption of whole-cell GABA 
currents, indicating the specificity of the effect is restricted to the 
synapse. These studies indicate a highly specific role of gephyrin in 
inhibitory synapses. However, perhaps due to opportunistic com-
pensation, gephyrin reduction has been shown to increase the size 
of PSD-95 clusters and their apposing glutamatergic VGLUT1-
reactive presynaptic termini (Yu and De Blas, 2008). This interac-
tion again reveals the likely dynamic interplay between inhibitory 
and excitatory synapses in establishing the E/I ratio.

cell adhesIon molecules
Cell adhesion molecules mediating synaptic partner recognition 
and persistent trans-synaptic signaling are ideally situated to modu-
late excitatory and inhibitory synaptic formation and stabilization. 

Bolduc et al., 2008). In fact, murine microarray screens have identi-
fied pumilio as an FMRP target (Brown et al., 2001). In Drosophila, 
Pumilio positively regulates synapse number while negatively regu-
lating the GluRIIA glutamate receptor subunit (Menon et al., 2004a, 
2009), and Pumilio regulates neuronal excitability by repressing the 
voltage-gated sodium channel, paralytic (Mee et al., 2004). Efforts to 
elucidate the synaptic components regulated by Drosophila Pumilio 
revealed a host of key partners including Discs-Large (DLG; PSD-95 
homolog), Cysteine String Protein (CSP) and GAD (Chen et al., 
2008). Most recently, RNAi-mediated knockdown of mammalian 
pumilio2 in cultured hippocampal neurons caused a reduction in 
mature dendritic spine number coupled with an elevation in elon-
gated dendritic filopodia (Vessey et al., 2010). Despite this altera-
tion in spine morphology, and contrary to results in the Drosophila 
studies, increased numbers of excitatory synapses presented on the 
dendritic shafts and were functionally associated with an increased 
mEJC frequency (Vessey et al., 2010). Despite some differences, it is 
clear that FMRP, Staufen, and Pumilio coordinately regulate synaptic 
mechanisms in both Drosophila and mouse systems. These three 
translational regulators possess the capacity to modulate relative 
expression of a range of synaptic constituents and provide an effec-
tive means of altering E/I ratios within neural circuits underlying 
memory formation and likely other behavioral outputs.

scaFFoldIng proteIns
Beneath the synaptic membrane, numerous scaffold/adaptor pro-
teins provide positional anchoring, coupling membrane proteins 
to underlying cytoskeletal elements and signaling machinery. The 
composition of this scaffold network, and its preferential retention 
of specific membrane proteins, directly promotes the differential 
formation of excitatory versus inhibitory synapses (Figure 3). A 
prime example of such a key scaffolding element is the membrane-
 associated guanylate kinase (MAGUK) family member PSD-95 
found exclusively at glutamatergic excitatory synapses (Kim and 
Sheng, 2004). Despite this apparent specificity, however, PSD-95 
seems to exert influence upon both excitatory and inhibitory synapse 
classes (Levinson and El-Husseini, 2005b; Han and Kim, 2008; Keith 
and El-Husseini, 2008). PSD-95 over-expression in primary hip-
pocampal neuron cultures was shown to enhance excitatory synapse 
size and spontaneous firing frequency, while reducing the number of 
VGAT-reactive inhibitory contacts by 50% (Prange et al., 2004). In 
agreement, PSD-95 siRNA induced a 30% decrease in excitatory syn-
aptic contacts and 1.5-fold increase in inhibitory synapses (Prange 
et al., 2004). With such dual capacity, it is important to reiterate that 
PSD-95 has been linked to FXS. FMRP binds the 3′-UTR of PSD-95 
conferring enhanced message stability (Zalfa et al., 2007), which 
could perhaps contribute to elevated glutamatergic synapse forma-
tion. PSD-95 is also rapidly translated upon mGluR stimulation 
with DHPG, and this transient response is lost in FMRP deficient 
neurons (Todd et al., 2003; Muddashetty et al., 2007).

Other important scaffolding components in excitatory synapses 
include Homer and SH3 and ankyrin repeat containing-protein 
(SHANK) (Boeckers, 2006; Okabe, 2007). The neuronal immedi-
ate early gene Homer, with its Ena/VASP homology 1 (EVH1) and 
coiled-coil domains, dimerizes and serves to link mGluR, inositol 
1,4,5-triphosphate receptor (IP3R) and N-methyl-D-aspartate 
(NMDA) receptor complexes (Brakeman et al., 1997; Kato et al., 
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resides at inhibitory synapses (Varoqueaux et al., 2004). However, 
in terms of influencing E/I ratio, neuronal transfection of hemag-
glutinin-tagged NLGN1 (HA-NLGN1) caused a 3-fold increase in 
VGAT-positive and a 1.5-fold increase in VGLUT-positive presynap-
tic contacts (Prange et al., 2004); this trend was also observed with 
NLGN2 and NLGN3 over-expression (Chih et al., 2005; Levinson 
et al., 2005). These results suggest that neuroligins possess more 
generalized synaptogenic properties, although notably, NLGN1 
over-expression increased the density of PSD-95 and Homer con-
taining puncta, and NLGN2 was more effective at inhibitory synaptic 
induction than either NLGN1 or NLGN3 (Chih et al., 2005). The 
influences that neuroligins exert on E/I balance are also complicated 
by their interactions with PSD-95. PSD-95 over-expression altered 
NLGN2 distribution, delivering it to excitatory synapses (Levinson 
et al., 2005). Functionally, NLGN1 over- expression enhanced exci-
tatory synaptic transmission but not inhibitory, and the converse 
occurred with NLGN2 (Chubykin et al., 2007). In vivo NLGN1 over-
expression increased the number of asymmetric synapses assayed 
by electron microscopy without influencing symmetric synapses, 
thereby apparently increasing the E/I ratio, despite elevations in 
gephyrin/VGAT as well as PSD-95/VGLUT (Dahlhaus et al., 2009). 
Conversely, in vivo NLGN2 over-expression decreased the E/I ratio 
by increasing symmetric synapse number (Hines et al., 2008). RNAi 
directed against NLGN1, 2 or 3, expressed singly or in combination, 
reduced excitatory synapse formation, with the triple knockdown 
yielding a 70% reduction (Chih et al., 2005). However, confound-
ingly, no corresponding alteration in mEPSCs was detected. Even 
more surprising, although excitatory and inhibitory transmission 
largely fail in the brainstem of the NLGN1-3 triple-KO mouse yield-
ing perinatal respiratory arrest, the density of synaptic contacts was 
largely unaltered (Varoqueaux et al., 2006). These complications 
aside, it is of particular interest that transgenic over-expression of 
HA-NLGN1 in the FMR1-deficient background alters the E/I ratio. 
This transgenic intervention overcorrects the modestly depressed 
excitatory synapse prevalence in FMR1 nulls, shifting it from 10% 
less to 50% more than is seen in wild type. Conversely, introduc-
tion of HA-NLGN1 in the FMR1 KO mediates the reciprocal effect 
on inhibitory synapses, taking them from 50% more to 10% less 
as compared to control (Dahlhaus et al., 2009). Behaviorally, this 
transgenic intervention improves socialization and reduces hyper-
activity in the mouse FXS model, but provides no remediation of 
memory deficits.

channels/receptors
By directly mediating membrane ion flux, synaptic channels and 
receptors are clearly positioned to shift the functional E/I balance 
(Figure 3). For example, GABA

A
R is a heteropentameric ion chan-

nel permeant to Cl/−HCO
3
− ions, which is most prevalently com-

prised of 2α, 2β, and either δ or γ subunits (Tretter and Moss, 2008; 
D’Hulst et al., 2009a). GABA

A
Rs have been linked to autism via a 

two-locus gene-gene effect involving α4 through interaction with 
β1 (Ma et al., 2005). Moreover, discrete abnormalities on chromo-
some 15 region q11–13, containing three GABA

A
R subunits (α5, 

β3, and γ3), are also linked to autism (Cook et al., 1998; Shao et al., 
2003). In these disease conditions, significant GABA

A
R subunit 

reductions were detected in parietal cortex, cerebellum and superior 
frontal cortex (Fatemi et al., 2009, 2010). Moreover, the maternal 

In particular, presynaptic neurexin and postsynaptic neuroligin 
form a heterophilic adhesion complex possessing the capacity to 
drive E/I balance (Figure 3). These proteins present isoforms dif-
ferentially expressed between excitatory and inhibitory synapse 
classes and have therefore been proposed to specify synapse iden-
tities (Levinson and El-Husseini, 2005a,b; Craig and Kang, 2007). 
The influence they exert may be substantial, although their roles 
remain somewhat elusive in vivo.

In mammals, the 3-gene neurexin family provides considerable 
diversity based on the formation of α and β isoforms, splice variants 
and post-translational glycosylation (Rowen et al., 2002; Tabuchi 
and Sudhof, 2002; Comoletti et al., 2003). Neurexin1 (α and β) 
disruptions are associated with autism (Feng et al., 2006; Kim et al., 
2008; Yan et al., 2008), and deletion and copy number variants are 
also linked to schizophrenia (Kirov et al., 2008; Vrijenhoek et al., 
2008; Rujescu et al., 2009). Importantly, a recent proteomic analysis 
revealed decreased neurexin1α in the FMR1 KO mouse (Liao et al., 
2008). To modulate E/I balance, α isoforms typically associate with 
inhibitory synapses, while the more promiscuous β isoforms are 
present at both excitatory and inhibitory synapses (Craig and Kang, 
2007). In fibroblast-neuronal co-culture studies, α-neurexins were 
able to cluster gephyrin, but not PSD-95, whereas β-neurexins could 
cluster gephyrin or PSD-95 (Graf et al., 2004; Kang et al., 2008). 
However, in β-neurexins, a particular splice variant (S4) shifts its 
capacity, such that its inclusion (+S4) favors GABAergic synapse 
development and its omission (−S4) favors glutamatergic synapses. 
Significantly, the developmental acquisition of an elevated −S4:+S4 
utilization in β-neurexins was observed both in vivo (embryonic 
day 18 vs. postnatal day 18) and in vitro (embryonic day 18 cul-
tures maintained for 7–22 days in vitro) (Kang et al., 2008). Despite 
these compelling findings, the in vivo significance of α-neurexins 
has been questioned as double- and triple-KO animals, viability 
issues aside, display only marginal alterations in synapse presen-
tation (Missler et al., 2003; Dudanova et al., 2007). However, in 
Drosophila the sole neurexin gene, dnrx, does influence synapse 
formation in the central nervous system and at the glutamatergic 
NMJ (Li et al., 2007; Zeng et al., 2007). In the brain, dnrx disruption 
depressed levels of the active zone component Bruchpilot (Brp) and 
resulted in 50% fewer synapses identifiable by electron microscopy 
(Zeng et al., 2007). At the NMJ, dnrx nulls display shortened axonal 
branches and 40–60% fewer synaptic boutons with reduced Brp 
(Li et al., 2007; Sun et al., 2009; Zweier et al., 2009). Moreover, the 
pre- and post-synaptic engagement appeared compromised in dnrx 
mutants with evident membrane detachments (Li et al., 2007), and 
neurotransmission is defective as evidenced by decreased evoked 
excitatory junctional potential (EJP) amplitude and increased mini-
ature EJP amplitude and frequency (Li et al., 2007; Sun et al., 2009). 
Thus, the Drosophila studies provide in vivo evidence for a neurexin 
role, at least in excitatory synapse development.

Mammalian neuroligins (NLGN) are a 4-member family, with 
mutation in NLGN3 (single amino acid substitution – R451C) and 
NLGN4 (frameshift resulting in premature termination) presenting 
in autism (Jamain et al., 2003; Laumonnier et al., 2004). Importantly, 
NLGN1/2 mRNAs interact with FMRP, and protein analysis revealed 
NLGN1 levels depressed in the hippocampus and cerebellum of 
FMR1 KO mice (Dahlhaus and El-Husseini, 2009). NLGN1 primarily 
localizes to excitatory synapses (Song et al., 1999), whereas NLGN2 
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insufficiency and/or failure of compensatory mechanisms impair 
the development, connectivity and transmissive properties of neural 
circuits. E/I ratio imbalance may often be attributed to mutations 
in genes that facilitate synaptogenesis and/or synaptic maintenance 
through transcriptional control, translational control, structural 
scaffolding, cell adhesion and signaling. Defining the cross-talk 
between these levels will be vital to further understanding their con-
tribution to the processes that differentially modulate each class of 
synapse. Crucial to the advancement of this work is identification of 
genetic targets regulated at the transcriptional level by factors such 
as MECP2, MEF2 and Npas4. Parallel examination of elevated and/
or depressed targets should allow identification of key E/I switches. 
Likewise, the continuing definition of mRNA-binding proteins such 
as FMRP, Staufen and Pumilio, and their interactors, will be vital 
in determining how differential protein translation preferentially 
subserves different synaptic classes. Finally, much progress has been 
made in elucidating the functional E/I shift toward hyperexcita-
tion in FXS, with robust examination of both the Gq and GABA

A
R 

theories. While each of these views of FXS provides insight into 
the E/I imbalance that contributes to the disease state, a number of 
key questions remain. Are hyperexcitation and/or hypoinhibition 
apparent in all circuits, or are these features circuit specific? How 
do the alterations in excitation and inhibition intersect; are they 
fully independent, or is there evidence of interacting compensa-
tion? Do transmissive changes act in concert, or is there mutual 
exclusivity? Can developmentally specific timing be assigned to 
these circuit alterations? Are the E/I shifts maintained? Perhaps 
most importantly from a clinical perspective, could combinatorial 
therapies targeting both glutamatergic and GABAergic systems in 
FXS prove most beneficial? Answers to these questions will help 
in understanding the mechanistic bases of disorders that affect 
brain development and should provide direct avenues to the most 
effective disease interventions.
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GABA
A
R β3 signal peptide variant P11S, associated with  15q11–q13 

duplication, has been implicated in both childhood absence epi-
lepsy and autism owing to reduced functionality of receptors 
containing the β3 subunit (Delahanty et al., 2009). Importantly, 
GABA

A
R abundance was also reportedly decreased in FXS, at both 

the mRNA and protein level (El Idrissi et al., 2005; D’Hulst et al., 
2006, 2009b; Gantois et al., 2006), and α5 or δ GABA

A
R KO mice 

display induced epileptiform hyperexcitability due to reduced tonic 
inhibition (Spigelman et al., 2002; Glykys and Mody, 2006).

Several lines of evidence implicate a role for the GABA
A
R itself 

in directly influencing synaptogenesis. Studies of the GABA
A
R γ2 

subunit KO mouse indicated that the subunit was necessary for the 
clustering and retention of GABA

A
Rs (Essrich et al., 1998; Schweizer 

et al., 2003). γ2 shRNA in vitro and in vivo demonstrate the subunit 
was also required to establish normal postsynaptic gephyrin accu-
mulation, and its disruption lead to the depression of incoming 
presynaptic GABAergic innervation (Li et al., 2005). In addition, 
these receptors typically show significant and constitutive turno-
ver; as such, impairing receptor subunit binding to the clathrin 
adaptor protein-2 elevated GABA

A
R retention at the membrane. 

By over-expressing an altered β3 subunit (β3S408/9A) in cultured 
hippocampal neurons, this mechanism increased the number of 
inhibitory synapses formed to 144% of control values and enhanced 
inhibitory synaptic transmission by elevating mIPSC amplitudes 
(Jacob et al., 2009b). Moreover, the elevated GABA

A
R presenta-

tion impaired dendritic spine maturity and shifted the immature 
filopodia versus mature mushroom-shaped spine ratio from 1:1 
in controls to 2:1 in β3S408/9A-expressing neurons and decreased 
the density of PSD-95 clusters by 40% (Jacob et al., 2009b). These 
recent findings again highlight the interdependence of excitatory 
and inhibitory synaptogenesis and bolster the conclusion that syn-
apse class-specific alterations are not mutually exclusive in their 
synapse class effects.

concludIng remarks
Proper brain function requires a delicate balance of excitatory and 
inhibitory synaptogenesis during neural circuit establishment and 
employment. Examination of ASD, epilepsy, RTT, and FXS dem-
onstrate a high incidence of non-compensated disruption of E/I 
synapse balance. This suggests that disease-related homeostatic 
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