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Abstract 
A spurious negative genetic correlation between direct and maternal effects of weaning weight (WW) in beef cattle has historically been prob-
lematic for researchers and industry. Previous research has suggested the covariance between sires and herds may be contributing to this re-
lationship. The objective of this study was to estimate the variance components (VC) for WW in American Angus with and without sire by herd 
(S×H) interaction effect when genomic information is used or not. Five subsets of ~100k animals for each subset were used. When genomic in-
formation was included, genotypes were added for 15,637 animals. Five replicates were performed. Four different models were tested, namely, 
M1: without S×H interaction effect and with covariance between direct and maternal effect (σam) ≠ 0; M2: with S×H interaction effect and σam 
≠ 0; M3: without S×H interaction effect and with σam = 0; M4: with S×H interaction effect and σam = 0. VC were estimated using the restricted 
maximum likelihood (REML) and single-step genomic REML (ssGREML) with the average information algorithm. Breeding values were com-
puted using single-step genomic BLUP for the models above and one additional model, which had the covariance zeroed after the estimation of 
VC (M5). The ability of each model to predict future breeding values was investigated with the linear regression method. Under REML, when the 
S×H interaction effect was added to the model, both direct and maternal genetic variances were greatly reduced, and the negative covariance 
became positive (i.e., when moving from M1 to M2). Similar patterns were observed under ssGREML, but with less reduction in the direct and 
maternal genetic variances and still a negative covariance. Models with the S×H interaction effect (M2 and M4) had a better fit according to the 
Akaike information criteria. Breeding values from those models were more accurate and had less bias than the other three models. The rankings 
and breeding values of artificial insemination sires (N = 1,977) greatly changed when the S×H interaction effect was fit in the model. Although 
the S×H interaction effect accounted for 3% to 5% of the total phenotypic variance and improved the model fit, this change in the evaluation 
model will cause severe reranking among animals.

Lay Summary 
A spurious negative genetic correlation between direct and maternal effects of weaning weight (WW) in beef cattle has been problematic for 
researchers and industry. Previous research suggested the covariance between sires and herds may contribute to this relationship. The objective 
of this study was to estimate the variance components (VC) for WW in American Angus with and without sire by herd (S×H) interaction effect 
when genomic information is used or not. Four models were designed to investigate the S×H effect. The restricted maximum likelihood (REML) 
and single-step genomic REML (ssGREML) were used to estimate VC. Breeding values were computed using single-step genomic BLUP and 
the validation was done through the linear regression method. Under REML, when the S×H was added to the model, both direct and maternal 
genetic variances were greatly reduced, and the negative covariance became positive. Similar patterns were observed under ssGREML, but 
with less reduction in the direct and maternal genetic variances and still a negative covariance. Breeding values from models with S×H were 
more accurate and had less bias than the other models. Although the S×H improved the model, this change in the evaluation model will cause 
severe reranking among key animals.
Key words: direct and maternal covariance; single-step GBLUP; single-step genomic REML; sire × herd interaction; weaning weight
Abbreviations: A, pedigree relationship matrix; AAA, American Angus Association; AI, artificial insemination; AIC, Akaike information criteria; AIREML, average 
information restricted maximum likelihood; CG, contemporary group; EBV, estimated breeding value; EPD, expected progeny difference; G, genomic relationship 
matrix; GEBV, genomic estimated breeding value; H, realized relationship matrix; LR, linear regression; REML, restricted maximum likelihood; SNP, single-
nucleotide-polymorphisms; S×H, sire × herd; ssGBLUP, single-step genomic best linear unbiased prediction; ssGREML, single-step genomic restricted maximum 
likelihood; TBV, true breeding value; VC, variance components; WW, weaning weight

Introduction
In beef cattle, the genetic covariance between the direct and 
maternal effects of weaning weight (WW) has shown an an-
tagonistic effect that hinders the progress in a selection pro-
gram (Meyer, 1992; Pollak et al., 1994). Several simulation 
studies reported this antagonistic estimate could arise from 
ignoring the additional variance among sires such as S×H 
and sire by year interaction effects (Robinson, 1996; Lee and 

Pollak, 1997). In Australian beef cattle, various studies re-
ported significant S×H or sire × herd-year interaction effects 
for many traits accounted for ~5% to 10% of the pheno-
typic variation. Additionally, including the S×H interaction 
effect greatly reduced the negative covariance between direct 
and maternal effects on 200-d weight (Notter et al., 1992; 
Bradfield, 1999; Meyer and Graser, 1999). As a result, the 
Australian evaluation system, BREEDPLAN, began to include 
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S×H interaction effect in its national evaluation model in 
1999 (Graser et al., 1999).

The major reasons for the variation due to S×H inter-
action have not been completely determined, but several 
possible sources are reported: (1) preferential treatment, (2) 
non-random mating, (3) use of selected sires, which could 
lead to heterogeneous residual and additive genetic variance 
among herds, and (4) extensive use of specific sires in par-
ticular herds. Therefore, ignoring S×H interaction effect in the 
evaluation model could inflate the genetic variance and over-
estimate the estimated breeding value (EBV; Tong et al., 1977; 
Meyer, 1987; Banos and Shook, 1990). When the S×H inter-
action effect was fit in the genetic evaluation model, the direct 
and maternal variances were lower compared with the model 
without the S×H interaction effect (Berweger Baschnagel et 
al., 1999; Dodenhoff et al., 1999). Specifically, Dodenhoff et 
al. (1999) used data from the American Angus Association 
(AAA; St. Joseph, MO) and recommended the inclusion of the 
S×H interaction effect in routine genetic evaluations to avoid 
biased estimates.

The estimation of VC has been mostly computed using the 
pedigree relationship matrix (A). If the population is under-
going selection based on pedigree and phenotypes with a 
proper model, the VC based on those two sources of infor-
mation would be unbiased (Kennedy et al., 1988). However, 
genomic information is now available and used for selection, 
so adding this source of information to VC estimation models 
makes sense. It is common fact in livestock populations that 
only a fraction of animals are genotyped, so using a genomic 
relationship matrix (G) instead of A could result in biased VC 
because the information on non-genotyped animals would 
not be used; therefore, the population would not be well 
represented (Cesarani et al., 2019). Veerkamp et al. (2011); 
Cesarani et al. (2019) recommended using the single-step 
methodology (Aguilar et al., 2010; Christensen and Lund, 
2010) to estimate VC when genotyped and non-genotyped 
animals coexist in the pedigree. In single-step, G and A are 
combined into a realized relationship matrix (H), so the in-
formation on genotyped and non-genotyped animals can be 
used.

Because the estimated VC could differ with the choice of 
the covariance structure among animals and the presence of 
the SxH interaction, the EBV can also change causing animals 
to change rank. Changes in EBV and the ranking of animals 
are problematic in the commercial marketplace. However, if 
those changes are moving EBV in the appropriate direction, 
the modifications should be acceptable. Because most of the 
routine genetic evaluations ignore the negative covariance 

between additive direct and maternal effects, room for im-
provements could be explored if S×H interaction is deemed 
important. Therefore, the first objective of this study was to 
investigate the impact of a random S×H interaction effect on 
the VC of WW in American Angus cattle in the presence or 
absence of genomic information. The second objective was to 
evaluate the prediction models in terms of accuracy, bias, and 
dispersion using the LR method (Legarra and Reverter, 2018). 
The last objective was to investigate the changes in EPD and 
the ranking of artificial insemination (AI) sires among dif-
ferent models.

Materials and Methods
Animal care and Use Committee approval was not needed 
because the information was obtained from the pre-existing 
databases.

Data
All datasets were provided by AAA. Over 9.4 million WW 
phenotypes collected from 1955 to 2020 were available for 
almost 9.9 million animals. All WW were pre-adjusted for the 
age of dam and age of calf using the adjustment factors from 
the standard AAA national cattle evaluation. Data filtering 
for the VC estimation was performed to remove the fol-
lowing: (1) animals without WW and herd information; (2) 
contemporary groups (CG) with less than 50 animals; (3) ani-
mals with registration ID other than AAA and beef improve-
ment records. After all filtering processes, 2,474,202 animals 
remained. Five random samples of ~100k animals with WW 
records were taken for the analysis, which mimics the current 
procedures and data structures for VC estimation by AAA. 
Each sample contained all animals in the selected herd over 
time. Table 1 depicts summary statistics for WW along with 
the number of animals, herds, sires, and S×H interactions in 
each replicate.

Among those animals, 180,733 were genotyped. Because 
of the computing limitation of single-step genomic restricted 
maximum likelihood (ssGREML), a subset of 15,637 ani-
mals born from 1972 to 2017 was selected among 180,733 
genotyped animals who had phenotypes for WW and at least 
one progeny as sire or dam. The animals were genotyped 
for 54,609 single-nucleotide polymorphisms (SNP) origin-
ally present in the BovineSNP50k v2 BeadChip (Illumina 
Inc., San Diego, CA). Quality control of genomic data re-
moved SNP with call rate < 0.9, minor allele frequency < 
0.05, and those located on the sex chromosomes. After the 
quality control, 39,733 SNPs were available for animals 

Table 1. General statistics for all the replicates

Replicate1 Replicate2 Replicate3 Replicate4 Replicate5 

No. of animals 112,677 105,909 102,433 109,260 102,183

No. of herds 88 93 84 90 97

No. of sires 3,970 4,553 4,262 4,379 4,157

No. of S×H 5,723 6,128 5,668 6,286 5,808

WW Min., lbs 211 193 262 246 196

Mean., lbs 602.6 607.2 602.4 600 604

Max., lbs 1,044 1,113 1,032 1,044 1,014

SD., lbs 95.43 103.83 96.20 90.20 90.93
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born from 1972 to 2017. For the estimation of breeding 
values, a larger dataset was used which included pheno-
types for 2,474,202 animals, 180,733 genotyped animals, 
and a 4-generation pedigree including 869,583 animals in 
total. Because of the large number of genotyped animals, 
the algorithm for proven and young was used to obtain G−1 
without the direct inversion of G, as proposed by Misztal et 
al. (2014a). The number of core animals was set to 19,019, 
which has been used for routine genomic evaluations by the 
AAA. Among all those animals, 1,977 were AI sires under 
investigation for ranking and EPD changes under different 
models. AI sires in this data are a combination of old sires 
with many progenies and young sires with no progeny in 
production yet. These AI sires had direct progeny ranging 
from 0 to 6,053 with a mean of 117.02 and the number of 
progenies raised by daughters ranged from 0 to 19 with a 
mean of 0.23.

Models and analysis
The following 4 different linear mixed models were used for 
the VC estimation.

M1 : y = Xb+ Z1a+ Z2m+ Z3mpe+ e

M2 : y = Xb+ Z1a+ Z2m+ Z3mpe+ Z4sh + e

M3 : y = Xb+ Z1a+ Z2m+ Z3mpe + e; with σam = 0

M4 : y = Xb+ Z1a+ Z2m+ Z3mpe+ Z4sh + e; with σam = 0

where y is a vector of WW records; b is a vector of the fixed 
effects of CG, where CG was composed to represent ani-
mals of the same sex, born and weaned in the same herd, 
in the same year, and part of the same management group 
within that herd; a, m, and mpe are random vectors of addi-
tive direct genetic effect, additive maternal genetic effect, 
and maternal permanent environmental effect, respectively; 
sh is a random vector of S×H interaction effect as an add-
itional uncorrelated random effect; X, Z1, Z2, Z3, and Z4 
are the incidence matrices for the effects in b, a, m, mpe, 
and sh, respectively; e is the vector of random residuals. 
Hence, variances for the random effects in models M1 and 
M3 were:
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where A and I denote pedigree relationship and identity 
matrices; under single-step (i.e., single-step genomic best 
linear unbiased prediction (ssGBLUP) and ssGREML), the 
realized relationship matrix (H) was used instead of A. 
Models M1 and M2 considered covariance between direct 
and maternal effects, whereas M3 and M4 forced this co-
variance to zero.

Models M2 and M4 had a random S×H interaction effect, 
so the variance structure for the random effects was:
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Phenotypic variance (σ2
p) was computed based on all the vari-

ances in each model. For example, in M2 and M4:

σ2
p = σ2

a + σ2
m + σam + σ2

mpe + σ2
sh + σ2

e

Therefore, the direct and maternal heritabilities were esti-
mated as

h2a =
σ2
a
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e
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a, σ

2
m, σam, σ2

mpe, σ
2
sh, and σ2

e  are additive genetic direct 
variance, maternal genetic variance, the covariance between 
direct and maternal genetic effects, maternal permanent en-
vironment variance, S×H variance, and residual variance, re-
spectively. The formulas for heritability had no σ2

sh for M1 
and M3, and σam was zero for M3 and M4.

Two methods were used to estimate VC, which included 
restricted maximum likelihood (REML) and ssGREML. In 
REML, the assumption was a ~ N (0, A σ2

a), where A is the 
pedigree relationship matrix. Conversely, the assumption 
under ssGREML was a ~ N (0, H σ2

a), where H is the realized 
relationship matrix combining A with the genomic relation-
ship matrix (G). In the ssGREML algorithm, the inverse of H 
is required (Aguilar et al., 2010):

H−1 = A−1 +

ñ
0 0
0G−1 − A−1

22

ô

VC were estimated using AIREML algorithm as imple-
mented in AIREMLF90 (Misztal et al., 2014b), which has 
been modified to incorporate the YAMS package (Masuda 
et al., 2015) for optimized sparse matrix computations. 
Genomic EBV (GEBV) was estimated for all four models using 
ssGBLUP. One additional model was used as a benchmark, 
mimicking the current procedure in the AAA evaluations. 
This model was labeled model 5 (M5) and was similar to M1, 
except for the covariance between direct and maternal effects 
was zeroed after the VC estimation. As our objective herein 
was to compare genomic predictions between the models, not 
between methods, only ssGBLUP evaluations were carried 
out. Akaike Information Criteria (AIC) was used to compare 
models. In most cases, VC from non-genomic models are used 
to obtain genomic predictions; however, in this study, GEBV 
were also computed using VC from genomic models. The VC 
used were averaged across five replicates. Changes in ranking 
and predictions for AI bulls were presented in the EPD scale, 
which was computed as one-half EBV. Ranking changes were 
calculated by comparing the ranking of animals in M1 to 
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M4 against M5; the same was done for investigating EPD 
changes.

Validation
The LR validation method (Legarra and Reverter, 2018) was 
used to evaluate model performance. A total of 23,021 young 
genotyped animals born in 2019 were selected as validation 
animals and had their phenotypes removed from the evalu-
ation, along with phenotypes for their contemporaries. The 
total number of records in this dataset was 2,451,181. This 
will be referred to as the partial data and will be represented 
by the subscript p. On the other hand, the entire data will be 
represented by the subscript w and had no phenotype trunca-
tion. Under the LR method, the accuracy of GEBV was cal-
culated as ”acc =

»
cov

(
âw, âp

)
/
(
1− F̄

)
σ̂2
a , where a is the 

vector of GEBV and F̄ is the average inbreeding coefficient 
for validation animals; σ̂2

a was model-specific under REML or 
ssGREML. Bias was calculated as the difference between the 
mean of partial and whole GEBV, which is µw,p = âp − âw
, with an expected estimator of 0 if unbiased. Dispersion of 
GEBV was assessed as the deviation of the regression coeffi-
cient (b1) from 1, where b1 was obtained from the regression 
of âw on âp:âw = b0 + b1âp. Under the condition of neither 
over nor under dispersion, the expectation of this estimator 
would be 1.

Results and Discussion
Genetic parameter estimation
VC can be estimated considering the covariance structure 
among animals is given by the pedigree relationship matrix, 
the genomic relationship matrix, or by the realized relation-
ship matrix. In this study, the first and third assumptions 
were used to examine the differences in VC when the pedi-
gree information is combined with genomic information or 
not (Table 2). Under REML, M1 resulted in larger direct and 

maternal genetic variances compared with the other 3 models. 
In addition, M1 had greater negative covariance between 
direct and maternal genetic effects compared to M2. When 
S×H interaction was fit into the model (M2), both direct and 
maternal genetic variances were reduced by a ratio of almost 
2.3 and 1.6, respectively. However, the residual variance was 
16% greater in M2 compared to M1. Remarkably, the nega-
tive covariance between direct and maternal effects became 
positive when moving from M1 to M2. Therefore, adding the 
S×H interaction effect could mitigate the issue with negative 
covariance between direct and maternal effects.

Berweger Baschnagel et al. (1999) and Dodenhoff et al. 
(1999) also reported larger estimates of direct and maternal 
genetic variance and negative covariance between those ef-
fects when the S×H interaction effect was not fit in the models. 
Meyer (1992) outlined that a negative estimate of covariance 
between direct and maternal effects increased both direct and 
maternal genetic variances in crosses between Hereford and 
Zebu cattle, but the same was not true in Angus because the 
covariance was positive. In the current study, M1 showed nega-
tive covariance between direct and maternal effects as well as 
larger estimates of direct and maternal genetic variance among 
all the models. Nonetheless, these estimates decreased when the 
S×H interaction effect was considered, and a positive covari-
ance between direct and maternal effects was observed. Several 
studies with simulated data also reported biased VC without 
S×H interaction effect in the model (Robinson, 1996; Lee and 
Pollak, 1997), supporting the hypothesis of overestimated gen-
etic variances in the models without the S×H interaction effect.

In our study, larger additive direct genetic variances were 
observed in ssGREML compared with REML. In contrast, 
smaller estimates of maternal genetic variance, S×H variance, 
and residual variances were observed in ssGREML; all with 
smaller standard errors. The large negative covariance be-
tween direct and maternal effects was reduced when S×H was 
added to the model (M1 vs M2) but was still negative.

Table 2. Estimated variance component for the four investigated models using REML and ssGREML method

 Model3 σ2
a σ2

m σ2
mpe σ2

sh σ2
e  σam Cor

(a,m) 
σ2
p AIC 

REML1 M1 1,069.60
(47.12)

415.66
(43.31)

372.08
(27.13)

0 1,623.96
(63.26)

−251.76
(35.35)

−0.38
(0.06)

3,229.54
(94.64)

802,049
(37,686.16)

M2 467.63
(40.63)

266.11
(45.67)

366.95
(27.00)

150.90
(21.16)

1,889.96
(79.97)

42.34
(26.95)

0.12
(0.08)

3,183.89
(94.35)

801,606
(37,619.05)

M3 858.01
(16.89)

275.57
(54.57)

359.78
(27.69)

0 1,730.24
(61.11)

0 0 3,223.60
(98.88)

802,150
(37,669.09)

M4 517.79
(20.99)

290.99
(55.71)

368.25
(27.13)

143.77
(17.75)

1,865.80
(68.78)

0 0 3,186.59
(95.41)

801,607
(37,620.00),

ssGREML2 M1 1,185.56
(35.95)

371.13
(30.45)

341.52
(25.60)

0 1,517.72
(52.46)

−263.24
(38.19)

−0.40
(0.06)

3,152.70
(85.16)

829542
(37,475.95)

M2 803.34
(47.82)

255.05
(26.92)

335.62
(25.75)

100.11
(19.86)

1,672.94
(72.20)

−55.09
(38.65)

−0.12
(0.08)

3,111.96
(81.46)

829,174
(37,416.09)

M3 928.88
(19.57)

236.99
(39.32)

326.15
(26.40)

0 1,643.42
(55.07)

0 0 3,135.44
(89.08)

829,663
(37,452.34)

M4 736.42
(42.19)

226.54
(38.84)

333.03
(26.12)

106.86
(17.44)

1,708.12
(61.31)

0 0 3,110.97
(89.67)

829,178
(37,413.24)

*Standard deviation based on five replicates is in parenthesis.
REML1: restricted maximum likelihood method using only pedigree and phenotype.
ssGREML2: single-step genomic restricted maximum likelihood method using pedigree, phenotype, and genotype.
Model3: M1, without S×H interaction effect and with covariance between direct and maternal effect (σam) �= 0; M2, with S×H interaction effect and 
σam �= 0; M3, without S×H interaction effect and with σam = 0; M4, with S×H interaction effect and σam = 0.
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When the covariance between direct and maternal ef-
fects was ignored in M3 and M4, most of the variances de-
creased, whereas the residual increased for both REML and 
ssGREML. One opposite pattern was observed in the com-
parison of M2 vs. M4 under REML, which showed increased 
estimates of direct and maternal variances, with a decrease 
in residual variance. This current study’s results agree with 
Meyer (1992) that the overestimation of both direct and ma-
ternal genetic variances is due to a negative covariance be-
tween these effects. Based on the current observations, biased 
direct and maternal genetic variances could be caused by 
ignoring the additional S×H interaction effect and allowing 
the negative estimation of a covariance component between 
direct and maternal effects. Therefore, if a negative covari-
ance is mitigated by adding the S×H interaction effect (M1 
to M2), including the covariance may give less overestimated 
genetic variances. AIC values were calculated for all models 
to determine the best model fitting the data (Table 2). As the 
amount of data was different for REML and ssGREML, AIC 
was not used for comparisons across the methods but only for 
the comparison of models within each method. In the results 
of both REML and ssGREML, M2 and M4 showed lower 

AIC values than models without S×H interaction effect (M1 
and M3) although the differences were not very large.

Direct and maternal heritabilities, together with the pro-
portion of the phenotypic variance explained by the S×H 
interaction effect, are shown in Fig. 1 for REML (a) and 
ssGREML (b). Overall estimates of direct heritability from 
ssGREML across all models were larger than the ones from 
REML. When the S×H interaction effect was considered 
under REML, direct heritabilities were reduced by a factor 
of 2.2 from M1 to M2, and by 1.7 from M3 to M4. The re-
duction was also observed under ssGREML but to a lesser 
extent (i.e., a factor of 1.5 and 1.25, respectively). The ra-
tionale for a larger reduction in the direct heritability when 
S×H interaction was added under REML is the decrease in 
direct variance combined with larger S×H interaction and re-
sidual variances and a larger phenotypic variance compared 
with ssGREML.

Overall, the estimation of VC with genomic information 
is affected by several factors: (1) genotyping strategy, (2) 
the presence of selection, (3) parameters for the construc-
tion of G, and (4) proportion of genotyped animals (Jensen, 
2016; Cesarani et al., 2019; Wang et al., 2020). Because 

Figure 1. Proportion of variance explained by additive direct, maternal, and sire × herd interaction effect using REML and ssGREML.
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genomic selection has been applied to many livestock species, 
estimating unbiased VC using A becomes more challenging 
as it does not account for the impact of genomic selection 
(Jensen, 2016). In the AAA, the initial genotyping strategy in-
cluded donor dams and proven sires because of the high costs; 
more recently, about half of the newly registered animals are 
genotyped each year, so the process is less selective. Wang et 
al. (2020) reported that VC estimated using H as the covari-
ance structure among animals are sensitive to the genotyping 
strategy and proportion of genotyping. They emphasized that 
the strong selective genotyping and the high proportion of 
genotyped animals could produce overestimated variances; 
however, the level of overestimation observed in their study 
has not been confirmed.

In this study, genotyped animals were sampled that had 
phenotypes and at least one progeny either as a sire or dam, 
but animals were not filtered based on their phenotypic values. 
This sampling strategy was expected to reduce the selective 
genotyping effect while meeting the computing limitation of 
ssGREML. However, as the AAA breeders practiced selective 
genotyping at the very early stages of genomic selection and 
still even less selective genotyping existed, those genotyped 
animals generally showed heavier adjusted WW than the non-
genotyped animals (Fig. 2, t-value = 67.445 with P-value < 
2.2 × 10−16). This could be one possible reason why the direct 
heritability by ssGREML was larger than the estimation by 
REML among all the models (Fig. 1). Another possible reason 
could be the small proportion of genotyped animals. In the 
current study, the proportion of genotyping animals for each 
replicate is about ~8% which could produce a similar esti-
mate or a modest overestimation in the ssGREML results 
(Wang et al., 2020).

Forni et al. (2011) reported similar variance component 
(VC) estimates between REML and ssGREML, but smaller 
standard errors in ssGREML as it could use more data than 
REML. Moreover, adding genomic information could help to 
solve possible issues caused by missing or incorrect pedigree 

information, frequent in many animal species (Banos et al., 
2001). Using both genotypes and pedigree for estimating VC 
might be useful for populations with a high error rate in the 
pedigree. Cesarani et al. (2019) carried out a simulation study 
to compare VC using REML, GREML, and ssGREML under 
different genotyping strategies. Those authors reported biased 
VC under REML with a small dataset, but no bias under 
REML and ssGREML with larger datasets. The dataset used 
in our study was large enough to estimate VC (Table 1), so the 
different estimates for the direct variance under REML and 
ssGREML may not be due to the data size.

This is the first study that has estimated VC for WW in 
the presence of S×H interaction using ssGREML. Therefore, 
the basis for the differences between estimates under REML 
and ssGREML is not completely clear. Aldridge et al. (2020) 
claimed H could better separate the additive direct and per-
manent environmental effects. If the same theory can be 
applied to the additive genetic effect and the additionally 
random SxH interaction effect, it could be hypothesized that 
the additive direct VC estimated using H is more accurate 
than A because H reflects the realized relationships among 
animals rather than the expected (Legarra, 2016).

In the US dairy cattle evaluations, reduced weight for mul-
tiple daughters of a given bull in the same herd is used by 
adjusting for S×H interaction since 1967. As the S×H vari-
ance decreased from 14% (1967) to 10% (1997), the direct 
heritability increased from 25% to 30% in the same period 
(Van Tassell et al., 1997). Additionally, Wiggans et al. (2000) 
reported that SxH variance in Jersey and Brown Swiss re-
duced to 8% when heritability increased from 30% to 35% 
in November of 2000. Those findings are supported by the 
current results. When SxH variance was 5% in REML for 
both M2 and M4, direct heritability was 0.15 and 0.16, re-
spectively. On the other hand, when SxH variance decreased 
to 0.03 for both M2 and M4 under ssGREML, direct herit-
ability increased to 0.26 and 0.24, respectively (Fig. 1). Lee 
and Pollak (1997) scrutinized the sire × year interaction effect 

Figure 2. Distribution of adjusted WW for genotyped and non-genotyped animals used for ssGREML. Vertical lines are indicating the average adjusted 
weaning weight for genotyped (geno; X̄  = 653.30) and non-genotyped (non_geno; X̄  = 601.43) animals.
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and conjectured that the effect might be a true effect due to 
the different environmental factors associated with a different 
year. Based on their speculation, S×H interaction might also be 
a true effect due to the different environmental factors related 
to different herds. Therefore, improving the environment in 
specific herds could introduce heterogeneous variance among 
herds, which is a possible factor to generate S×H variance.

Genetic trends and genomic prediction
Genetic trends from 1972 to 2019 for all the 5 models are 
shown in Fig. 3. The genetic trends were measured as the 
average EPDs by year of birth. Overall, results indicate 
direct genetic trends have been increasing over time. The 
result for the direct effect (Fig. 3a) shows M2 and M4 have 
lower genetic trends than M1, M3, and M5. Furthermore, 
M1 and M5 showed almost equivalent genetic trends and 
were a bit greater than M3. In Fig. 3b, opposite patterns 
were observed for maternal effects, in which M2 and 
M4 have greater genetic trends than M1, M3, and M5. 
Particularly, M1 showed the lowest maternal genetic trend 
among all the models. Like the results of the direct genetic 
trend, consistent increases were observed since the 1980s; 
however, the slopes were not very steep after the 2010s, es-
pecially for the M1. These results suggest adding S×H inter-
action in the evaluation model increases maternal genetic 
trends and reduces the direct genetic trends, which could be 
overestimated without S×H. Legarra and Reverter (2017) 
outlined that bias was expected to increase with greater 
genetic gains. Genetic gain is defined as the change in the 
average breeding value of a population over a period, and 
the rate of genetic gain per year could be expressed as a 
genetic trend. These current results show that the models 

with the greatest bias for the direct effect (Table 3) have 
larger trends. In Fig. 3, direct genetic trends of M1, M3, 
and M5 are larger than M2 and M4. Also, greater bias is 
observed (Table 3) for those M1, M3, and M5 than M2 and 
M4 when both of VarREML and VarssGREML were used.

In beef cattle and many other species, the predictive ability 
has been used as a tool for predicting future phenotypes (pro-
geny performance), which is calculated as the correlation 
between (G)EBV and phenotypes adjusted for fixed effects 
(Legarra et al., 2008; Lourenco et al., 2015). However, this 
method was difficult to apply for complex models such as 
binary traits, maternal effect, and multiple random effect 
models. Therefore, in the current study, the LR method was 
used to calculate both direct and maternal prediction estim-
ators. As the LR method was recently developed, no studies 
have reported its performance on models with a maternal ef-
fect, although some studies validated this method with sev-
eral simulations and real datasets (Silva et al., 2019; Bermann 
et al., 2021; Macedo et al., 2020). The estimators of the LR 
method are shown in Table 3. When VarREML was used, M2 
and M4 showed greater accuracy for the direct effect than the 
other models, as well as relatively less bias. Dispersion was 
almost equivalent for all the models. Similar behavior was 
observed when using VarssGREML. The increase in accuracy for 
the direct effect when adding SxH interaction in the model 
(M1 vs M2) was around 24% for VarREML and 12% for 
VarssGREML. Additionally, bias decreased by approximately 
30% and 15% for VarREML and VarREML, respectively.

The accuracy of M2 and M4 for the maternal effect was 
also greater than M1 and M5 for both VC scenarios, whereas 
M3 showed the greatest accuracy among all the models al-
though the differences compared with M2 and M4 were not 
very large. The largest bias was observed in M1 for both VC 
scenarios. On the other hand, other models showed very 
similar biases when VarREML was used, but those biases in-
creased when VarssGREML was used, especially in M2 and 
M4. No large differences in dispersion were seen between the 
models and VC methods.

In general, lower accuracies and greater biases were ob-
served when VarssGREML was used. In the LR method, the dis-
persion estimator may indicate overdispersion of GEBV (if 
b1 < 1) or under-dispersion of GEBV (b1 > 1). The b1 across 
5 models did not differ either with VarREML or VarssGREML. 
Remarkably, M2 and M4 had the greatest accuracy under the 
VarREML scenario; however, those accuracies dropped about 
16.8% and 12%, respectively, when VarssGREML was used. 
Such a large reduction was not observed in other models. This 
pattern was also observed for the bias. When VarssGREML was 
used for M2 and M4, the bias increased up to 21.4% and 
17.2%, respectively. However, these observed increases were to 
a very small extent for M1, M3, and M5 (4.3%–5.3%). Based 
on our findings, fitting S×H interaction in the model (M2 and 
M4) resulted in more accurate and less biased breeding values 
for the validation group, regardless of the choice of the covari-
ance structure among the animals (A vs H) for estimating VC. 
However, it could also be speculated that the use of VarssGREML 
for genomic prediction, especially with the SxH interaction ef-
fect, could decrease the accuracy and increase the bias com-
pared to the results with VarREML because of σ2

a, which is part 
of the denominator of the accuracy formula, was larger when 
using genomic information, therefore, reducing the accuracy.

Accuracy, bias, and dispersion are the main features to 
examine the performance of genomic predictions. These 

Figure 3. Genetic trends for additive direct (a) and maternal (b) effects.
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three components could reflect the predictability of response 
to selection, correctness of model, use of inappropriate VC, 
and several unaccounted effects in the models (Reverter et 
al., 1994; Legarra and Reverter, 2018; Macedo et al., 2020). 
Macedo et al. (2020) applied the LR method to examine the 
possible bias and lower accuracy with the use of wrong herit-
ability and unaccounted environmental effects. In that study, 
they concluded that if the incorrect genetic model was used for 

genomic evaluations, the LR method could estimate the bias 
when the model was not severely misspecified. The current 
results for the models without SxH interaction effect (M1, 
M3, and M5) support that discovery. These models showed a 
large bias for direct GEBV and some level of bias for maternal 
GEBV. Henderson (1975) reported that the use of an incor-
rect variance and covariance matrix could result in greater 
prediction error variance (PEV) for the solutions. Schaeffer 

Table 3. Accuracy, bias, and dispersion using the LR method (ssGBLUP)

 Model3 Accuracy Bias Dispersion estimator (b1)

VarREML
1 VarssGREML

2 VarREML VarssGREML VarREML VarssGREML 

Direct M1 0.72 0.69 −3.60 −3.80 1.00 0.99

M2 0.95 0.79 −2.53 −3.22 1.01 1.00

M3 0.76 0.75 −3.26 −3.41 1.00 1.00

M4 0.92 0.81 −2.65 −3.09 1.01 1.00

M5 0.71 0.68 −3.53 −3.71 1.00 1.00

Maternal M1 0.59 0.62 0.55 0.58 0.97 0.97

M2 0.65 0.67 −0.06 0.24 0.98 0.98

M3 0.66 0.70 0.06 0.08 0.98 0.98

M4 0.63 0.69 0.07 0.11 0.98 0.98

M5 0.59 0.61 0.04 0.06 0.97 0.97

VarREML
1: ssGBLUP using the variance component estimated from REML.

VarssGREML
2: ssGBLUP using the variance component estimated from ssGREML.

Model3: M1, without S×H interaction effect and with covariance between direct and maternal effect (σam) �= 0; M2, with S×H interaction effect and 
σam �= 0; M3, without S×H interaction effect and with σam = 0; M4, with S×H interaction effect and σam = 0; M5, equivalent to M1, except for the σam = 0 
after variance component estimation.

Figure 4. Changes in the ranking of 1,977 AI sires (direct effect).
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Figure 5. Changes of EPDs for 1,977 AI sires (direct effect).

Figure 6. Changes in the ranking of EPDs for 1,977 AI sires (maternal effect).
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(1984) extended that theory and concluded that the increase 
in PEV is directly related to the differences between true 
and estimated correlations. Therefore, we would argue that 
M2 and M4 had more appropriate VCs because of the S×H 
interaction effect. However, the large bias still observed in all 
models may be due to the effects that could not be accounted 
for in the models, affecting the estimation of GEBV. Wang et 
al. (2020) reported that the inflation of (G)EBV could reflect 
the bias in VC estimation. However, the inflation of (G)EBV 
(i.e., dispersion) was very consistent among models and VC 
methods. Therefore, based on our results and reports from the 
literature, we could conjecture that M1, M3, and M5 used 
inappropriate VC (estimates without S×H effect) and did not 
account for the hidden trend in the data (not fitting the SxH 
effect). Additionally, the use of negative covariance between 
direct and maternal effects might result in biased estimates, 
especially for the maternal GEBV (M1 vs M5).

Wang et al. (2020) tested genomic predictions using VC es-
timated from A and H for commercial and simulated datasets. 
These results agree with the results from the current study in 
the sense that accuracies of GEBV were greater when using 
VC estimated from A than from H; however, no clear explan-
ation was provided in the previous study. One possible reason 
could be selective genotyping. In general, accuracy is the cor-
relation between true breeding value (TBV) and (G)EBV or a 
function of (G)EBVpartial and (G)EBVwhole in the LR method. 
Therefore, greater accuracy reflects the greater relatedness 
between TBV and (G)EBV or (G)EBVpartial and (G)EBVwhole

. If the VC used for genomic predictions were estimated with 
only selected genotyped animals, the relatedness between true 
and estimated BV would be more distant than if true VC were 

used. In this sense, it could be recommended to use VC from 
A, especially under the selective genotyping strategy; although 
more precisely estimated VC are expected from H as it has a 
more accurate relationship structure among the animals.

One finding that deserves a deeper investigation is the large 
increase in accuracy and decrease in bias from VarssGREML to 
VarREML when the S×H interaction effect was added (M2 and 
M4 in Table 3). Further research is needed to understand the 
changes in predictions and VC when an additional random 
sire interaction effect is fitted in the model.

Changes in EPD and ranking of AI sires
The changes in the rank of AI sires among the models 
are illustrated in Fig. 4. The horizontal dotted lines were 
drawn to specify each change on +50, +100, −50, 0, and 
−100 scales. G1 to G4 represents the animals having no 
changes (G1), changes within the interval from −50 to +50 
(G2), changes within −50 to −100 or within +50 to +100 
(G3), changes more than ± 100 (G4). Overall, considerable 
ranking changes were observed, especially for (b) M2 vs M5 
and (d) M4 vs M5 compared with (a) M1 vs M5 and (c) M3 
vs M5. Only a few AI sires had the same ranking among 
comparisons (82, 17, 81, 16 for (a) to (d), respectively). 
Because the ranking is an indicator of the genetic merit of 
the bulls in the population, even small changes could have 
a large impact, affecting the breeding decisions. Results of 
the change on direct EPDs of 1,977 AI sires are described in 
Fig. 5. Fig. 5a shows all the EPDs changed randomly within 
a very small range (from −2 to 4) regardless of the ranks of 
AI sires. On the contrary, Fig. 5b-d shows changes that agree 
with the changes in the rankings of AI sires. Interestingly, 

Figure 7. Changes of EPDs for 1,977 AI sires (maternal effect).
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the top AI sires had a greater reduction in EPDs as indicated 
by the greater negative values on the left-hand side of each 
plot (Fig. 5b–d). Additionally, a few bottom sires also had 
greater changes as observed on the right-hand side of the 
plots (Fig. 5b–d). Although similar patterns are observed in 
Fig. 5b-d, the range of EPD changes in Fig. 5c is smaller than 
that of Fig. 5b and d. These results imply adding the S×H 
interaction effect in the evaluation model could generate 
large changes in rank and direct EPDs on AI sires although 
it showed unbiased VC estimation along with a better pre-
diction model.

The results of ranking changes of maternal EPD for AI 
sires among the models are in Fig. 6. The horizontal dotted 
lines and G1 to G4 have the same description as in Fig. 4. 
Similar patterns are detected in Fig. 4b and d and Fig. 6b and 
d, showing large ranking changes. Different from Fig. 4a, 
Fig. 6a also showed very large changes in rankings, implying 
the negative covariance between direct and maternal effects 
may have been the reason for such changes in the maternal 
effect. Fig. 7 shows changes in maternal EPDs for AI sires. 
Most of the AI sires had reduced maternal EPDs (Fig. 7a). 
Many sires had larger maternal EPDs in M2 and M4 than in 
M5 (Fig. 7b and d, respectively), in addition, the bottom sires 
had larger maternal EPDs in these models. A similar pattern 
was observed in Fig. 7c, but a lot of sires had reduced ma-
ternal EPDs in M3 with a relatively small magnitude.

Conclusions
The inclusion of the S×H interaction effect in the model 
for WW reduces the direct and maternal genetic variances 
and results in a positive covariance between direct and ma-
ternal effects when genomic information is not used. With 
genomics, the reduction is less, and the covariance is still 
negative. Using VC without genomic information may re-
sult in greater LR accuracy because of a lower additive gen-
etic variance, with a similar level of dispersion. Adding the 
S×H interaction effect showed the best estimates of accuracy 
and bias for the direct effect but not for the maternal effect. 
Larger additive genetic variance with genomic information 
may be an artifact of selective genotyping. Fitting the S×H 
interaction effect in the model is recommended; however, 
further research is needed to investigate the improvement 
of prediction accuracy of maternal effects when S×H inter-
action is considered. Additionally, breeders should expect 
large changes in EPDs and ranking of animals, especially at 
the tails of the distributions, if this extra effect were fit into 
the genetic evaluation model. Before such changes are im-
plemented in practice, more research is needed to ensure the 
resulting breeding values are better. The results of this study 
justify further investigation in this area for American Angus.
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