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The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane

receptors sharing structural homology and common repeats. These receptors specifically

recognize and internalize various extracellular ligands either alone or complexed with

membrane-spanning co-receptors that are then sorted for lysosomal degradation or

cell-surface recovery. As multifunctional endocytic receptors, some LDLR members

from the core family were first considered as potential tumor suppressors due to

their clearance activity against extracellular matrix-degrading enzymes. LDLRs are also

involved in pleiotropic functions including growth factor signaling, matricellular proteins,

and cell matrix adhesion turnover and chemoattraction, thereby affecting both tumor cells

and their surrounding microenvironment. Therefore, their roles could appear controversial

and dependent on the malignancy state. In this review, recent advances highlighting

the contribution of LDLR members to breast cancer progression are discussed with

focus on (1) specific expression patterns of these receptors in primary cancers or distant

metastasis and (2) emerging mechanisms and signaling pathways. In addition, potential

diagnosis and therapeutic options are proposed.

Keywords: LDLR, breast cancer, microenvironment, biomarker, therapeutic targets

THE LOW-DENSITY LIPOPROTEIN RECEPTOR FAMILY AND
BREAST CANCER: A STATE OF ART

The low-density lipoprotein receptor (LDLR) gene family encodes single-spanning transmembrane
receptors usually referred to as LDLR-related proteins (LRPs). The 14 described members are
LDLR, VLDLR, LRP1/CD91/A2MR, LRP1B, LRP2/megalin/GP330, LRP3, LRP4/MEGF7, LRP5,
LRP6, LRP8/ApoER2, LRP10/LRP9, LRP11/SorLA LRP12/ST7, and LRAD3 (see Table 1). Despite
various homology levels, most members are clustered type I receptors sharing structural motifs
(e.g., cysteine-rich complement-type repeats), involved in specific recognition of extracellular
ligands, EGF-precursor homologous and β-propeller domains critical for protein folding, and pH-
dependent lysosomal release of ligands. The short intracellular tail encompasses motifs allowing
the recruitment of scaffolds driving the endocytic machinery and intracellular signaling. The
LDLR founding member was first identified as a frequently mutated etiological factor of familial
hypercholesterolemia. LDLR functions were then extended to numerous physiopathological
contexts such as vascular integrity, neurobiology, and cancer development due to their peculiar
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ability to control membrane compartmentalization of receptors
and clearance of various classes of extracellular ligands. Some
LRPs were thus implicated in the specific recognition of above 50
extracellular factors, among which several growth- or migration-
regulatory molecules located in the tumor microenvironment
(TME) of various cancers, including mammary cancers.

Breast cancer (BC) is one of the most diagnosed cancers
among women worldwide and is the second-leading cause
of cancer death. Based on their histological features, breast
tumors are divided into two subtypes, in situ breast carcinoma
and invasive breast carcinoma. The first subtype is sub-
classified as either ductal (DCIS) or lobular carcinoma in
situ (LCIS). Invasive carcinomas are further categorized
into several histological subtypes, such as infiltrating ductal,
invasive lobular, ductal/lobular, mucinous (colloid), tubular,
medullary, and papillary carcinomas. Classification of BC
based on molecular components is more useful for treatment
planning and development of targeted therapies. In this
classification, BC is mainly divided into hormone-receptor
positive (ER+/PR+), human epidermal growth factor receptor-2
overexpressing (HER2+), and triple negative (TNBC). Over the
past decades, breakthroughs have been made in BC treatment
including surgery, radiotherapy, chemotherapy, endocrine
therapy, targeted therapy, and immunotherapy. Despite all
these therapeutic options, TNBC remains associated with poor
outcomes and a historical lack of targeted therapies. Regarding
metastases from BC, the most common first site of distant spread
is bone (41%), followed by lung (22%), brain (7%), and liver
(7%). The remaining 20% of patients have multiple metastatic
sites (21). In this review, our focus will be on the role played by
the members of the LDLR family in BC by examining specifically
their implications within the tumor microenvironment. The
clinical relevance of targeting these receptors for developing new
targeted therapies will also be discussed.

LRPS AND BREAST CANCER CELLS: A
CLOSE AND COMPLEX RELATIONSHIP

Obesity and hypercholesterolemia are risk factors for BC that
negatively impact therapeutic efficacy (22, 23). Higher levels
of plasmatic cholesterol, LDL (low-density lipoprotein), and
triglycerides and low circulating levels of HDL are frequently
found in patients with BC (24). Interestingly, LDL was reported
to affect the sensitivity of tumor cells to radiotherapy in
inflammatory BC (25). LDL could affect the adhesion of BC
cells involved in cell migration and proliferation and a difference
in the quantity and type of lipid synthesis and storage has
been demonstrated in basal-like ER− compared to luminal
ER+ BC cells (26). Patients with BC usually exhibit elevated

Abbreviations: BBB, blood–brain barrier; BC, breast cancer; DCIS, Ductal

carcinoma in situ; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal

transition; ER, estrogen receptor; HDL, high-density lipoprotein; HER2, human

epidermal growth factor receptor-2; LCIS , lobular carcinoma in situ; LDL, low-

density lipoprotein; LDLR, low-density lipoprotein receptor; LRP, LDL receptor-

related protein; PR, progesterone receptor; TME, tumor microenvironment;

TNBC, triple-negative breast cancer; VDR, vitamin D receptor; VLDL, very low

density lipoprotein.

serum levels of oxidized LDL, reported to induce structural
DNA alterations, a decrease in DNA repair, and pro-oncogenic
signaling pathways (1).

In mammary tumor tissues, LDLR expression is higher and
cholesteryl ester accumulation is associated with an increase of
Ki67 expression and poor clinical outcome (27, 28). BC cells
express higher LRP1 and LDLR, allowing a better uptake of
LDL-C from the blood (29). Cholesterol may also generate 27-
hydroxycholesterol, an estrogen mimetic involved in epithelial-
to-mesenchymal transition (EMT) in ER+ BC cells (30, 31). In
addition, LDLR and acyl-CoA:cholesterol acyltransferase-1 are
increased inHER2-positive and triple-negative tumors compared
to luminal A tumors (1).

Among LDLR, the giant receptors are represented by LRP1,
LRP1B, and LRP2, sharing strong structure homologies but
showing discrepancies in terms of endocytic kinetics and
expression pattern (32). LRP2/Megalin is required for the
internalization of vitamin D and its activation to 1,25-OH
vitamin D. A reduced expression was found in some BC, leading
to a decrease of its nuclear receptor VDR activation, which plays
an important anti-proliferative role (33). LRP2 mRNA was also
detected at fairly high levels in invasive BC but with extremely
high variability (11).

LRP1B, a close homolog of LRP1, is among the top 10
significantly mutated genes in human cancer (34, 35). LRP1B is
mutated in circulating tumor cells from BC and may participate
in human mammary gland carcinogenesis (12). The nuclear
localization of its intracellular domain is significantly related to
poor prognosis in patients with invasive ductal breast carcinoma
and to a significant decrease of both disease-free and overall
survival in patients with luminal A type breast carcinoma (10).

LRP1 was initially identified as a tumor suppressor
controlling, by endocytic clearance, the extracellular matrix-
degrading enzymes in the microenvironment of various invasive
tumors (36). In BC models, α2-macroglobulin/LRP1-dependent
uptake of pepsin is involved in the control of the invasive
potential of luminal and TNBC cells (37). However, other studies
support a more complex view of LRP1 functions in tumor cells.
The serine protease inhibitor PN-1/SerpinE2, which is highly
expressed in ER− and high-grade BC, stimulates lung metastasis
of mammary tumor cells through LRP1-dependent secretion of
MMP-9 (38). By contrast, SerpinE2 and LRP1 were identified
among the genes induced by ZEB-1, an EMT driver that limits
the expression of LRP1-targeting miRNAs, thereby triggering
tumor cell autocrine factors that predict poor survival in early
stage of BC (39). LRP1 can exert a dramatic control of tumor cell
plasticity and migratory capacities. Its silencing in TNBC cells
increased cellular rigidity, decreased cellular protrusions, and
finally impaired migration (8). Converging data illustrate the
important role of Hsp90α binding to LRP1 during EMT-related
events in BC (40–43). Hypoxia leads to HIF1-α-dependent
secretion of Hsp90α by TNBC cells. Its specific binding to LRP1
stimulates tumor development and metastatic lung colonization
(42). This interaction and subsequent pro-metastatic signals
are reinforced by clusterin in both luminal and TNBC models
(43). Interestingly, within extracellular space, Hsp90α is absent
from the normal microenvironment, suggesting promising
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TABLE 1 | The 14 members of the low-density lipoprotein receptor family and their involvement in breast cancer.

LRP isotype Alternative name MW (kDa) Tissue distribution How involved in breast cancer

LDLR 120-160 Ubiquitous • Overexpressed in HER2+ and TNBC (MDA-MB-231) (1)

• Overexpression accelerates LDL cholesterol-mediated

BC growth in mouse models of hyperlipidemia (2)

VLDL-R

(type II)

96 Abundant in heart, skeletal muscle, ovary and

kidney

• Up-regulated expression correlates with BC

metastasis (3)

• Promotes BC cell migration by up-regulating VEGF,

MMP2 and MMP7 (4)

• Survival factor in TNBC (5, 6)

LRAD3 Ldlrad3 50 Neurons None

LRP1 α2MR APOER CD91 600 Ubiquitous (liver, brain, adipose tissue,

fibroblasts and tissue stroma)

• Overexpressed in aggressive HER2+ and TNBC and

associated with increased invasion (7)

• Stimulates TNBC migration (8)

• C766T polymorphism is suspected to increase risk of

BC development (9)

LRP1B LRP-DIT 515 Especially in brain, thyroid, skeletal muscles,

testis, ovary, colon

• Considered as tumor suppressor in several cancer

types but not in BC

• Intracellular nuclear localization correlates with poor

prognosis in invasive ductal BC (10)

LRP2 Megalin GP330 517/600 Placenta, kidney, mammary epithelial cells • High mRNA levels in invasive BC (11)

• Mutated in circulating tumor cells from BC (12)

• Upregulated in T-47D (13)

LRP3 hLRP105 105 Widely expressed (ovary, heart, brain, liver,

pancreas, prostate and small intestine, skeletal

muscle)

ND

LRP4 MEGF7 212 Bone, cartilage, muscle, brain ND

LRP5 LR3 LRP7 216 Widely expressed (including in mammary

epithelium) with high expression in liver

• Overexpressed in TNBC and basal-like BC (14, 15)

• Stimulates STK40 expression and cell viability in

TNBC (15)

• Regulates glucose uptake in mammary epithelial

cells (16)

LRP6 180 Co-expressed with LRP5 during

embryogenesis and in adult tissues

• Overexpressed in TNBC and basal-like BC (14)

• Role in TNBC cell migration and invasion (MDA-MB-231

and BT549) (15)

• Increases the pool of stem cells in TNBC (17)

LRP8 APOER2 106 Brain, placenta, platelets • Overexpressed in TNBC and ER− BC (18, 19)

• Positive regulator of BC stem cells in TNBC, supports

chemoresistance and metastasis (18)

• Suggested as novel therapeutic target in TNBC (6)

LRP10 LRP9 in mouse 76 Ubiquitous (Leukocyte, lung, placenta, small

intestine, liver, kidney, spleen, thymus, colon,

skeletal muscle, heart)

ND

LRP11 sorLA LR11 53 Substantial levels in kidney, testis, ovary, lymph

nodes, vascular smooth muscle cells and

nervous system

• Drives resistance to anti-HER2 therapy (20)

LRP12 ST7 94 Heart, skeletal muscle, brain, lung, placenta

and pancreas

ND

The family core members are underlined in green, the structurally distant members are in blue, and the most distant members are in orange. ND: not determined.
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opportunities for targeted therapy (42). These studies underline
the versatility of LRP1 functions in breast TME and support
ongoing research to identify the specific molecular interfaces
mobilized by the receptor that could be targeted to control
aggressive behavior of tumor cells. A less characterized member
of LRPs, SorLA/LRP11, was recently involved in the endocytic
trafficking of HER2 (20). The depletion of SorLA was reported
to affect lysosomal function and sensitize HER2-overexpressing
cells resistant to targeted therapy. Its targeting could therefore
affect compartmentalized pools of oncogenic receptors and
restore efficacy of conventional treatments.

LRP5 and LRP6, as co-receptors of the Wnt/β-catenin
pathway, are directly involved in breast tumorigenesis. Wnt
ligands such as frizzled homolog 7 and LRP6 are overexpressed
in TNBC (44), whereas Wnt antagonists are frequently silenced
by methylation in BC (45). Blockade or silencing of LRP6 in
SUM1315 basal BC cells results in a re-expression of epithelial
markers and a decreased capacity to self-renew and metastasize
(46). Similarly, LRP6 downregulation inMDA-MB-231 decreases
the pool of BC stem cells (17). These effects are more
pronounced on TNBC cell migration and invasion (47). The use
of benzimidazole compounds on TNBC cells exerts anticancer
activity by inhibiting the Wnt/β-catenin pathway. Prodigiosin
and other compounds decrease the phosphorylation of LRP6
(active form), and inhibit the activation of mTORC and
Wnt/βcatenin signaling (48–52). The disruption of lipid rafts in
TNBC cells is associated with a decrease of LRP6 and β-catenin
expression, cell proliferation, and migration (53). Besides this
Wnt/βcatenin canonical pathway, LRP5 was also reported to be
involved in the uptake of glucose in mammary epithelial cells,
through Apolipoprotein E (ApoE) binding. The glucose uptake
is essential for regulating the growth rate of these cells (16).
A soluble LRP6 ectodomain can prevent tumor progression, by
inhibiting cell migration and metastasis, by limiting the Frz-
mediated non-canonical pathway activation in breast tumor
cells (54).

The function of LRP8/ApoER2, strongly expressed in ER
negative breast tumors was recently described in breast tumor
initiating cells, which constitute a clinical challenge of the
pathology (18). Interestingly, its depletion impairs TNBC cell
proliferation and promotes apoptosis (19). LRP8 depletion also
leads toWnt/β-catenin signaling inhibition, decreases the pool of
BC cells, limits their tumorigenic potential in murine xenografts,
and finally restores TNBC cell sensitivity to chemotherapy
(18). An overview of the complex and multiple LRPs-mediated
signaling pathways is shown in Figure 1.

FUNCTIONAL INTERPLAY BETWEEN LRPS
AND CELLS WITHIN THE TUMOR
MICROENVIRONMENT

The breast TME encompasses multiple cell types including
fibroblasts, immune cells, adipocytes, and endothelial cells
(55). In human breast tumors, fibroblasts are the most abundant
stromal cells and high levels of LRP1 expression was reported
(56). In fibroblasts, LRP1 binds to CTGF, PDGF, and TGFβ and

interacts with their respective receptors, therebymodulating their
mitogenic or contractile capacities (57–61). Similarly, to LRP1,
LRP6 interacts closely with PDGFRβ and TGF-βRI in pericytes
and is involved in their trans-differentiation into myofibroblasts
in response to TGFβ or CTGF. Therefore, it stimulates the
PDGF-BB-dependent proliferation of established myofibroblasts
via β-catenin-independent mechanisms (62). Likewise, Wnt7a
secreted by aggressive breast tumor cells promotes the activation
of stromal fibroblasts through TGFβ signaling (63). In cancer-
associated fibroblast from mammary tumors, the stabilization
of LRP6 at cell surface by DKK3 stimulates β-catenin and
YAP/TAZ signals, promoting pro-tumorigenic functions such as
ECM stiffening (64). Interestingly, pro-cath-D hypersecreted by
cancer cells in the breast TME stimulates fibroblast outgrowth by
inhibiting the release of LRP1β (intracellular domain), which is
able to regulate gene transcription (65).

Adipocytes are mainly engaged during BC progression
through a metabolic crosstalk with adjacent tumor cells and
adopt a modified phenotype called cancer-associated adipocytes
(66). Resulting dysfunctional adipocytes overexpressed fatty
acid, cholesterol, triglycerides, hormones, but also adipokines,
inflammatory cytokines, and proteases that are linked to cancer
progression (66). LRP-1 is highly expressed in preadipocytes
and is involved in adipocyte differentiation, especially through
its regulation of peroxisome proliferator-activated receptor γ

(67). LRP1 has also been demonstrated to be upregulated in
obese mouse adipocytes and obese human adipose tissues (67)
and to regulate insulin receptor and GLUT4 trafficking and
activation (68, 69). Through modulation of Wnt5a signaling,
LRP1 controls cholesterol storage and fatty acid synthesis
during adipocyte differentiation (70). An attenuated endocytosis
of apoA5 by adipocytes was demonstrated in both adipose
tissue from obese patients and insulin-resistant adipocytes. The
mechanism underlying this phenomenon might be related to a
reduced endocytic activity of LRP1 and/or an attenuated insulin-
dependent movement of LRP1 from intracellular structures to
the cell surface (71). These mechanisms may lead to excessive
augmentation of triglyceride storage and abnormal metabolism
of adipocytes, hence promoting the development of obesity and
obesity-associated disorders such as BC.

LRP1 is also abundantly expressed by various immune
cells and its function in HSP-mediated antigen presentation
and subsequent innate immune response is well described
in macrophages and dendritic cells (72). LRP1 also inhibits
macrophage-driven inflammation by decreasing cell-surface
abundance of the TNF receptor-1 and Iκ-B kinase/NF-
κB intracellular activation (73). By contrast, production of
sLRP1 (shed or soluble LRP1) by macrophages induces pro-
inflammatory factor synthesis such as IL-10, TNF-α, and MCP-
1 (74). Macrophage inflammatory protein-1a/CCL3, known to
amplify inflammation, is overproduced in the absence of LRP1 in
myeloid cells, leading to enhanced CCR5-expressing monocyte
recruitment to tumors and cancer angiogenesis (75).

Recent studies have demonstrated the crucial angio-
modulatory actions of LRP family members in various solid
tumors, including BCs (39, 51, 76–79). LDL and VLDL (very low
density lipoprotein) are involved in the secretion of diffusible
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FIGURE 1 | LRP-mediated signaling pathways and trafficking in breast tumor cells. The most important members of the LDLR family exhibiting effects on breast

cancer cells are represented with their associated extracellular ligands. Outside-in and inside-out pathways are represented by black and yellow arrows or lines,

respectively. The yellow strikethrough line indicates an inhibition. A2M, alpha-2 macroglobulin; CT, cholesterol; ER, estrogen receptor; LXR, liver X receptor; VitD,

vitamin D.

angiogenic factors by BC cells, such as amphiregulin (79).
Moreover, the binding of Wnt3a to LRP6 stimulates VEGF
production by TNBC cells (51). The stoichiometry of Wnt
ligands and their secreted regulators such as Dickkopfs (DKK)
seems instrumental to fine-tune LRP5/6 functions in the TME.
DKK1 was indeed described as anti-angiogenic, whereas DKK2
binding to LRP6 triggers potent induction of endothelial cell
sprouting (80). LRP1 is widely expressed in various endothelial
cells and its specific binding to tPA alone or complexed with
uPA/PAI-1 induces vascular permeability in the blood–brain
barrier (BBB) or in lung microvasculature, two major sites of
BC cell metastatic homing (81, 82). LRP1 controls multiple
aspects of endothelial cell metabolism (83) and participates to
the control of intercellular junctionality, morphogenesis, and
proliferation (81, 84, 85). Interestingly and as stated above,
during epithelial-to-mesenchymal transition in breast tumors,
LRP1 expression was derepressed through ZEB-1-dependent
inhibition of LRP1-targeting miRNAs, thereby contributing to
vascular mimicry of breast tumor cells (39). The induction of this
endocytic receptor could thus reinforce endothelial interface of
breast tumor cells and facilitate their metastatic dissemination.

CLINICAL SIGNIFICANCE OF LRPS AS
BIOMARKER IN THE CONTEXT OF
BREAST TUMORS

A large-scale study conducted on solid tumors indicates that
mostly LDLR mRNA are overexpressed in breast invasive
carcinomas with LRP2 mRNA being the most expressed, but no
correlation with patient survival was observed (11). Only a few
studies are focused on LRP1 expression in BC patient samples.
LRP1 was first immunohistochemically studied in fresh frozen
tissue from primary invasive breast carcinomas, ductal in situ
carcinomas, and auxiliary lymph-node metastases in 1996 (56).
LRP1 staining appeared intense in all stromal fibroblasts both
outside andwithin the tumor tissue and scattered inmacrophages
and mast cells. Interestingly, epithelial cells, endothelial cells,
and lymphocytes appeared negative for LRP1. A more recent
immunohistochemistry study of LRP1 expression, performed on
infiltrating ductal breast carcinomas, brought different results as
cytoplasmic LRP1 overexpression was identified in tumor cells in
addition to non-neoplastic stromal cells, whereas normal ductal
cells were always negative (7). Concerning LRP1 polymorphism,
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although C766T mutation was firstly reported as significantly
higher in patients with BC (9), the increased risk of BC
development associated to LRP1 polymorphism is not definitely
established. Of note, neoadjuvant chemotherapy in BC did not
impair LRP1 expression (28).

A BETTER UNDERSTANDING OF LRP
FUNCTIONALITIES MAY LEAD TO
EFFICIENT THERAPEUTIC STRATEGIES

Therapeutic approaches involving LRPs developed in oncology,
particularly in BC, aim to address the endocytic properties of
these receptors as vectorization tools. One of the remaining
therapeutic concerns for BC patients is related to metastases.
Brain metastases occur in about 15–30% of women with stage
IV BC. The targeting of the BBB, formed by endothelial cells,
astrocytes, and pericytes embedded in the capillary basement
membrane, remains critical for treating brain metastases. As
LRP1 transports ligands such as β-Amyloid or tPA across the
BBB and is expressed at high levels in this tissue (86), it appears
as a promising candidate for targeted therapy against metastatic
BC cells. In this context, the main therapeutic approaches use
the Angiopep-2, an LRP1 binding peptide first identified by
Demeule and colleagues (87). Combined with three paclitaxel
residues, this molecule (namely, GRN1005, formerly known as
ANG1005) binds to LRP1, crosses the BBB, and allows a better
drug delivery in the brain compartment (78, 87). Phase I/II
clinical trials with ANG1005/GRN1005 show that treatment is
safe and brings clinical benefit for both peripheral metastatic BC
and brain metastasis, even if the tumor had previously developed
resistance to conventional taxanes. Interestingly, an open-label
Phase III study will start in 2020 to investigate whether ANG1005
can prolong patient survival in HER2-negative BC patients
with newly diagnosed leptomeningeal disease and previously
treated brain metastases (NCT03613181). Angiopep-2 can also
be useful to target BC cells overexpressing LRP1. For instance,
Angiopep-2 was used to decorate nanoparticules combined with
doxycycline (Angio-DOX-DGL-GNP) in TNBC to facilitate the
drug penetration and accumulation in BC cells (88).

The endocytic properties of LRP2 have also been used to
improve the effectiveness of anticancer drugs in resistant BC cells
(89). In this context, lipid-polyethylenimine hybrid nanocarriers
decorated with apolipoprotein E (Ap-LPN) were developed for
improving siRNA delivery against clusterin in MCF7 BC cells,
leading to increased cell chemosensitization toward paclitaxel.

Another strategy of tumor targeting was used with the NT4
peptide, a tetrabranched peptide from the human neurotensin,
capable of binding LRP1 and LRP6 by mimicking ApoE and
midkine heparin binding site (90). Depau and collaborators
showed that methotrexate conjugated with NT4 can overcome
drug resistance in methotrexate-resistant human BC cells (91).
NT4 conjugated with other drugs (NT4-paclitaxel, NT4-5FdU)
were tested in various animal models of human cancer, including

an orthotopic mouse model of human BC, leading to improved
drug activity as compared to unconjugated counterpart (92–94).

More recently, some LRPs have been identified as direct
molecular targets for BC. LRP6 is probably the most promising
target in the TNBC with its overexpression leading to
Wnt signaling pathway activation together with tumorigenesis
promotion (5). Several drugs such as salinomycin, prodigiosin,
and niclosamide indeed induce LRP6 phosphorylation and
degradation leading to decreased tumor growth (49, 50, 95). Ren
and collaborators have suggested that soluble LRP6 ectodomain
could also be used as an innovative anti-metastatic drug (54).

CONCLUSION AND SUBJECTIVE POINTS
OF VIEW

Receptors from the LDLR family are increasingly emerging as
key relevant biomarkers in oncology and potential therapeutic
targets. Their multiple implications within the TME, variable
expression related to tumor stages, together with molecular
versatility, constitute the main challenges to better understand
their functionalities. In breast cancer, scientific evidence is
fragmented, sometimes contradictory, and only a few clinical
data are available. Potential prognostic value of these receptors
is still unclear, thus preventing from demonstrating clinical
benefits. Additional studies will be necessary to establish a link
between LRPs and some events promoting obesity or metabolic
diseases, particularly to improve the treatment of BC in post-
menopausal patients. LRP1 is likely to be the most promising
receptor because it constitutes an efficient drug carrier within
tumor cells. Very promising trials are ongoing in HER2-negative
BC patients with metastasis. In addition, LRP1 could also be
considered as an attractive therapeutic target in TNBC. However,
its high molecular weight, intricate regulation, and sub-cellular
localization together with its ability to bind multiple extracellular
ligands within the same clusters, make current research extremely
complex and can lead to contradictory conclusions. The use
of more advanced in vitro multi-cellular and 3D tumor-based
systems (tumoroïds) with patient-derived cells will be key to
deeper understand the functionality of this receptor. In the
coming years and in order to consider LRP1 as an innovative
vectorization tool, the approach should be focused on the
endocytic properties of overexpressed LRP1 rather than on the
modulation (e.g., inhibition or reduction) of LRP1 expression.
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