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Abstract

How do we evaluate a group of people after a few negative experiences with some members 

but mostly positive experiences otherwise? How do rare experiences influence our overall 

impression? We show that rare events may be overweighted due to normative inference of the 

hidden causes that are believed to generate the observed events. We propose a Bayesian inference 

model that organizes environmental statistics by combining similar events and separating outlying 

observations. Relying on the model’s inferred latent causes for group evaluation overweighs rare 

or variable events. We tested the model’s predictions in eight experiments where subjects observed 

a sequence of social or non-social behaviors and estimated their average. As predicted, estimates 

were biased toward sparse events when estimating after seeing all observations, but not when 

tracking a summary value as observations accrued. Our results suggest that biases in evaluation 

may arise from inferring the hidden causes of group members’ behaviors.

Main

In impression formation, negative information tends to have a stronger impact than positive 

information. Thus, the overall impression formed after positive and negative information 

is more negative than the algebraic sum of valences of individual experiences1. This 

phenomenon, called negativity bias, has been extensively demonstrated.

One potential source of the asymmetry in impression formation is the low frequency of 

negative events. As they are rare, negative events are more surprising and grab more 

attention. Supporting this idea, participants spend more time looking at negative descriptions 

of a target person than they do positive descriptions, and weighting valences of descriptions 

by looking time predicts the resulting evaluation bias2. Indeed, reinforcement-learning 

models suggest that when tracking a cue’s value, surprising outcomes update the value 

more strongly, resulting in greater contributions of surprising—in this case, negative—events 

to the overall evaluation3.
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Diagnosticity of information is another important aspect in biases. For instance, an 

intelligent person can occasionally behave unintelligently, but the opposite is less likely. 

As intelligent behaviors are more diagnostic of intelligence than unintelligent behaviors 

are, these diagnostic behaviors carry more weight and dominate evaluation even when 

participants observe evidence of unintelligence more frequently1,4. In social settings, in 

contrast, positive behaviors are often the default5, making negative events more diagnostic 

than positive ones. Therefore, negative information could weigh heavily in such situations. 

Work on conceptual similarities is also in line with this idea: pairwise similarity between 

negative words is judged to be lower than between positive words, meaning that the 

distribution of negative concepts is sparser than positive concepts’ distribution6,7.

If post-hoc impression judgments could rely on perfect encoding and retrieval of memory, 

evaluations would accurately reflect experiences without distortions. However, we cannot 

remember every single encounter with every person we ever meet. Therefore, we might 

lump together different similar experiences, clustering them in memory for future use. The 

high variance in negative concepts could lead to less clustering of those concepts in memory, 

leaving each individual observation more diagnostic of the valence of its cluster. Positive 

concepts, on the other hand, may form a large cluster of positivity where each individual 

piece of information is less diagnostic of the overall “gist” of the cluster. Supporting the 

idea that positive-valence concepts are clustered together more than are negative-valence 

concepts, processing of a positive word is faster if it follows another positive word, whereas 

this is not the case for negative words6. This could explain how the sparsity of negative 

events, given by rarity and variance, seems to contribute to the negativity bias8.

“Latent causes” – hidden causal structures that are assumed to generate a set of observable 

events, can be a meaningful basis for summarizing experiences9–11. For instance, when we 

believe that a single underlying reason (e.g., a person wanting a future favor from us) is 

causing ten separate events that we observe (e.g., friendly encounters with the person), we 

can keep one summary of those ten events instead of trying to remember each one of them. 

However, if we believe that two separate underlying causes (e.g., wanting a future favor 

from us and being socially anxious) generated five events each (e.g., friendly encounters 

with the person and socially inadequate behaviors of the person), we might keep two 

summaries. We may also care about generalizing across people as a group, for example, 

for forming expectations about the norms of people in different countries we may travel to. 

Relying on latent causes is normative when generalizing past experiences to a new situation, 

as we can utilize what we learned from the past events that are caused by the latent cause we 

expect is active now, but not the ones caused by other causes.

This approach, although rational, can also be a source of biases because we do not know 

the true latent cause of each event. For example, we may infer distinctive latent causes from 

seemingly different events even if, in truth, the events share one cause. For instance, the 

sparsity of negative events may lead to inference of many distinctive latent causes, while 

positive events may be attributed to a small number of causes (Figure 1A). If we then make 

our overall impression at the level of these latent causes—for instance by averaging over 

the valence of all the causes associated with the person or group of people we are forming 

an impression about—the estimation will be biased toward the sparse area where there are 
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a larger number of inferred latent causes. Here, we hypothesize that the negativity bias 

emerges from the combination of normative segmentation of information into causes based 

on similarity and incorrectly weighted averaging over latent causes.

Results

To test this hypothesis, we presented human participants with a sequence of events, 

described as “donations” (Experiments 1A, 1B, 2A), “sales” (Experiment 2B), or “rewards” 

(Experiment 2C), drawn from event distributions in which we manipulated sparsity such that 

either the below-average values or above-average values were sparser (Figure 1B). Then, 

in a surprise test, we asked them to estimate the average value of the observed events. We 

compared estimations between sparsity conditions, which all had the same true average. If 

biases arise from inferring underlying causes such as intentions behind behaviors, we would 

expect that the estimated average of a sequence consisting of sparse below-average events 

would be lower than the estimated average of a sparse above-average event sequence.

Experiment 1

Experiment 1A (N = 76) examined the effect of rarity and variability of distributions 

in estimation biases. Participants observed two sequences of 40 “donors” making coin 

“donations,” where each donor made a single donation (Figure 1C). Each sequence was 

presented as a group of people who attended the same college. The first sequence served 

as a training sequence to adjust participants’ prior beliefs about donations. After reporting 

their general expectation for donation (Guess 1) on a scale of 1 to 300 coins, participants 

observed a training sequence in which donation amounts were equally distributed above and 

below a mean donation of 150 coins. To ensure that the training sequence indeed adjusted 

participants’ prior beliefs close to the true mean, following this sequence we again asked 

participants to report their general expectation for donations (Guess 2).

We then showed a test sequence for which the true mean was the same as the mean of 

the training sequence. Critically, the sparsity of below-average or above-average donors 

was manipulated between subjects. Participants in the sparse “stingy” condition (N = 34) 

observed a sequence where the below-average (“stingy”) donor distribution was sparser 

than the above-average (“generous”) donor distribution. The amounts donated by the fewer 

“stingy” donors were more variable than the amounts donated by the many “generous” 

donors, to maintain the overall mean of 150 (see Figure 1B). Participants in the sparse 

“generous” condition (N = 42) observed a sequence whose donation values were flipped 

such that there were fewer and more variable “generous” donors. After observing the test 

sequence, participants first estimated the average donation for the test sequence. We then 

asked them to estimate the average donation for the training sequence.

We predicted that the average estimate after observing the test sequence would be biased 

such that values from the sparse area defined by higher variance and fewer samples would 

weigh more heavily, leading estimates in the sparse “stingy” condition to be lower than 

those in the sparse “generous” condition. To account for individual differences in the prior 

beliefs, we normalized estimates by subtracting individual guesses prior to the test sequence 
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observation (Guess 2) from the post-observation estimate. These normalized estimates were 

the main dependent variable of interest.

A two-tailed t-test on the difference between the normalized estimates in the two sparsity 

conditions showed a significant difference (t(74) = −2.744, p = 0.008, Cohen’s D = −0.633, 

95% CI = [−0.077, −0.012]), with the normalized estimate (i.e., the post-observation 

estimate minus “Guess 2”) in the sparse “stingy” condition (M = −0.020) significantly 

below the sparse “generous” condition (M = 0.024). A permutation test in which condition 

labels were shuffled 2000 times further showed that the observed estimate difference 

between sparsity conditions was outside the null distribution confidence interval (Figure 

2A; estimated normalized difference = 0.044; 95% null distribution CI [−0.030, 0.033], p = 

0.006).

We then asked whether the normalized post-observation estimates show a sparsity bias (i.e., 

a positivity bias in the sparse “generous” condition and vice versa) from the true mean 

in each sparsity condition (Figure 2B inset). One-sample t-tests showed that there was a 

significant sparsity bias in the sparse “generous” condition (M = 0.025; t(41) = 2.772, p 
= 0.008, Cohen’s D = 0.428, 95% CI = [0.007, 0.044]), whereas we found no statistically 

significant effect of negativity bias in the sparse “stingy” condition (M = −0.026; t(33) = 

−1.884, p = 0.068, Cohen’s D = −0.323, 95% CI = [−0.055, 0.002]).

The raw post-observation estimates were also significantly different across conditions (t(74) 

= −3.196, p = 0.002, Cohen’s D = −0.737, 95% CI = [−0.084, −0.019]), with the sparse 

“stingy” condition more negatively biased than the sparse “generous” condition. To further 

ensure that the condition difference at the post-observation estimate was attributable to 

the sequence manipulation, we tested for differences between conditions in the initial, 

pre-observation guesses (Guess 2). As expected, there was no evidence for a statistically 

significant difference in Guess 2 between conditions (sparse “stingy” condition M = −0.006; 

sparse “generous” condition M = 0.001; t(74) = −0.912, p = 0.365, Cohen’s D = −0.210, 

95% CI = [−0.023, 0.009]).

To test whether the biases can be predicted by a latent-cause inference process, we compared 

human participants’ biases to biases of an approximate Bayesian inference algorithm 

that infers latent causes using an infinite capacity prior (called a Chinese Restaurant 

Process prior). This prior allows assigning of each donor to a single latent cause, without 

predetermining the overall number of latent causes. According to the prior, if a latent cause 

already generated many donors, the prior probability that this popular cause would generate 

the next donor is higher (“rich-get-richer” property). However, there is always a chance that 

a completely new latent cause will produce the next donor, allowing flexibility in creating 

any number of causes. In combination with this prior probability, a likelihood was assigned 

to each observation (donation amount) according to its similarity to other observations 

inferred to be generated by the same latent cause (for details, see methods). After observing 

the sequence of donations and inferring the donors’ latent causes, the model estimated the 

average donation by taking the mean of the average donation of each latent cause weighted 

by the log-transformed number of donors that were assigned to the cause. We used the 

logarithm of the number of events rather than the true number to account for participants’ 
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loss of precision over counts as more events are experienced (as in Weber’s Law for many 

perceptual estimations). As a result, causes with a smaller number of donors influenced the 

overall mean disproportionately, as compared to causes with a larger number of events. We 

therefore predicted that, events from the sparse area will have higher impact on the estimated 

average than events from the dense area, regardless of normalized valence (i.e., above- or 

below-average), because a larger number of distinctive latent causes would be inferred to 

account for events in the sparse area, while a small number of causes would be inferred for 

the dense area.

The model showed the sparsity bias (mean condition difference = 0.12, t(74) = 43.622, p 
< 0.001), as in the behavioral results. Because in our model presentation order influences 

groupings of the observed values (see Methods12), we provided the donations values to the 

model in the same order that each participant observed them. The model could thus make 

specific predictions about the estimation bias per each individual participant. We used linear 

regression to test whether the simulated biases predict individual behavioral biases. Results 

showed that the estimate biases simulated by the latent-cause inference model predicted the 

estimate biases behaviorally observed in the experiment (β = 0.028, p < 0.001, partial η2 

= 0.145; Figure 2B dashed line). This relationship was marginally significant even when 

controlling for the sparsity condition (β = 0.080, p = 0.061, partial η2 = 0.047).

The core assumption of our latent-cause model is that estimation of the average donation 

is made by averaging over summary values of latent causes rather than the observations 

themselves. However, if participants knew in advance that they would only need to keep 

track of one summary value−the mean of all observations−they might update a running 

average rather than (or in addition to) grouping donors into latent causes13. To test this, in 

Experiment 1B (N = 22), we asked participants to report their average estimate on every trial 

(all other procedures were identical to Experiment 1A). We predicted that this requirement 

would eliminate biases toward the sparse area, and may generate biases towards the most 

recently experienced donations (“recency bias”).

Results showed that when subjects were required to estimate the mean donation after 

every observation, the normalized estimates were no longer significantly different across 

conditions (sparse “stingy” N = 10, M = 0.032; sparse “generous” N = 12, M = 0.012; t(20) 

= 0.984, p = 0.337, Cohen’s d = 0.421, 95% CI = [−0.023, 0.063]), with the numerical 

difference in the direction opposite to the latent-cause model prediction. A two-way ANOVA 

on data pooled from both experiments 1A and 1B showed a significant interaction between 

the sparsity and tracking conditions (F(1,94) = 4.056, p = 0.047, partial η² = 0.04), 

suggesting that the sparsity in the distribution induces biases only when the average values 

are not tracked on a trial-by-trial basis.

Further, we explored the relationship between observation, trial-by-trial estimates, and 

final post-observation estimates in Experiment 1B. Linear regression showed that estimates 

were influenced more strongly by more recent observations (Figure 3A). The trial-by-trial 

estimate on the last trial, however, was only marginally predictive of the post-observation 

(and post filler-task) estimate of the total donation mean (Figure 3B; β = 5.362, p = 0.082, 

partial η2 = 0.158). Together, these results suggest that the overall estimate of the average 
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may be derived via a different strategy when there is a clear goal of tracking the average 

value throughout the task, and support our hypothesis that latent-cause inference could be 

the mechanism by which sparse events become overweighted in the overall estimate.

Experiment 2

In Experiment 1, the sparsity manipulations induced biases in average estimation when there 

was no explicit goal of tracking the average value, which we interpreted as resulting from 

a process of latent-cause inference. However, there are at least two alternative explanations 

for the bias we observed. First, even if subjects did not infer multiple causes for the 

sparse events but rather perfectly inferred that there are two latent causes (“stingy” and 

“generous”), a log-weighted average of the mean values of these two causes would have 

resulted in an estimate that is biased toward the cause that has fewer events, due to the 

uneven number of events in the two causes. To address this, in Experiment 2, we equated 

the frequency of events that are generated by the “stingy” and “generous” causes and only 

manipulated the variance of the event distributions (Figure 4A).

Second, Pearce and Hall (1980) suggest that more surprising events will update values of 

an entity to a greater degree. Because events in the sparse area elicits higher prediction 

errors (surprises), they may have a greater impact on the learned averages (formally, these 

surprising events will have a higher learning rate). To adjudicate between the latent-cause 

inference model and the Pearce-Hall dynamic-learning-rate model, in Experiment 2, we 

chose a specific presentation order where the distributions from which observed values 

were drawn quasi-alternated between the dense and the sparse distributions, and the end 

of sequence was predominantly populated with values from the dense distribution (Figure 

4A). Alternating between the dense and the sparse distributions made the trials from both 

distributions similarly surprising on average, eliciting similar levels of prediction error and 

therefore equating attention to both distributions in the Pearce-Hall model. In addition, 

as values from the dense distribution were observed just prior to average estimation, error

driven learning would show a density bias due to the enhanced effect of recent experiences 

in such models (Supplementary Figure 2). Given these properties of the chosen presentation 

order, the Pearce-Hall model with dynamic learning rates predicted a density bias, while 

latent-cause inference still predicted a sparsity bias (Figure 4B).

Experiment 2A’s cover story was that each observation was the amount that a community 

member was willing to pay for a charity event. All other procedures were identical to 

Experiment 1A. In the first study (Experiment 2A-1, N = 70), a two-sample t-test showed 

that the normalized estimate in the sparse “stingy” condition (M = −0.023, N = 26) was 

significantly lower than in the sparse “generous” condition (M = 0.018, N = 44; t(68) = 

−2.511, p = 0.014, Cohen’s D = −0.621, 95% CI = [−0.075, −0.009]). A permutation test 

in which condition labels were shuffled 2000 times further supported that the observed 

sparsity bias effect was above the null distribution confidence interval (normalized condition 

difference = 0.044; 95% null distribution CI = [−0.035, 0.033], p < 0.05). Critically, these 

results were in the direction predicted by the latent-cause inference model and opposite to 

those of the Pearce-Hall model (Figure 4C).
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To strengthen this finding, we ran three independent sets of replications (Experiment 2A-2, 

N = 67; Experiment 2A-3, N = 260; Experiment 2A-4, N = 229, pre-registered https://

aspredicted.org/99em9.pdf). All three experiments replicated the main finding that the 

sparse “stingy” condition’s normalized estimates (Experiment 2A-2, N = 28, M = −0.014; 

Experiment 2A-3, N = 133, M = −0.009; Experiment 2A-4, N = 118, M = −0.005) were 

below the sparse “generous” condition’s normalize estimates (Experiment 2A-2, N = 39, M 

= 0.017; Experiment 2A-3, N = 127, M = 0.013; Experiment 2A-4, N = 111, M = 0.021), 

showing sparsity bias (Figure 4C). The difference between conditions were significant in 

all three (Experiment 2A-2, t(65) = −2.137, p = 0.036, Cohen’s D = −0.529, 95% CI = 

[−0.060, −0.002]; Experiment 2A-3, t(258) = −2.556, p = 0.011, Cohen’s D = −0.317, 

95% CI = [−0.039, −0.005]; Experiment 2A-4, t(198.54) = −3.098, p = 0.002, Cohen’s D 
= −0.407, 95% CI = [−0.043, −0.010]). An additional meta-analytic Bayes-Factor analysis 

across all four instances of Experiments 2A using “BayesFactor” R package14,15 showed 

a Bayes factor of BF+0=17732, indicating that the data are 17732 times more likely under 

the hypothesis that the normalized estimates are different across sparsity manipulations than 

under the null hypothesis.

We then tested whether post-observation estimates in each condition show a sparsity bias 

from the true mean across these four replication data sets, using meta-analytic Bayes Factor 

analyses on the two-tailed t-tests (Supplementary Figure 3). Negativity biases observed in 

the sparse “stingy” condition (Experiment 2A-1 M = −0.027; 2A-2 M = −0.023; 2A-3 M 

= −0.012; 2A-4 M = −0.017) were 636.6 times more likely under the bias hypothesis as 

compared to the null hypothesis (BF+0 = 636.584), providing extremely strong evidence for 

a bias. In the sparse “generous” condition, positivity biases (Experiment 2A-1 M = 0.006; 

2A-2 M = 0.008; 2A-3 M = 0.006; 2A-4 M = 0.014) were 4.6 times more likely under the 

hypothesis that there is a bias (BF+0 = 4.556), providing moderate evidence for a bias.

We further sought to investigate whether the sparsity bias in the social domain emerges 

from a domain-general inference process, or is specific to the type of social evaluation 

cover story. We thus ran two more experiments with different cover stories. In Experiment 

2B, subjects were asked to observe the weight of coffee beans that customers buy from 

different towns, and then estimate the average coffee bean purchase. In Experiment 2C, 

subjects observed slot machine earnings from different casinos, and then estimated the 

average win. All other procedures were identical to Experiment 2A, and the sparse “below

average” and “above-average” conditions here respectively corresponded to the sparse 

“stingy” and “generous” conditions in Experiment 2A. If summary statistics of a number 

of observations are estimated differently in more social versus less social domains, we 

would expect to observe an interaction in the bias between the sparsity conditions and the 

domains (social and non-social). Specifically, in the non-social domain, we would expect no 

difference between the sparsity conditions or a difference in the opposite direction (i.e., the 

density bias), following the Pearce-Hall model’s prediction and a traditional error-correcting 

learning process. However, if the bias arises from a latent-cause inference process that is 

shared across domains, the sparsity in the observed values should lead to biases regardless of 

domains.
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Experiment 2B (N = 81) and 2C (N = 101) showed that the sparse “below-average” 

condition’s normalized estimates (Experiment 2B, N = 38, M = 0.015; Experiment 2C, N = 

51, M = 0.001) were numerically below the sparse “above-average” condition (Experiment 

2B, N = 43, M = 0.048; Experiment 2C, N = 50, M = 0.030), although neither experiment 

showed a statistically significant bias (two-tailed two-sample t-tests: Experiment 2B, t(79) 

= −1.654, p = 0.102, Cohen’s D = −0.368, 95% CI = [−0.071, 0.007]; Experiment 2C, 

t(99) = −1.822, p = 0.071, Cohen’s D = −0.363, 95% CI = [−0.060, 0.003]). Nevertheless, 

differences in significance are not an indication of significant differences between the 

domains. To test whether the difference in post-observation estimates across conditions 

interacted with the domain, we ran a mixed-effects linear-regression model predicting 

normalized estimates with the sparsity and social (“social” or “non-social”) conditions as 

fixed effects and experiments (Experiments 2A-1, 2A-2, 2A-3, 2A-4, 2B, 2C) as random 

effects, pooling data across all six experiments that used the same event sequences (N 

= 808). Tests of significance using Satterthwaite’s approximation showed no significant 

interaction between the sparsity and social conditions (β = 0.005, SE = 0.012, t(804) = 

0.393, p = 0.695). A Bayes-factor analysis provided moderate evidence that there is no 

interaction between event domain (social versus non-social) and the sparsity conditions 

(BF0+ = 7.637).

Examining each condition’s sparsity bias in the non-social domain (Supplementary Figure 

3) showed strong evidence for a positivity bias in the sparse “above-average” condition 

(BF+0 = 16.153; null hypothesis Cohen’s D = 0), and moderate evidence for lack of bias 

in the sparse “below-average” condition (BF0+ = 4.902). This absence of a negativity bias 

in the sparse “below-average” condition in the non-social domain may be due to prior 

expectations for the observations, given the cover stories used. That is, if prior beliefs caused 

participants to expect smaller values in the non-social domain, above-average events that 

deviate strongly from expectations would be more diagnostic and weigh more heavily in 

overall estimation of observed events. To this end, we ran a mixed-effects linear-regression 

model predicting subject’s a priori estimates – Guess 2 – with social conditions as fixed 

effects and experiments as random effects. A test of significance using Satterthwaite’s 

approximation showed that prior beliefs in the non-social domain (M = −0.015) were 

significantly below priors in the social domain (M = −0.007; β = 0.007, SE = 0.003, t(7.308) 

= 2.539, p = 0.037).

Discussion

Together, these experiments demonstrated that overall estimation of a quantity is biased 

toward the value of events that are rare and/or more variable. Comparing human 

participants’ biases to simulated estimation biases from a semi-rational latent-cause 

inference model suggested that the behavioral results can be attributed to a process of 

inferring latent causes for observations and estimating the overall average by averaging over 

these causes.

Our results are in line with empirical findings in social cognition research showing that, 

given rarity2 and variability6,16 of negative events, negative information can have a higher 

impact in impression formation and updating1. To test our hypothesis that the distributional 
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sparsity is driving such bias, we used donation events in a positive monetary domain and 

manipulated sparsity of below-average (relatively negative) or above-average (relatively 

positive) events. This was a strong test of our hypothesis, as we avoided events in the 

negative domain altogether so as to not confound our findings with subjective value 

differences for monetary wins and losses (i.e., the fact that losses loom larger than gains 

of the same amount17). We expect that the effects we observed would occur even more 

strongly when the valence of the stimuli varies across the full spectrum of negativity 

and positivity, since there are features of negative events that make biased processing of 

negative stimuli adaptive. For instance, an untrustworthy person can impose a risk on our 

well-being, and thus it would be wise to avoid such risk. Indeed, if we choose to avoid a 

presumably untrustworthy (or otherwise negatively assessed) person, we deprive ourselves 

of opportunities to observe their behavior and update our impression. Effectively, the 

interaction between first impressions and our behavioral choices makes our samples of that 

person’s behaviors sparse, leading to a negativity bias18 On the other hand, we may update 

our impressions differently when we observe bad behaviors, leaving more chance to forgive 

potentially bad target19. Moreover, valence may not change monotonically with magnitude 

for some behaviors; for example, talking too much could be evaluated as negatively as 

talking too little16, while donating more money is generally positive, and thus avoids this 

potential confound. Future studies can explore potential interaction between sparsity and the 

valence of events in social and non-social domains.

We explored whether the inference processes that give rise to the sparsity bias are domain 

general or uniquely social, by using various social and non-social scenarios. There was 

moderate evidence that the sparsity bias was not different across domains, suggesting 

domain-general inference processes. However, our social and non-social cover stories may 

diverge in other important ways, especially with regard to prior beliefs. Although we 

presented participants with a training sequence to neutralize their prior beliefs, the training 

may not be enough to adjust people’s expectations for various situations, as these were built 

through a lifetime of experiences. This may be the reason that there was a difference in 

“Guess 2” between the social and non-social domains. In a donation scenario, the donation 

amounts observed during the first training sequence may be a more informative ground 

for processing the next set of observations, as they form a social norm for generosity that 

the members of the community should follow. This would make the prior beliefs sharper, 

and any donations outside the normal range could be perceived as good or bad. On the 

other hand, our non-social scenarios (how many grams of coffee beans are purchased, or 

how much slot machines return) may have evoked priors whose values are lower than the 

donation scenario, and thus every win in a casino or sale of coffee beans, even if below 

average, may have continued to be seen as a positive event. This would be a potential 

explanation for the absence of a negativity bias when below-average events were sparse in 

the non-social scenarios. Future research should investigate how prior beliefs differ across 

situations, and whether priors under social situations have unique characteristics that alter 

the inference process or allow it more flexibility. Quantifying individuals’ prior beliefs can 

also allow the model to predict individual differences in negativity biases, which indeed 

tend to be stable within an individual across time20. For instance, an individual who has 

experienced largely negative life experiences may have a prior expectation that positive 

Shin and Niv Page 9

Nat Hum Behav. Author manuscript; available in PMC 2021 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



events are sparse, and therefore will weigh positive events more heavily in their overall 

estimation.

Our study also differs from previous impression-formation studies in that we assessed 

the impression of a group rather than an individual. When forming impressions about an 

individual, we tend to assume more unity and coherence in their behaviors than we do about 

groups, drawing inferences about dispositional properties21–23. Group impression formation 

may rely on a different process from person impression formation24, which involves 

representing multiple individual experiences, or exemplars25, depending on perceived 

entitativity (i.e., the degree of having the properties of an entity)26,27 of a group. The level of 

judgment, thus, can vary between lumping all individuals into one category and representing 

each individual as its own entity. This is reminiscent of the tension between representing 

only prototypes of a category (prototype models of categorization28) and preserving all 

exemplars (exemplar models29)30. The latent-cause inference model can be seen as an 

intermediate between the two alternatives, achieving either end of the spectrum, and the 

range between them, by varying a single parameter that governs the probability of creating 

a new cluster31. This model could therefore be suitable for group impression formation. 

That is, the model can provide a framework to further explore how entitativity influences 

group impression formation. For example, In Experiments 2B and 2C, where the causal link 

between observed behavior and the groups was weak, the sparsity bias predicted by the 

latent-cause inference model was less pronounced. A town might not be a coherent entity to 

predict coffee sales as much as a school is for predicting social norms such as generosity. 

That is, when evaluating a heterogeneous social group that we assume has a common latent 

causal property (such as intention) that generates individual observations, sparse experiences 

with the group can drive our overall impression of the group. In any case, if these biases 

are the results of fundamental inferential processes that partition our experiences into 

meaningful causal chunks, the model should hold true in individual impression formation as 

well. Given that there is a closer and more immediate causal link between an individual and 

their actions than between a group and the group members’ actions, the sparsity bias effect 

would potentially even be stronger for individual impressions.

Experiment 1 suggested a way to reduce the sparsity bias. We showed that the requirement 

to evaluate the overall mean after every observation promoted unbiased estimation, as 

evidenced by the interaction between the task requirements and the sparsity conditions. 

This suggests that we may be less affected by rare and variable interactions if we try to 

track a particular quality of another person’s every time we interact with them, rather than 

leaving the judgment until later. This could be desirable in a situation where we want an 

unbiased evaluation, for instance during a hiring process. Nevertheless, placing people on a 

positive-negative scale is usually not the only goal in our rich day-to-day interactions, and 

we often need more flexible representation of our social counterparts.

Our model estimates the overall average by taking the log-weighted mean of latent 

causes’ mean values. That is, the model assumes that low-frequency events are relatively 

overweighted and high-frequency ones are underweighted when the overall mean is 

estimated based on the latent causes’ mean donation, as each cause is weighted by the 

log-transformed number of donors that were assigned to the cause. This loss of precision 
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is based on numerous studies showing this exact pattern of distortions in frequency or 

probability space32. Although this type of precision loss assumed by our model is repeatedly 

found in the literature33,34, it is worth noting that the degree of sparsity bias depends on 

the degree to which the latent causes’ frequency information is distorted. If latent cause 

frequency were perfectly kept, there would be neither a sparsity nor a density bias. At the 

other extreme, if frequency information was completely lost such that the overall mean 

would be taken as the mean of the latent causes, with equal weights for all causes, the 

sparsity bias would be much stronger. This could also explain the stronger sparsity bias 

in social scenarios as compared to non-social situations, as we represent the groupings 

of people by relying on existing schema we already have from previous experiences with 

other people, thereby further losing precisions on frequency of encounters in this particular 

setting.

Another possibility is that the frequency is distorted in the inference process as well as 

in the averaging of inferred causes. The Chinese Restaurant Process prior is a rich-gets

richer process where a new event will more likely be assigned to a cause with a larger 

number of events already assigned to it, than to unpopular causes. Inference in this model 

therefore requires counting how many events already belong to the cause. Including the 

aforementioned frequency distortion in this counting step does not change the direction of 

the bias, although the degree of the bias decreases. Similar distortions can occur even when 

there is no inference involved. That is, if the frequency of values observed multiple times 

is lost (that is, only unique observations are maintained in memory), the dense distribution 

may contribute less to the overall mean, due to the higher chance of repeat observations. 

However, this type of frequency distortion cannot account for the biases seen in Experiment 

2A, as the values of donations were unique per trial, with no repetition. Furthermore, in 

Experiment 1A, where outcomes were repeated, if we took into account only the first 

presentation of each value, the mean of unique donations in the sparse “stingy” condition 

would be above the true mean and vice versa, which is the opposite direction to the sparsity 

bias observed in the data.

Finally, logarithmic transformation can occur in representing the donation amount as well. If 

the donation amount is perceived in a logarithmic scale, the final average estimation would 

show a negativity bias in our experiments. To test whether this logarithmic representation of 

values is the source of negativity bias, we conducted a control experiment matching the log

transformed means, not the linear-scale means of the “sparse stingy” and “sparse generous” 

conditions. There, the estimation biases were positive in both conditions, contrary to the 

log-scale representation prediction (Supplementary Figure 1), suggesting that logarithmic 

representation cannot account for the empirical biases.

Given the possible hypotheses about precision loss when accounting for the number of 

observations in each latent cause, an ideal approach would be to fit these models to 

empirical data and compare which type of precision loss predicts our results the best. This is 

not possible in the current study, as we collected only one estimate per participant. We chose 

the current design to prevent continuous reporting from altering the cognitive processes by 

which latent causes are inferred and the final evaluation is made. Of course, this choice came 
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at the expense of model-fitting; future work can characterize the online inference process, 

for instance, by probing groupings on a trial-by-trial basis.

In conclusion, we have shown evidence that supports an account of evaluation as consisting 

of a stage in which sparse experiences are segmented into a large number of latent causes, 

which in turn bias the overall impression such that rarer and/or more variable experiences 

are overweighted. Here, we showed the sparsity bias in a mildly social domain. We would 

expect that, in more realistic social scenarios that involve evaluations of others with real 

stakes at hand, the biases may manifest even more strongly. This cognitive bias could indeed 

be the core mechanism underlying the negativity bias in social evaluations.

Methods

Experiment 1A

Participants—Seventy-six participants (34 in the sparse “stingy” condition; 42 in the 

sparse “generous” condition) were recruited using Amazon Mechanical Turk (MTurk). The 

Princeton University Institutional Review Board approved the experiment, and we obtained 

informed consent online before participants began the task.

Participants were excluded when they did not pass the following criteria: (1) not completing 

the task to the end, (2) failing to answer correctly on attentional checks, (3) responding 

too slowly (> 60s) on any of the observation (4) not adjusting general expectation properly 

after the training sequence and making a guess with a value that they never observed during 

the training trials. This filtering was done to ensure that participants attended to every 

observation, as our prediction is based on the particular set of values and order of the events.

Materials and Procedures—Participants were told that they were visiting different 

schools for fundraiser events and their job was to log the donation amounts. They observed 

40 donors making donations in each school. Each donor made a single donation with coins, 

ranging from 1 to 300 coins.

Participants first guessed how much people would donate in general (Guess 1). Then they 

observed the training sequence (“Brookview University”) and logged the donation amounts. 

On each trial, coins were dropped on the screen with a prompt indicating the donor and 

the amount (e.g., “Bradley donated 148 coins.”). Participants made a response either on a 

slider bar or in a text box next to the slider. The two response methods were yoked such that 

moving the slider would show the number in the text box and putting a number in the text 

box would move the slider to the number. The trial could proceed only when the response 

exactly matched the prompted amount.

The purpose of the training sequence was to adjust participants’ overall expectations, and 

reduce individual differences in prior estimation. At the end of the training sequence we 

therefore asked participants again to guess the general donation amount (Guess 2), to ensure 

that participants adequately adjusted their prior beliefs.

The mean donation amount of the test sequence was matched to the mean donation amount 

of the training sequence. They repeated the logging task with the test sequence (“Cedar 
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Springs University”). Here, we manipulated the sparsity of distributions of “stingy” and 

“generous” donors between subjects. A “stingy” donor was operationalized as a donor 

who made a below-average donation, and a “generous” donor was the one who made an 

above-average donation. Note that participants already learned the average donation amount 

in the training sequence, and thus they have an anchor to judge below- and above-average 

donations. The sparsity was defined by rarity and variance.

After observing all sequences and finishing a filler task, a surprise test asked them to 

estimate the average donation of the test sequence. This was followed by a test on the 

average donation of the training sequence.

In the sparse “stingy” condition, there were fewer stingy donors with higher variance 

in donation amount (10 “stingy” donors, M = 79.7, SD = 35.86) than generous donors 

(30 “generous” donors; M = 173.73; SD = 10.28). In the sparse “generous” condition, 

we flipped the donor distributions such that the overall mean stays the same with fewer 

generous payers and more variable generous donations (10 “generous” donors M = 220.3, 

SD = 35.86; 30 “stingy” donors, M = 126.26; SD = 10.28).

Experiment 1B

Participants—Twenty-two participants (10 in the sparse “stingy” condition; 12 in the 

sparse “generous” condition) were recruited using Amazon Mechanical Turk (MTurk). 

Exclusion criteria were identical to Experiment 1A.

Materials and Procedures—We added an average estimation task upon each 

observation. After observing and logging each donation, participants were asked to estimate 

the average thus far. All other procedures and materials were identical to those used in 

Experiment 1A.

Experiment 2A

Participants—A total of 626 participants were included in Experiment 2A (Experiment 

2A-1: N = 70, sparse “stingy” N = 26, sparse “generous” N = 44; Experiment 2A-2: N = 

67, sparse “stingy” N = 28, sparse “generous” N = 39; Experiment 2A-3: N = 260, sparse 

“stingy” N = 133, sparse “generous” N = 127; Experiment 2A-4: N = 229, sparse “stingy” 

N = 118, sparse “generous” N = 127). For Experiment 2A-3, the sample size was chosen 

from a power analysis based on Experiment 2A-1 and 2A-2. For Experiment 2A-4, we took 

a Bayesian approach35 and collected a minimum of 50 usable participants in each condition 

and continued data collection until we reached one of three criteria : (1) a Bayes Factor of 

10 in favor of H+ (normalized estimate in sparse “stingy” condition < normalized estimate in 

sparse “generous” condition) and against H0 (no difference in normalized estimates between 

sparsity conditions), (2) a Bayes Factor of 10 in favor of H0 and against H+, or (3) we 

reached the maximum number of participants (500 usable participants in each condition). 

This procedure was pre-registered (https://aspredicted.org/99em9.pdf).

Exclusion criteria were identical to Experiments 1A and 1B, except that subjects who missed 

the 5-second response window for logging the amount were excluded.

Shin and Niv Page 13

Nat Hum Behav. Author manuscript; available in PMC 2021 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://aspredicted.org/99em9.pdf


Materials and procedures—We used a different cover story to generalize our results. 

In Experiment 2A, participants were told that they were selling coffee for charity events 

at community fairs in different towns (“Lambtonville” and “Brookfield”) and taking coffee 

orders. The customers could pay in tokens as they wish, and participants’ task was to log 

the payment amount for each customer. Customer names were shown in the prompts (e.g., 

“Brennan: 218 tokens for Cappuccino”). We instructed participants to pay attention to both 

the names and the payment amount, as some pairs of name and payment amount would 

be tested at the end. This was to orient them to pay attention to the task (For Experiments 

2A-1 and 2A-2, we asked participants to report the payment amount for given customers 

at the end of the experiment. For Experiment 2A-3 and 2A-4, we did not test participants’ 

memory. In all cases, we did not analyze these data, as they were outside the scope of our 

interest).

Tokens did not appear on the screen as visual cues (as they did in Experiment 1), and the 

response was made either by moving a slider ranging from 1 to 500 tokens (Experiments 

2A-1, 2A-2; to help participants make a response within the response window, the slider 

snapped to the correct number when the distance between the marker and the target was less 

than 5 tokens) or by typing in the number (Experiment 2A-3, 2A-4), with a 5-second time 

limit. Participants earned a 50-cent bonus if they did not miss any orders.

Critically, the sparsity of “stingy” and “generous” observations was manipulated by variance 

alone. In both conditions, the number of customers generated from stingy and generous 

causes were matched to 20. In the sparse stingy customer condition, the “stingy” customers’ 

payment amounts were more variable than the “generous” donors (20 “stingy” donors M = 

188, SD = 47.29; 20 “generous” donors M = 308, SD = 13.73), and vice versa in the sparse 

generous customer condition (20 “generous” donors M = 312, SD = 47.29; 20 “stingy” 

donors M = 192, SD = 13.73).

The order of payment values was chosen such that the latent-cause inference model and the 

Pearce-Hall model predict the opposite biases.

Experiment 2B, 2C

Participants—The total of 182 subjects participated in Experiments 2B (N = 81, sparse 

“stingy” N = 38, sparse “generous” N = 43) and 2C (N = 101, sparse “stingy” N = 51, sparse 

“generous” N = 50). Exclusion criteria were identical to Experiment 2A.

Materials and Procedures—To investigate the sparsity bias in non-social domains, we 

changed the cover story such that participants were logging weights of coffee beans for 

customers in supermarkets in different towns (Experiment 2B) or logging slot-machine 

earnings in different casinos (Experiment 2C; participants’ compensation did not depend 

on observed earnings to avoid those amounts from playing the role of personally-relevant 

rewards). Critically, the stimuli sequences were identical to Experiment 2A, where the 

sparsity was manipulated by variance. All procedure was identical to Experiment 2A-3 and 

2A-4, where responses were made in a text box.
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Latent-cause inference model

Each event sample was sequentially introduced to a Bayesian inference model with an 

infinite capacity Chinese Restaurant Process (CRP) prior36. In this model, before observing 

any behavior, an observer has prior beliefs about the target group’s stable latent causes:

p Z = k =

nk
∑nk + α if k an old cause

α
∑nk + α if k is a new cause

where Z is a variable denoting the latent cause of the next observation, k indexes latent 

causes, nk is the number of observations already assigned to latent cause k, and the 

concentration parameter α determines the prior tendency to assume new latent causes. This 

prior formalizes the idea that a prolific latent cause is more likely to generate future events 

(top case), and the total number of latent causes is unbounded and can grow with the number 

of observations (bottom case).

After observing an event, the likelihood that the current event xt was generated from latent 

cause k is estimated by marginalizing over all “consequential regions”37 ℎ′ that encompass 

the past events xi k generated by cause k  nk in total):

p xt ∈ k xi k = ∑
ℎ′ ∈ H

p xt ∈ k xi k′ℎ′ p ℎ′ xi k

The posterior probability p ℎ′ xi k  in the right-hand side is calculated as:

p ℎ′ xi k =
p xi k ℎ′ p ℎ′

∑ℎ ∈ H p xi k ℎ p ℎ

where the prior  p ℎ′  follows an Erlang distribution34 with a size prior set to the range 

of training sequence events, and the likelihood p xi k ℎ′  is the product of the likelihood 

of events that are sampled from consequential region ℎ. Under the “strong sampling”38 

assumption that each event is independently sampled from the cause,

p xi k ℎ' = ∏
i:xi ∈ cause k

p xi|ℎ'

Assuming uniform sampling from the consequential region, the likelihood that event xi is 

sampled from consequential region ℎ′ is inversely proportional to the width of the region ℎ′
if the event is within the consequential region, and zero otherwise:

p xi|ℎ' =
1
ℎ'           if   xi ∈ ℎ′

          0                 otℎerwise
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This gives, for the likelihood of the current observation under latent cause k,

p xt ∈ k| xi k =
∑ℎ': xi k, xt ∈ ℎ'

1
ℎ' nk

p(ℎ')

∑ℎ: xi k ∈ ℎ
1

ℎ nk
p(ℎ)

.

The posterior probability of latent cause k is then updated using Bayes rule:

p Z = k|xt =  
p xt|Z = k p Z = k

∑k' = 1
t p xt|Z = k'

.

Because the Bayesian inference process becomes intractable as the number of observations 

grows, we approximated the process using a particle filter10,39 in which each particle 

maintains a single maximum a posteriori estimate of the assignment of observations to 

latent causes, rather than maintaining the full posterior distribution. We ran 8 simulations 

(four with α = 0.25 and four with α = 0.5) using 50 particles each. As the number of true 

clusters was one for the training sequence and two for the test sequence, the concentration 

parameters were chosen such that the prior would produce one (α = 0.25) or two (α = 0.5) 

clusters after 40 trials.

Finally, the evaluation of a group was made by taking the mean of the latent cause values 

weighted by the log number of events assigned to each latent cause. The latent cause value 

was taken to be the mean value of events assigned to that latent cause. The estimation 

bias was calculated by subtracting the true mean value of the events from the mean value 

estimated from the latent causes.

Pearce-Hall model

Donation amounts were normalized to the maximum potential amount (i.e., the maximum 

amount on the response slider bar) and then introduced to the Pearce-Hall model3. The value 

estimate v was updated according to:

vt + 1 =  vt + at + 1 ×  S  × xt

where a is the associability parameter, S denotes salience of the cue, and x represents the 

observed amount. The key component of the Pearce-Hall model is that the associability a is 

updated according to the absolute prediction error (the difference between the observed and 

expected values), with a learning rate η:

at + 1 = 1 − η   ×  at  +  η  ×   xt − vt

This means that more surprising events have greater impact on the overall value estimates. 

We ran simulations with salience parameter S ranging from 0.1 to 1, and learning rate η
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ranging from 0.1 to 1. The evaluation of a group v was made using each combination of the 

two parameters.
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Code availability
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Figure 1. 
(A) Hypothetical latent structure of positive and negative events. Events (dots in middle) 

are generated from two true latent causes (dashed circles, top). The observer infers these 

latent causes (solid circles, bottom) from the observed events based on the similarity of 

events to each other. If events generated from the “bad” latent cause are sparse, the observer 

may infer many distinctive latent causes, each accounting only for a few observations. 

However, a small number of causes may be inferred to account for the many, similar, good 

events. (B) Experimental design for the sparse “stingy” donor and sparse “generous” donor 

conditions. The donation amount was drawn from “stingy” (below the mean; light gray) and 

“generous” (above the mean; dark gray) distributions. In the sparse “stingy” condition, most 

donations were drawn from a homogeneous “generous” distribution, while few, variable, 

donations were drawn from a “stingy” distribution. The distribution was flipped in the 

sparse “generous” condition. In both conditions, the true mean of donation amounts was 

150. The subject observed the number of coins donated on each trial, marking the amount 

on a slider bar to register it. (C) Experimental Procedure. After subjects first guessed the 

general donation amount (Guess 1), we showed them a symmetric training sequence (with 

no sparsity) to adjust their expectations. They then guessed the general donation amount 

again (Guess 2) and observed a test sequence according to their experimental condition. 

After performing a filler task where they clicked a series of stimuli that appeared on random 

locations, subjects estimated the overall donation amount for the test and training sequences 

(post-observation estimations).
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Figure 2. 
(A) The average estimate shows a sparsity bias. A permutation test in which condition labels 

were shuffled 2000 times (gray shaded) showed that the observed difference between the 

normalized post-observation estimate in the sparse “generous” and the “stingy” conditions 

in (black dot) was outside the null distribution confidence interval (marked with horizontal 

lines within the violin plot). (B) Comparison between simulation results and behavioral 

results. Each dot represents the estimation bias predicted by a latent-cause model that 

experienced the subject-specific sequence (x-axis) and the behavioral unnormalized post

observation estimation bias (i.e., post-estimation minus the true mean) of that subject (y

axis). Linear regression showed that estimate biases simulated by the latent-cause inference 

model predicted the estimate biases observed in the experiment (illustrated by the dashed 

line; see text). The inset shows the post-observation estimation bias difference between the 

sparse “stingy” (orange) and sparse “generous” (blue) conditions. Error bars indicate 95% 

confidence intervals. **p<0.01.
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Figure 3. 
(A) Recency biases in trial-by-trial estimates. Linear regression showed a recency bias, 

where more recent observations contributed more strongly to the current estimate (Orange 

lines: sparse “stingy” condition; blue lines: sparse “generous” condition). (B) Recency 

bias and final post-observation average estimate. The trial-by-trial estimate on the last trial 

(x-axis) was marginally predictive of the post-observation (and post filler-task) estimate 

(y-axis). Each dot represents one subject, grey shading: 95% confidence intervals.
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Figure 4. 
Sparsity biases when rarity was matched between the sparse and dense causes. (A) 

Distributions and test sequence. In Experiment 2, the frequency of “generous” (dark gray) 

and “stingy” (light gray) donations was matched (Left panel). For each condition, we also 

chose a specific sequence such that “generous” and “stingy” donations would elicit similar 

levels of prediction error (Right panel). In this sequence, as the two distributions mostly 

alternated throughout the sequence, making both donation amounts locally surprising. 

Finally, the sequence ended with values drawn from the dense distribution (see text). (B) 

Model predictions and empirical results. For the sequences in Experiment 2, the Pearce-Hall 

model (left) and latent-cause model (right) predicted biases in opposite directions. (C) The 

empirical results were in line with the latent-cause model prediction, showing a sparsity 

bias. Error bars indicate 95% confidence intervals.
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