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Recently, the incidence of hypertension has significantly increased among young adults. While aerobic exercise intervention (AEI)
has long been recognized as an effective treatment, individual differences in response to AEI can seriously influence clinicians’
decisions. In particular, only a few studies have been conducted to predict the efficacy of AEI on lowering blood pressure (BP) in
young hypertensive patients. As such, this paper aims to explore the implications of various cardiopulmonary metabolic indicators
in the field by mining patients’ cardiopulmonary exercise testing (CPET) data before making treatment plans. CPET data are
collected “breath by breath” by using an oxygenation analyzer attached to a mask and then divided into four phases: resting, warm-
up, exercise, and recovery. To mitigate the effects of redundant information and noise in the CPET data, a sparse representation
classifier based on analytic dictionary learning was designed to accurately predict the individual responsiveness to AEI. Im-
portantly, the experimental results showed that the model presented herein performed better than the baseline method based on
BP change and traditional machine learning models. Furthermore, the data from the exercise phase were found to produce the best
predictions compared with the data from other phases. This study paves the way towards the customization of personalized
aerobic exercise programs for young hypertensive patients.

1. Introduction

As a prevalent chronic disease, hypertension has been widely
considered as a major risk factor for cardio-cerebrovascular
events [1]. Strikingly, hypertension incidence is increasing
most dramatically in young adults [2, 3]. As an alternative to
antihypertensive drugs, lifestyle adjustments, including body
weight control, diet, and exercise, can also be used to lower
blood pressure (BP) [4, 5]. In particular, aerobic exercise not
only directly reduces BP but also indirectly achieves similar
effects by controlling body weight, reducing stress, and

improving vascular endothelial function, along with other
mechanisms [6-8]. Therefore, aerobic exercise intervention
(AEI) has been widely recommended for the treatment of
hypertension [9, 10]. Unfortunately, specific guidelines for
effectively administering aerobic exercise aimed at anti-
hypertension have not been widely accepted as there is
significant individual variation in BP lowering achieved by
the same exercise program, with the same exercise type,
time, frequency, and duration [11-13]. Understanding the
individual responsiveness to AEI before formulating com-
prehensive hypertension management plans will help to
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improve both effectiveness and efficiency of BP manage-
ment. To our knowledge, research in this field is still very
limited, thus motivating us to perform the work conducted
in this paper.

For the clinical feasibility and practicality, this work
provided an investigation on the feasibility of utilizing
machine learning techniques to predict the efficacy of AEI
on young hypertensive patients. Taking into account the
prognostic ability of key cardiopulmonary variables, data
mining was performed based on the data generated by
cardiopulmonary exercise testing (CPET) before treatment.
CPET provides a comprehensive physiological assessment of
multiorgan system function, including not only cardiovas-
cular and pulmonary but also musculoskeletal and hema-
topoietic systems [14]. It can help clinicians identify the
severity of the disease and evaluate the response to treat-
ments, thus playing an important role in formulating aerobic
exercise training prescription and cardiac rehabilitation
[15, 16]. In this paper, CPET being used is an electric bicycle
with many sensors (see Figure 1) as the main ergometer to
measure the changes of various cardiopulmonary metabolic
indicators over time. To provide the best measure of the
response to exercise, these data were collected “breath by
breath” by an oxygenation analyzer attached to a mask. The
specific test scheme guided by clinicians included four
phases: (1) resting for 1 minute to relieve the patient’s
tension; (2) load-free cycling (no resistance on the pedals)
for 3 minutes to warm up; (3) exercise for 5-12 minutes with
increasing resistance on the pedals (20-35 watt/min incre-
ment) until maximal exertion; and (4) recovery for 6
minutes with the first 3 minutes of load-free cycling and the
second 3 minutes of sitting still.

Based on the professional advice of clinicians, this paper
first utilized a simple method as the baseline to predict the
BP-lowering effect of AEI for young hypertensive patients.
Just to be clear, BP in this paper was equal to the sum of
systolic blood pressure (SBP) and diastolic blood pressure
(DBP). This method compared BP at the 6th minute of
recovery (R6BP) with BP at the pre-exercise resting (PEBP)
in a single CPET before AEI Patients with R6BP < PEBP
were predicted to be strong responders to AEIL If the
converse was true, they were predicted to be weak re-
sponders. Subsequent experiments showed that the accuracy
of this method was typically 50%-60%, closely approxi-
mating a random guess, and far beneath the requirement for
making effective and accurate clinical exercise prescriptions.
To meet this challenge, machine learning techniques were
utilized to fully capitalize on the information present within
several cardiopulmonary metabolic indicators provided by
CPET. As such, this work provides useful insights into the
formulation of personalized AEI prescriptions for young
hypertensive patients. The main contributions of this paper
are as follows:

(i) A sparse representation classifier based on analytic
dictionary learning was designed to accurately
predict the efficacy of AEI on BP lowering. This
model can not only alleviate the interference of
redundant information and noise brought by breath-
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Figure 1: Ilustration of cardiopulmonary exercise testing. To
protect privacy, the patient’s eyes were partially blurred.

by-breath collection but also overcome the defi-
ciency of the existing sparse representation-based
classifier which needs a large number of training
samples.

(ii) The significance of various cardiopulmonary meta-
bolic indicators at different phases of CPET for this
task was discussed through comparative experi-
ments. The results showed that the data from the
exercise phase can produce the best predictions
compared with the data from other phases. Among
various metabolic indicators, oxygen pulse (ie.,
oxygen intake per heartbeat) was recommended as a
powerful indicator for predicting the individual
responsiveness to AEL

The remainder of the paper is structured as follows.
Section 2 introduces various metabolic indicators of CPET
used in this paper. Section 3 briefly introduces the related
works, including the development of application scenarios
and research methods. Section 4 describes the designed
model in detail based on the shortcomings of the existing
model. Section 5 reports the experimental results along with
analyses. Finally, conclusions and future works are sum-
marized in Section 6.

2. Main Metabolic Indicators of CPET

CPET provides time-varying information regarding multiple
indicators related to circulation, respiration, and gas
metabolism at different levels of exercise intensity [17]. The
nine indicators recommended by professional clinicians for
this work are briefly described in the following:
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(1) Heart rate (HR): the number of heartbeats per
minute. Normally, HR is 60-100 beats per minute at
rest. HR varies individually according to age, sex, and
other physiological factors.

(2) Stroke volume (SV): the volume of blood ejected
from either ventricle of the heart in a single beat. The
main affecting factors of SV are myocardial con-
tractility, venous return blood volume (preload),
arterial BP (afterload), and so forth.

(3) Cardiac output (CO): the volume of blood that flows
out of the heart in a given period, usually denoted as
liters per minute. It can be obtained by multiplying
the average SV per beat by HR, varying with
metabolism and activity. For example, it increases
with muscle movement, emotional agitation, preg-
nancy, and so forth.

(4) Oxygen pulse (VO,/HR): the volume of the oxygen
intake per heartbeat. Hence, it is the amount of
oxygen that the tissues of the body extract from
oxygen carried by each SV. A higher oxygen pulse
suggests better cardiopulmonary function. This can
be used as a comprehensive index to determine the
cardiopulmonary function.

(5) Oxygen consumption/kilogram (VO,/kg): the vol-
ume of oxygen consumed by the metabolic processes
of the body over a period of time, usually denoted as
milliliters of oxygen per kilogram of body weight per
minute. It reflects the body’s ability to use oxygen
and is usually determined by the maximum cardiac
output, arterial oxygen content, cardiac output to the
distribution index of the exercise muscle, and muscle
oxygen capacity.

(6) Tidal volume (VT): the volume of air inhaled or
exhaled during a normal breath. It is related to age,
sex, volume and surface, breathing habits, body
metabolism, and so forth.

(7) Ventilation volume/minute (VE): the volume of air
inhaled or exhaled from the lungs in a minute, which
can be obtained by multiplying VT by the respiratory
rate.

(8) Respiratory exchange ratio (R): the ratio of the carbon
dioxide (CO,) output to the oxygen (O,) uptake (i.e.,
VCO,/VO,) during the same period. It reflects not
only the exchange of tissue metabolism of gas but also
the influence of transient change in gas storage.

(9) Carbon dioxide ventilation equivalent (VE/VCO,):
the ability of the body to discharge carbon dioxide,
calculated as the ratio between the required venti-
lation volume and carbon dioxide output.

To illustrate the characteristics of these indicators
more vividly, Figure 2 shows a visualization of the above
nine indicators for a patient during the exercise phase of a
CPET before AEL Since each breath represents a sampling
point, the information of each metabolic indicator col-
lected by the breath-by-breath technique can be stored as a
time series [18].

3. Related Works

CPET is a dynamic, noninvasive diagnostic method to
evaluate cardiopulmonary function during increasing load
exercise. Recently, the application of CPET in clinical de-
cision-making for various diseases has been significantly
developed. For example, CPET is playing a growing role in
cardiology, including heart failure, valve diseases, and is-
chemic heart disease [19]. Buys et al. evaluated the predictive
value of CPET for the incidence of hypertension in patients
undergoing aortic coarctation surgery and determined the
high-risk boundary as VE/VCO, slope >27 and peak SBP
>220 mmHg through Cox regression analysis [20]. Keller
et al. suggested that BP overresponse in CPET might be a
diagnostic tool for identifying high-risk groups of hyper-
tension [21]. Besides, CPET can be used as a tool for pre-
operative risk stratification of patients (not limited to
cardiopulmonary surgery) to predict postoperative adverse
outcomes [22, 23]. Currently, one of the most impressive
advances is that the integration of CPET and other tests has
been introduced to diagnose several diseases [24]. Exercise
stress echocardiography and CPET have been successfully
combined in the dynamic assessment of heart failure for
hypertensive patients [25]. Similarly, CPET combined with
echocardiography of the right ventricle was applied to
predict the prognosis of patients with pulmonary arterial
hypertension [26].

From the perspective of research methods, in addition to
traditional statistical analysis, data mining of CPET using
machine learning techniques is gradually becoming a re-
search hotspot. Leopold et al. developed a greedy heuristic
algorithm based on feature clustering to study the ability of
CPET to predict the anaerobic mechanical power outputs
[27]. Braccioni et al. used a random forest algorithm to
analyze the relationship between symptoms and cardio-
pulmonary parameters of lung transplant recipients based
on incremental CPET [28]. Sakr et al. evaluated the per-
formance of six machine learning techniques in predicting
the individuals at risk of hypertension through treadmill
stress tests on a massive crowd [29]. Unfortunately, the
above work only selected some special values of cardio-
pulmonary metabolic indicators (such as peaks or slope) as
features for analysis, without taking into account their time-
varying characteristics. Our previous work has proved that
time-varying data of some metabolic indicators obtained
through CPET could be used to predict the efficacy of AEI
[30], but how to further improve the predictive accuracy is
still a challenge, especially in the case of insufficient training
samples. This encourages us to perform the research con-
ducted in this paper.

In fact, the prediction of the BP-lowering effect of AEI
by using a certain metabolic indicator can be transformed
into time series classification (TSC) for data mining. To
date, researchers have proposed hundreds of approaches
for TSC in different application scenarios. TSC algorithms
can be roughly divided into seven categories: (1) the whole-
series-based method, (2) the interval-based method, (3) the
shaped method, (4) the word-frequency-based method, (5)
the model-based method, (6) the integration-based
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FIGURE 2: Visualization of several indicators for a patient during the exercise phase of a CPET. (a) Heart rate. (b) Stroke volume. (c) Cardiac
output. (d) Oxygen pulse. (e) Oxygen consumption/kilogram. (f) Tidal volume. (g) Ventilation volume/minute. (h) Respiratory exchange

ratio. (i) Carbon dioxide ventilation equivalent.

method, and (7) the deep learning-based method. Bagnall
et al. evaluated the latest progress of TSC algorithms on 85
datasets in the University of California, Riverside (UCR)
archive [31]. They recommended 1-nearest neighbor with
dynamic time warping (INN-DTW) and random forest
(RF) as the baseline classifiers for comparison with other
classifiers. Besides, they also concluded that the integra-
tion-based method can achieve high accuracy by utilizing
multiple classifiers on one or more feature spaces. For
example, Bagnall et al. integrated 35 classifiers on the time,
frequency, change, and shapelet transformation domains
[32]. On this basis, Lines et al. added two new classifiers,
two additional transformation domains, and a hierarchical
structure of probability voting to further improve the
performance [33]. Recently, the method based on deep
learning has gradually become a research hotspot [34].
Deep learning is characterized by learning hidden and more
abstract representations of data from the original time
series to achieve better classification performance. This

method is widely used for end-to-end learning including
methods such as convolutional neural networks (CNNs)
[35] and echo state network (ESN) [36]. The common
disadvantage of these methods is that they require a large
amount of data and computational cost for model training.
As this work represents the first stage in a larger experi-
ment, the relatively small number of samples means that
the above approach is not appropriate. Moreover, the ro-
bustness of the method to signal-to-noise ratio also needs to
be considered because the process involved in collecting
CPET data is usually very noisy. For the above reasons, a
classifier based on sparse representation is recommended
for the task in this paper.

4. Sparse Representation-Based Classifier

In this section, a sparse representation classifier based on
dictionary learning was designed to accurately predict the
efficacy of AEI on BP lowering. This method firstly
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eliminated redundant information and reduced noise by
feature extraction based on the sparse representation. At the
same time, it took advantage of learning of an analytic
dictionary without requiring as many training samples as the
existing sparse representation-based classifier.

4.1. Brief Introduction for Sparse Representation. Recently,
sparse representation has received increasing attention in
many fields. While initially developed for use in image
analysis and signal processing, sparse representation has
been successfully utilized for dealing with more general tasks
in the machine learning field [37]. Specifically, given a signal
x € R™ of m observations and an overcomplete dictionary
D € R™" (n>> m) in which the column vector d; (1 <i<n)is
known as an atom, the main goal of the sparse represen-
tation is the reconstruction of a signal perfectly with the least
possible number of atoms. Its objective function is as
follows:

min,|af, s.t. x = Da , (1)

where a € R" is the sparse representation (or sparse solu-
tion) of x and ||- ||, refers to the number of nonzero elements
in a. Due to the noise in the real signal, the solution of
equation (1) can be approximated by either of the following
two equations:

min,[|all, s.t. |x - Dal} <9, (2)

min,|x — Da|? s.t. [|all, <k, (3)

where 0 can be considered as noise or a reconstruction
residual; the sparse factor k is a predefined integer not less
than 1. Besides, based on the Lagrange multiplier theorem,
solving sparse representation can be equivalently trans-
formed into an unconstrained minimization problem:

min,|lx — Dall; + Allall,, (4)

where A is a positive constant used to achieve a tradeoff
between the reconstruction residual and the sparse solution.

It should be noted that since obtaining the optimal
solution with lp-norm minimization is an NP-hard problem,
many algorithms have been proposed to deal with it. The
strategies commonly used in these algorithms mainly in-
clude greedy pursuit strategy and convex relaxation strategy
[38, 39]. The greedy pursuit strategy represented by the
orthogonal matching pursuit (OMP) algorithm is to grad-
ually approach the optimal solution through the sequential
selection of column vectors (atoms) until the end of iteration
[40]. For the convex relaxation strategy, the main idea is to
replace the [y-norm minimization term with the /;-norm
minimization term. Taking equation (3) as an example, it can
be approximately equivalent to the lasso problem:

. 2
min,||x — Dall; s.t. all; <e, (5)

where |||, represents the sum of the absolute values of
nonzero elements in & and ¢ is a positive constant given
beforehand. The advantage of this strategy is that the ;-

norm minimization problem has an analytical solution and
can be effectively solved by several methods, such as least
angle regression (LAR) [41], coordinate descent algorithm
(CDA) [42], iterative shrinkage-thresholding algorithm
(ISTA) [43], and many variations of them.

4.2. The Existing Sparse Representation-Based Classifier.
Proposed by Wright et al., a sparse representation-based
classifier (SRC) was first applied in the field of face recog-
nition and then successfully extended to TSC [44, 45].
Specifically, the sparse representation of an unlabeled
sample is first solved based on the dictionary composed of all
labeled samples. Then, the reconstruction residuals of each
class are calculated by using the samples of each class and the
corresponding elements in the sparse representation. Fi-
nally, the classification is performed by examining which
class leads to the minimum residual of the unlabeled sample.
The steps to implement SRC are as follows:

(1) The l,-norm normalization is preprocessed for each
sample of the whole dataset with a class number of c.

(2) A dictionary D=[Dy,--+, D;,--+, D] is generated,
where D; (1< j<c) is a subdictionary composed of
jth-class normalized samples in the training set as

column vectors (atoms).

(3) The sparse representation « of the unlabeled sample y
is obtained by using the algorithm described above.

(4) The unlabeled sample y is reconstructed, respec-

tively, using each D; and corresponding «;, where
(1<j<c)isasubvector consisting of the elements in
« corresponding to all atoms in D;. The label is
determined based on the minimum residual, as

shown in the following equation:

Label, = class; s.t. V1<i<candi# j, ||y - Dioc,-”i >”y - Djocj"z.

(6)

Figure 3 shows the SRC schematic for a two-class problem.
The success of the SRC depends on the hypothesis that the
unlabeled sample can be best reconstructed by a linear rep-
resentation of samples within the same class. However, once
the samples of different classes look similar to each other, the
performance of SRC is very unstable [46]. Besides, the dic-
tionary cannot satisfy the overcompleteness if the number of
labeled samples is less than the dimension of samples, which
will also affect the performance of the SRC [47]. To overcome
the shortcoming of the SRC, a sparse representation classifier
based on an analytic dictionary was designed, and then its
accuracy was improved by using dictionary learning. For the
sake of simplicity, the model was called SRC-AL for short. The
principle is described in the following.

4.3. The Designed Sparse Representation-Based Classifier.
In the application domain of sparse representation, an over-
complete dictionary can be usually generated using data
implementation or analytic approach [48]. The approach based
on data implementation is to construct an explicit dictionary
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FiGgure 3: The SRC schematic for a two-class problem, where y is
the unlabeled sample. D, and D, represent subdictionaries com-
posed of all normalized samples belonging to class 1 and class 2,
respectively. The sparse representation « can be divided into two
subvectors («; and «,) according to the number of columns in D,
and D,. The black-filled blocks in « represent nonzero elements.

directly by using the raw data. This is exactly the way adopted
by the SRC, intending to obtain the residuals of the unlabeled
sample reconstructed by the samples of different classes. Unlike
SRC, SRC-AL generates an implicit dictionary based on the
analytic approach as the initial dictionary. This approach
generally utilizes some fixed transformations, such as discrete
Fourier transform (DFT), discrete cosine transform (DCT),
and discrete wavelet transform (DWT) [49]. Compared to the
data implementation, the analytic approach has the advantage
of allowing an overcomplete dictionary of any size without
being limited by the number of labeled samples. However, due
to the poor adaptability, the analytic dictionary often requires
further optimization through dictionary learning. K-singular
value decomposition (K-SVD) is a popular algorithm for
dictionary learning, which updates the used atoms one by one
in an iterative manner to train the overcomplete dictionary
most suitable for the training set [50].

Inspired by the sparse representation predictor for time
series proposed by our previous work [51], the workflow of
SRC-AL consists of the following six steps:

m+c

(1) Generate an initial dictionary D € R(™*" by utilizing
the analytic approach, where m is the dimension of the
sample, c¢ is the number of classes, and 7 is an arbitrary
integer much larger than (m + ¢). The upper and lower
parts of the dictionary are represented by D,, € R"™"
and Dy, € R™", respectively.

(2) Normalize each sample of the training dataset with
L,-norm, and convert its label into one-hot encoding.
Combine the above two parts into the new training
sample x € R("+),

(3) According to the training set composed of new
samples, update the initial dictionary through dic-
tionary learning, with the purpose of better recon-
structing the samples. The objective function of
dictionary learning can be described as

.
. . . 2
min E "x' - Dd' "
] 2
oD i

s.t. ||oci||0 <k,

(7)
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where 7 is the number of samples in the training set
and o' is a sparse representation of sample x'.

(4) Normalize the unlabeled sample y €R™ with l,-norm,
and then obtain its sparse representation «, € R"
based on the upper part of the learned dictionary
(D’ € R™™).

(5) Multiply the lower part of the learned dictionary
(Dp, € R™™) by the sparse representation a, € R"to
obtain the label vector L, €R".

(6) Determine the label of y according to the index of the
element with the largest absolute value in L, as
shown in the following equation:

Labely = classj stV1<i<candi#j, |Ly (i)' <|Ly ()

>

(8)

where L, (i) represents the ith element in vector L,.

Figure 4 shows the SRC-AL schematic for a two-class
problem. Assuming that sample x; belongs to class 1, the
green-filled blocks represent the normalized sample, and the
following “10” represents the one-hot encoding of the label.
Similarly, the blue-filled blocks represent the normalized
sample of class 2, and the following “01” represents the one-
hot encoding of its label. The dictionary filled with orange is
generated by the analytic approach. To better reconstruct all
training samples, a dictionary-learning algorithm (such as
K-SVD) should be applied to constantly update the dic-
tionary. Based on the upper part of the learned dictionary
(Dyy), the sparse representation «,, of the unlabeled sample y
(grey-filled blocks) is solved, and then Dj,’ x a, is used to
obtain the label vector L,. Finally, the element with the
largest absolute value in L, is set to 1, and the other elements
are set to 0. This one-hot encoding is used to replace the
question mark in Figure 4 to achieve the classification of y.

5. Experiments and Results

CPET data from 24 young patients with stage I hypertension
before AEI treatment were used for the experiments. The
dataset was provided by the Department of Cardiology, First
Affiliated Hospital of Sun Yat-sen University, China. The
whole exercise process of all the people was completed under
the supervision of professional medical staff in the hospital.
Blood pressure before and after exercise was assessed using
both dynamic and exercise blood pressure results. Although
the cost of each sample is very large, the data are highly
comparable and reliable due to the guaranteed amount of
exercise and more comprehensive monitoring indicators.
The performance of various machine learning models
based on the data from the exercise phase was compared
with the baseline method given by the clinician. Note that
the baseline method only focused on BP change between
pre-exercise and postexercise within a single CPET, while
the machine learning model took into account the time
series of metabolic indicators during CPET. After veri-
fying the effectiveness of the designed model, the sig-
nificance of the data from different phases in CPET for
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FIGURE 4: The SRC-AL schematic for a two-class problem, where x; and x, represent the samples of class 1 and class 2, respectively, and y is
the unlabeled sample. Due to the limited space, only two labeled samples are drawn in the figure. In fact, all labeled samples are used for
dictionary learning. D,,” and Dy, represent the upper and lower parts of the learned dictionary. ay;, a,,, and «, are the sparse repre-
sentations of x;, x,, and y where the black-filled blocks represent nonzero elements.

predicting the efficacy of AEI on BP lowering was further
evaluated.

5.1. Description of the Dataset

(1) Inclusion criteria: between the ages of 18 and 45;
stage I hypertension (SBP: 140-160 mmHg; DBP:
90-100 mmHg) either without medication or with
discontinuation of antihypertensive drugs for more
than two weeks and still presenting stage I hyper-
tension; no regular exercise for four months prior to
admission; willingness to participate in follow-ups
for more than 6 months.

(2) Treatment prescription: patients underwent aerobic
exercise with an Italian COSMED K4 electric bicycle.
Training intensity corresponded to the metabolic
equivalent of task (MET) of 70% of maximal oxygen
consumption (VO,,,.,). Get aerobic exercise 5 times
per week, each time 45 minutes (exercise intensity
equivalent to 2,000-3,000 kcal per week), lasting 12
weeks.

(3) Classification standard: patients were categorized as
strong or weak responders of AEI treatment
according to the therapeutic effect. The classification
process is as follows:

(1) All patients received 24-hour dynamic BP
monitoring before and after AEI to obtain their
daily mean BP.

(2) The rate of BP change before and after treatment
was calculated for each patient:
r, = [MBPB — MBPA||/MBPB, where MBPB and
MBPA indicated the mean BP of 24 hours before
and after treatment, respectively.

(3) Z-score standardization was performed for r; as
follows: z; = (r; — u)/o, where y and o were the
mean and standard deviation, respectively. The

role of z; was to determine whether the antihy-
pertensive efficacy of the ith patient was above
average.

(4) Classify according to z;. Patients with z; >0 (14
individuals in total) were identified as the strong
antihypertensive responders of AEI, while pa-
tients with z; <0 (10 individuals in total) were
classified as weak responders. The real labels of
24 patients are detailed in Table 1.

As can be seen from Table 1, all patients except the last
one exhibited certain antihypertensive effects following 12
weeks of AEI treatment. The average antihypertensive
change rate was 7.582%. The individual showing the best
antihypertensive effect exhibited a 40 mmHg (or 16.529%)
BP decrease after AFL. However, the absence of obvious
changes in BP of some individuals also proved that the
efficacy of AEI is significantly different in hypertensive
patients.

5.2. Experimental Results. In this paper, accuracy and F1-
score (the harmonic average of precision and recall) ob-
tained by the confusion matrix (see Figure 5) were used to
evaluate the performance of the model. For them, higher
values indicate positive benefits.

5.2.1. The Performance of the Baseline Method Based on BP
Change. An intuitive way to predict the BP-lowering effect
of AEI is to determine whether the BP of patients after
exercise is lower than that before exercising in CPET.
Specifically, the pre-exercise resting BP (PEBP) was sub-
tracted from BP at the 6th minute of the recovery phase
(R6BP) to obtain BP change (ABP) for each patient. A
patient with ABP less than 0 was considered to be unable to
benefit from AEI, meaning the predicted label was weak.
Conversely, a patient would exhibit a strong, beneficial
antihypertensive response to AEIL The predicted labels of the



TaBLE 1: Real labels of 24 young patients with stage I hypertension.

Sample (friPHBg) (Il\::l};{[;) r; (%) z; Label
1 242 202 16.529 2.209 Strong
2 229 195 14.847 1.792 Strong
3 221 192 13.122 1.365 Strong
4 241 212 12.033 1.094 Strong
5 235 213 9.362 0.432 Strong
6 253 230 9.091 0.365 Strong
7 223 203 8.969 0.334 Strong
8 249 227 8.835 0.301 Strong
9 209 191 8.612 0.246 Strong
10 244 223 8.607 0.245 Strong
11 214 196 8.411 0.196 Strong
12 246 226 8.130 0.127 Strong
13 204 188 7.843 0.055 Strong
14 244 225 7.787 0.041 Strong
15 244 226 7.377 -0.060 Weak
16 231 214 7.359 -0.065 Weak
17 240 223 7.083 -0.133 Weak
18 231 215 6.926 -0.172 Weak
19 214 207 3.271 -1.079 Weak
20 221 214 3.167 -1.104 Weak
21 222 216 2.703 -1.220 Weak
22 211 208 1.422 -1.537 Weak
23 207 205 0.966 -1.650 Weak
24 207 208 0.483 -1.770 Weak
Real label Accuracy = A+D
A+B+C+D

Confusion matrix

2 x precision x recall

Strong Weak Fl-score =
precision + recall
Strong A B Precision = A
Predicted recsion = 4B
label A
Weak C D Recall = iic

FiGURE 5: Illustration of the confusion matrix.

baseline method based on BP change are shown in Table 2.
Using the confusion matrix, the accuracy of the baseline
method was 0.542, and F1-score was 0.56. This meant that
the baseline method was only slightly superior to the random
guess (accuracy=0.5), far less than the requirement for
clinical applications.

5.2.2. The Performance of Machine Learning Models Based on
the Metabolic Indicators. Time series of the nine metabolic
indicators described above during the exercise phase were
selected for analysis using machine learning models. Of note,
patients had distinct exercise durations based on different
physical conditions, resulting in different numbers of
sampling points for individuals (ranging from 85 to 270). As
most machine learning models required samples to have the
same dimension, linear interpolation was first applied to
unify the sampling numbers of all patients to 270 points.
Afterward, SRC-AL presented herein was compared with
SRC and some popular models of TSC, including 1NN-
DTW, random forest (RF), and support vector machine
(SVM). Due to the limited samples, the leave-one-out cross-
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validation was adopted to carry out the experiments [52]. All
the above models were implemented by MATLAB. For SRC
and SRC-AL, OMP and K-SVD algorithms in the SPAMS
toolbox were used to solve the sparse representation and
dictionary learning, respectively. Besides, the optimal sparse
factor was obtained by grid search in a specific interval.
Finally, for SRC-AL, the size of the initial dictionary was
defined as a matrix where the number of columns was twice
the number of rows, which was realized by the discrete
cosine transform. The experimental results of each model are
shown in Tables 3 and 4, where the last column of each table
shows the average performance of each metabolic indicator
based on different machine learning models.

5.2.3. The Performance of SRC-AL Based on the Data from
Different Phases of CPET. Since SRC-AL performed best in
the above model, it was directly used to evaluate the sig-
nificance of the data generated in the three important phases
of CPET for predicting the individual responsiveness to AEI.
These three phases included warm-up, exercise, and re-
covery. Similar to the exercise phase, the data dimensions of
different patients in the other two phases were also in-
consistent. For the warm-up phase, the shortest time series
of metabolic indicators had only 38 sample values, while the
longest had 81 sample values. For the recovery phase, the
shortest one had only 113 sample values, while the longest
one had 195 sample values. Therefore, linear interpolation
should be used first to unify the data dimensions of different
patients into the same. Besides, the dictionary learned in the
exercise phase cannot be applied to the other two phases due
to different data dimensions. The experimental results of
SRC-AL based on the data of the above three phases of CPET
are shown in Table 5.

5.3. Analyses of Experimental Results. This work investigated
the ability of metabolic indicators to discriminate between
strong and weak responses to AEI in patients. Through the
analysis of the above experimental results, the following
insights can be obtained to help clinicians predict the efficacy
of AEI on young hypertensive patients based on CPET.

(1) From Tables 3 and 4, SRC-AL and SRC were superior
to other traditional classifiers in predicting the in-
dividual responsiveness to AEI based on the time
series of metabolic indicators. This is mainly because
the process of collecting these metabolic indicator
data is prone to generate many interference signals,
while the sparse representation can effectively extract
the main features of time series and enhance the
robustness to noise to the maximum extent.

(2) The performance of SRC-AL was significantly better
than that of SRC regardless of the time series based
on any indicator, although both were based on sparse
representation. This indicates that SRC needs an
adequate set of training samples to form an over-
complete dictionary for better performance. On the
contrary, SRC-AL can always guarantee the over-
completeness because it generates dictionaries
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TaBLE 2: Predicted labels of the baseline method based on BP change, where ABP = PEBP — R6BP.
Sample PEBP (mmHg) R6BP (mmHg) ABP (mmHg) Predicted label Real label
1 242 267 -25 Weak Strong
2 233 260 =27 Weak Strong
3 199 170 29 Strong Strong
4 236 216 20 Strong Strong
5 190 223 -33 Weak Strong
6 238 246 -8 Weak Strong
7 209 205 4 Strong Strong
8 274 256 18 Strong Strong
9 201 203 -2 Weak Strong
10 224 214 10 Strong Strong
11 204 211 -7 Weak Strong
12 262 255 7 Strong Strong
13 216 218 -2 Weak Strong
14 219 194 25 Strong Strong
15 222 232 -10 Weak Weak
16 245 229 16 Strong Weak
17 247 250 -3 Weak Weak
18 176 173 3 Strong Weak
19 233 225 8 Strong Weak
20 219 227 -8 Weak Weak
21 205 206 -1 Weak Weak
22 223 235 -12 Weak Weak
23 216 242 -26 Weak Weak
24 224 185 39 Strong Weak
TaBLE 3: Accuracy of various machine learning models based on (3) According to the last column of Table 3, except for

the data

from the exercise phase of CPET.

Indicator SRC-AL SRC INN-DTW RF SVM Mean

VO,/HR 1.000  0.792 0.625 0.583 0.667 0.733

VE
VO,/kg
co
HR

SV

0.875  0.708 0.625 0.458 0.542 0.642
0917  0.667 0.500 0.500 0.583 0.633
0917  0.667 0.500 0.583 0.792 0.692
0.833  0.625 0.500 0.500 0.417 0.575
0.667  0.542 0.458 0.542 0.542 0.550

VE/VCO, 0.708 0.542 0.500 0.458 0.458 0.533

VT 1.000  0.458 0.583 0.500 0.333 0.575
R 0.958  0.417 0.375 0.500 0.583 0.567
TaBLE 4: F1-score of various machine learning models based on the

data from the exercise phase of CPET.

Indicator SRC-AL SRC INN-DTW RF SVM Mean

VO,/HR 1.000  0.815 0.667 0.667 0.714 0.773

VE
VO,/kg
co
HR

SV

0.903  0.741 0.640 0.581 0.593 0.692
0933  0.692 0.539 0.600 0.643 0.681
0.923  0.692 0.571 0.667 0.828 0.736
0.846  0.640 0.539 0.600 0.462 0.617
0.667  0.667 0.552 0.645 0.621 0.630

VE/VCO, 0.778  0.667 0.600 0.606 0.581 0.646

VT
R

1.000  0.381 0.615 0.571 0.429 0.599
0.966  0.462 0.516 0.571 0.643 0.632

employing the analytic approach. Through dictio-
nary learning, the initial dictionary can be gradually
updated to better fit the training samples and their
labels.

the indicator VE/VCO,, the average accuracy of all
the other metabolic indicators based on the five
machine learning models was higher than that of the
baseline method based on BP change (accu-
racy = 0.542). However, if evaluated by the average
Fl-score, all metabolic indicators were superior to
BP change alone (F1-score =0.56), as shown in the
last column of Table 4. This interesting finding
suggests that the multipoint characteristics of car-
diopulmonary metabolic indicators formed by col-
lecting breath data can more accurately reflect the
individual responsiveness to AEL Figure 6 visualizes
the comparison between the predictive performance
of each indicator obtained by machine learning
models and that of BP change obtained by the
baseline method, where Figure 6(a) shows the av-
erage/optimal accuracy and Figure 6(b) shows the
average/optimal Fl-score. Note that the optimal
performance of all metabolic indicators was obtained
by SRC-AL designed herein.

(4) Table 5 illustrates the significance of data from

different phases in CPET for predicting the BP-
lowering effect of AEI. VO,/HR, VE, VO,/kg, VT,
and R had the best predictive effect by using the time
series of the exercise phase, while HR, SV, and VE/
VCO, performed better according to the time series
of the warm-up phase. The performance of CO was
consistent in both the exercise and the warm-up
phases. Finally, the data in the recovery phase were
less important than in the previous two phases. The
reason may be that the patient is only active for the
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Accuracy

Fl1-score

VO,/HR VE

B Average accuracy
B Optimal accuracy

VO,/HR VE

W Average Fl-score
m Optimal F1-score
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HR SV VE/VCO, VT R BP change

HR SV VE/VCO, VT R BP change

(®)

FIGURE 6: Comparison between the predictive performance of each indicator obtained by machine learning models and that of BP change
obtained by the baseline method. (a, b) The average and optimal performance of metabolic indicators, respectively.

TaBLE 5: The performance of SRC-AL based on the data from the three phases of CPET.

Indicator ~Warm-up accuracy Exercise accuracy Recovery accuracy Warm-up Fl-score Exercise Fl1-score Recovery Fl-score

VO,/HR 0.583
VE 0.625
VO,/kg 0.750
co 0.917
HR 0.833
SV 0.958
VE/VCO, 0.750
VT 0.583
R 0.917

1.000
0.875
0.917
0.917
0.833
0.667
0.708
1.000
0.958

0.625
0.833
0.750
0.708
0.792
0.625
0.708
0.792
0.708

0.737 1.000 0.743
0.757 0.903 0.875
0.824 0.933 0.824
0.923 0.923 0.720
0.857 0.846 0.828
0.963 0.667 0.757
0.800 0.778 0.788
0.737 1.000 0.828
0.923 0.966 0.759

first three minutes during the recovery phase and
remains inactive for the next three minutes. In other
words, the metabolic data of patients in the active
state are more significant for predicting the indi-
vidual responsiveness to AEL

5.4. Additional Experiments. Considering that the sample
size of the aforementioned experiments is rather limited,
six datasets from the UCR Time Series Classification

Archive were selected for additional experiments to further
verify the effectiveness of our proposed model [53]. The
common characteristics of these datasets include the fol-
lowing: (1) the number of classes is two and (2) the number
of training samples is less than or close to the length of the
sample. This results in the dictionary based on data
implementation not being overcomplete, which may re-
duce the classification accuracy of SRC. Nevertheless, the
proposed model based on analytic dictionary learning
(SRC-AL) should not be affected. The detailed description
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TABLE 6: Brief description of six datasets from the UCR Time Series Classification Archive.

11

Type Dataset Classes Length Training set Testing set
ECG ECGFiveDays 2 136 23 861
ECG ECG2000 2 96 100 100
Sensor SonyAIBORobotSurfacel 2 70 20 601
Spectro Ham 2 431 109 105
Image Herring 2 512 64 64
Image BeetleFly 2 512 20 20
TaBLE 7: Classification accuracy of various machine learning models on UCR datasets.
Dataset SRC-AL SRC INN-DTW RF SVM
ECGFiveDays 0.974 0.971 0.768 0.787 0.974
ECG2000 0.920 0.900 0.770 0.819 0.770
SonyAIBORobotSurfacel 0.890 0.757 0.725 0.733 0.677
Ham 0.762 0.619 0.467 0.722 0.619
Herring 0.672 0.609 0.531 0.572 0.625
BeetleFly 0.900 0.650 0.700 0.825 0.900

TaBLE 8: Accuracy of improved versions of various machine learning models based on the data from the exercise phase of CPET.

Indicator SRC-AL INN-sharpDTW (RAWS) INN-sharpDTW (DWT) INN-sharpDTW (slope) TSF
VO,/HR 1.000 0.625 0.583 0.542 0.675
VE 0.875 0.583 0.583 0.667 0.392
VO,/kg 0.917 0.458 0.500 0.500 0.450
CO 0.917 0.833 0.833 0.667 0.558
HR 0.833 0.500 0.542 0.542 0.517
SV 0.667 0.583 0.625 0.542 0.592
VE/VCO, 0.708 0.625 0.583 0.542 0.542
VT 1.000 0.542 0.542 0.625 0.392
R 0.958 0.583 0.583 0.625 0.517

of the datasets is shown in Table 6. According to the results
demonstrated in Table 7, SRC-AL achieved the best clas-
sification in all the datasets, indicating that SRC-AL is
particularly suitable for datasets with fewer training sam-
ples than the sample length.

In addition, considering that SRC-AL is an extended
sparse representation classifier, an interesting question is
whether or not other machine learning models can be
modified to handle the problem addressed in this paper with
better performance. To answer this question, the improved
versions of some machine learning models were used to be
compared with SRC-AL. For example, in order to reduce the
huge feature space of the random forest, time series forest
(TSF) was used to divide a time series into /m random
intervals (m is the length of the time series), and then the
mean, standard deviation, and slope of each interval were all
taken as features for classification [54]. Similarly, in order to
improve the classification accuracy of INN-DTW, 1NN-
sharpDTW was first adopted to convert the time series into a
sequence of shape descriptors, and then the locally similar
structures were paired [55]. Aiming to extract different
characteristics of the domain data, three description func-
tions were utilized to encode local shape information in this
paper: raw subsequence (RAWS), discrete wavelet transform
(DWT), and slope. Specifically, RAWS was applied to di-
rectly take a subsequence of the data around a sampling
point of a time series as its shape descriptor. On this basis,

DWT was used to decompose each subsequence into three
levels, and then all the coefficients were serialized into a
shape descriptor. Alternatively, the slope function was first
adopted to divide each subsequence into several intervals,
and then the slopes of the fitting lines of all the intervals were
concatenated into a shape descriptor. According to the
results shown in Table 8, SRC-AL performed best in all the
improved versions. This fully demonstrates the significance
of sparse representation in feature extraction and noise
reduction of CPET data.

6. Conclusions and Future Works

In recent years, the incidence of hypertension has shown a
clear trend towards presenting in younger patients. Note
that AEI has been recognized as an effective treatment
among young hypertensive patients. Unfortunately, research
regarding how to predict the individual responsiveness to
AEI for young hypertensive patients is still lacking. As such,
a sparse representation classifier based on analytic dictionary
learning, a.k.a. SRC-AL, was designed to mine the time series
of multiple cardiopulmonary metabolic indicators from
CPET data to accurately estimate the effectiveness of AEI on
patients’ BP management.

In summary, the experimental results first showed that
the machine learning model, especially SRC-AL, which is
based on the time series of metabolic indicators, can better
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predict the individual responsiveness to AEI than the
baseline method that is based on scalar values of BP change
alone. Secondly, data from the exercise phase in CPET are
the first choice for data mining, with the second choice being
data from the warm-up phase. Thirdly, VO,/HR is strongly
recommended as a powerful, new prognostic indicator for
predicting aerobic exercise efficacy as an antihypertensive,
with an average accuracy of about 75% and up to 100%.
Besides, CO is also a good choice not only because its average
performance is second only to VO,/HR but also due to the
fact that its performance is very stable in both warm-up and
exercise phases. As such, this will likely prove to be useful to
clinicians for more accurately selecting comprehensive an-
tihypertensive treatment measures without requiring extra
clinical testing.

Note that the predictive model in this study is a qual-
itative prediction that predicts whether or not an individual
hypertensive patient’s response to aerobic exercise inter-
vention is ideal. In future work, the quantitative prediction
model of BP reduction caused by AEI is planned to be
studied. Besides, BP defined in the current model is the sum
of SBP and DBP. It may make more sense to analyze SBP and
DBP separately in the subsequent work. Finally, the work
presented here includes data generated from 24 young
patients with stage I hypertension. Due to the limited sample
size of this dataset, more samples should be collected in the
future to prove the robustness of the proposed method. At
the same time, further optimization can be attempted
through the data augmentation technologies.

Data Availability

The data used to support the findings of this study cannot be
made freely available in order to protect patient privacy.
Requests for access to these data should be made to the
corresponding author.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors wish to thank the research team of the De-
partment of Cardiology, First Affiliated Hospital of Sun Yat-
sen University, for providing the experimental data. This
work was supported by the National Natural Science
Foundation of China (Grant nos. 61772136 and 61672159)
and the Natural Science Foundation of Fujian Province
(Grant no. 2018J07005).

References

[1] R. M. Carey and P. K. Whelton, “Prevention, detection,
evaluation, and management of high blood pressure in adults:
synopsis of the 2017 American college of cardiology/Amer-
ican heart association hypertension guideline,” Annals of
Internal Medicine, vol. 168, no. 5, pp. 351-358, 2018.

Journal of Healthcare Engineering

[2] Y. Yano,]J. P. Reis, L. A. Colangelo et al., “Association of blood
pressure classification in young adults using the 2017
American College of Cardiology/American Heart Association
blood pressure guideline with cardiovascular events later in
life,” Journal of the American Medical Association, vol. 320,
no. 17, pp. 1774-1782, 2018.

[3] S.Wu,Y. Song, S. Chen et al., “Blood pressure classification of
2017 associated with cardiovascular disease and mortality in
young Chinese adults,” Hypertension, vol. 76, no. 1,
pp. 251-258, 2020.

[4] R. D. Brook, L. J. Appel, M. Rubenfire et al, “Beyond
medications and diet: alternative approaches to lowering
blood pressure,” Hypertension, vol. 61, no. 6, pp. 1360-1383,
2013.

[5] H. Wen and L. Wang, “Reducing effect of aerobic exercise on
blood pressure of essential hypertensive patients: a meta-
analysis,” Medicine, vol. 96, no. 11, p. 6150, 2017.

[6] L. Cao, X. Li, P. Yan et al,, “The effectiveness of aerobic
exercise for hypertensive population: a systematic review and
meta-analysis,” The Journal of Clinical Hypertension, vol. 21,
no. 7, pp. 868-876, 2019.

[7] M. L. Pedralli, B. Eibel, G. Waclawovsky et al.,, “Effects of

exercise training on endothelial function in individuals with

hypertension: a systematic review with meta-analysis,”

Journal of the American Society of Hypertension, vol. 12, no. 12,

pp. €65-¢e75, 2018.

I. Gorostegi-Anduaga, P. Corres, A. MartinezAguirre-Beto-

laza et al., “Effects of different aerobic exercise programmes

with nutritional intervention in sedentary adults with over-
weight/obesity and hypertension: EXERDIET-HTA study,”

European Journal of Preventive Cardiology, vol. 25, no. 4,

pp. 343-353, 2018.

[9] B. K. Pedersen and B. Saltin, “Exercise as medicine-evidence
for prescribing exercise as therapy in 26 different chronic
diseases,” Scandinavian Journal of Medicine & Science in
Sports, vol. 25, pp. 1-72, 2015.

[10] S. Lopes, J. Mesquita-Bastos, A. J. Alves, and F. Ribeiro,
“Exercise as a tool for hypertension and resistant hypertension
management: current insights,” Integrated Blood Pressure
Control, vol. 11, pp. 65-71, 2018.

[11] C. Hacke, D. Nunan, and B. Weisser, “Do exercise trials for
hypertension adequately report interventions? A reporting
quality study,” International Journal of Sports Medicine,
vol. 39, no. 12, pp- 902-908, 2018.

[12] C. Ozemek and R. Arena, “Precision in promoting physical
activity and exercise with the overarching goal of moving
more,” Progress in Cardiovascular Diseases, vol. 62, no. 1,
pp- 3-8, 2019.

[13] R. Ross, B. H. Goodpaster, L. G. Koch et al., “Precision ex-
ercise medicine: understanding exercise response variability,”
British Journal of Sports Medicine, vol. 53, no. 18, pp. 1141-
1153, 2019.

[14] K. Albouaini, M. Egred, A. Alahmar, and D. J. Wright,
“Cardiopulmonary exercise testing and its application,”
Postgraduate Medical Journal, vol. 83, no. 985, pp. 675-682,
2007.

[15] G.].Balady, R. Arena, K. Sietsema et al., “Clinician’s guide to
cardiopulmonary exercise testing in adults,” Circulation,
vol. 122, no. 2, pp. 191-225, 2010.

[16] J.-C. Youn and S.-M. Kang, “Cardiopulmonary exercise test in
patients with hypertension: focused on hypertensive response
to exercise,” Pulse, vol. 3, no. 2, pp. 114-117, 2015.

[8



Journal of Healthcare Engineering

[17] A. Mezzani, “Cardiopulmonary exercise testing: basics of
methodology and measurements,” Annals of the American
Thoracic Society, vol. 14, no. Supplement_1, pp. S3-S11, 2017.

[18] U. Drescher, J. Koschate, and U. Hoffmann, “Oxygen uptake
and heart rate kinetics during dynamic upper and lower body
exercise: an investigation by time-series analysis,” European
Journal of Applied Physiology, vol. 115, no. 8, pp. 1665-1672,
2015.

[19] M. Guazzi, F. Bandera, C. Ozemek, D. Systrom, and R. Arena,
“Cardiopulmonary exercise testing,” Journal of the American
College of Cardiology, vol. 70, no. 13, pp. 1618-1636, 2017.

[20] R. Buys, A. Van De Bruaene, J. Miiller et al., “Usefulness of
cardiopulmonary exercise testing to predict the development
of arterial hypertension in adult patients with repaired iso-
lated coarctation of the aorta,” International Journal of
Cardiology, vol. 168, no. 3, pp. 2037-2041, 2013.

[21] K. Keller, K. Stelzer, M. A. Ostad, and F. Post, “Impact of
exaggerated blood pressure response in normotensive indi-
viduals on future hypertension and prognosis: systematic
review according to PRISMA guideline,” Advances in Medical
Sciences, vol. 62, no. 2, pp. 317-329, 2017.

[22] P. O. Older and D. Z. H. Levett, “Cardiopulmonary exercise
testing and surgery,” Annals of the American Thoracic Society,
vol. 14, no. Supplement_1, pp. S74-S83, 2017.

[23] D. J. Stubbs, L. A. Grimes, and A. Ercole, “Performance of
cardiopulmonary exercise testing for the prediction of post-
operative complications in non-cardiopulmonary surgery: a
systematic review,” PLoS One, vol. 15, no. 2, p. 0226480, 2020.

[24] C. Santoro, R. Sorrentino, R. Esposito et al., “Cardiopulmo-
nary exercise testing and echocardiographic exam: an useful
interaction,” Cardiovascular Ultrasound, vol. 17, no. 1, p. 29,
2019.

[25] I. Nedeljkovic, M. Banovic, J. Stepanovic et al., “The combined
exercise stress echocardiography and cardiopulmonary ex-
ercise test for identification of masked heart failure with
preserved ejection fraction in patients with hypertension,”
European Journal of Preventive Cardiology, vol. 23, no. 1,
pp. 71-77, 2016.

[26] R. Badagliacca, S. Papa, G. Valli et al., “Echocardiography
combined with cardiopulmonary exercise testing for the
prediction of outcome in idiopathic pulmonary arterial hy-
pertension,” Chest, vol. 150, no. 6, pp. 1313-1322, 2016.

[27] E. Leopold, D. Navot-Mintzer, E. Shargal et al., “Prediction of
the Wingate anaerobic mechanical power outputs from a
maximal incremental cardiopulmonary exercise stress test
using machine-learning approach,” PLoS One, vol. 14, no. 3,
p. €0212199, 2019.

[28] F. Braccioni, D. Bottigliengo, A. Ermolao et al., “Dyspnea,
effort and muscle pain during exercise in lung transplant
recipients: an analysis of their association with cardiopul-
monary function parameters using machine learning,” Re-
spiratory Research, vol. 21, no. 1, pp. 1-11, 2020.

[29] S. Sakr, R. Elshawi, A. Ahmed et al., “Using machine learning
on cardiorespiratory fitness data for predicting hypertension:
the Henry Ford Exerclse Testing (FIT) Project,” PLoS One,
vol. 13, no. 4, p. €0195344, 2018.

[30] G. Yang, X. Leng, F. Huang et al., “Use CPET data to predict
the intervention effect of aerobic exercise on young hyper-
tensive patients,” in Proceedings of 2019 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM),
pp- 1699-1702, IEEE, San Diego, CA, USA, November 2019.

[31] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The
great time series classification bake off: a review and exper-
imental evaluation of recent algorithmic advances,” Data

13

Mining and Knowledge Discovery, vol. 31, no. 3, pp. 606-660,
2017.

[32] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series
classification with COTE: the collective of transformation-
based ensembles,” IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 9, pp. 2522-2535, 2015.

[33] J. Lines, S. Taylor, and A. Bagnall, “Time series classification
with HIVE-COTE: the hierarchical vote collective of trans-
formation-based ensembles,” ACM Transactions on Knowl-
edge Discovery from Data, vol. 12, no. 5, p. 52, 2018.

[34] H. L. Fawaz, G. Forestier, J. Weber et al., “Deep learning for
time series classification: a review,” Data Mining and
Knowledge Discovery, vol. 33, no. 4, pp. 917-963, 2019.

[35] B. Zhao, H. Lu, H. Chen, J. Liu, and D. Wu, “Convolutional
neural networks for time series classification,” Journal of
Systems Engineering and Electronics, vol. 28, no. 1, pp. 162-
169, 2017.

[36] Q. Ma, L. Shen, W. Chen, J. Wang, J. Wei, and Z. Yu,
“Functional echo state network for time series classification,”
Information Sciences, vol. 373, pp. 1-20, 2016.

[37] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of
sparse representation: algorithms and applications,” IEEE
Access, vol. 3, pp. 490-530, 2015.

[38] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for
simultaneous sparse approximation. Part I: greedy pursuit,”
Signal Processing, vol. 86, no. 3, pp. 572-588, 2006.

[39] J. A. Tropp, “Algorithms for simultaneous sparse approxi-
mation. Part II: convex relaxation,” Signal Processing, vol. 86,
no. 3, pp. 589-602, 2006.

[40] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE
Transactions on Information Theory, vol. 53, no. 12,
pp. 4655-4666, 2007.

[41] B. Efron, T. Hastie, I. Johnstone et al., “Least angle regres-
sion,” The Annals of Statistics, vol. 32, no. 2, pp. 407-499,
2004.

[42] T. T. Wu and K. Lange, “Coordinate descent algorithms for
lasso penalized regression,” The Annals of Applied Statistics,
vol. 2, no. 1, pp. 224-244, 2008.

[43] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.

[44] J. Wright, A. Y. Yang, A. Ganesh et al., “Robust face recog-
nition via sparse representation,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 31, no. 2,
pp. 210-227, 2008.

[45] Z. Chen, W. Zuo, Q. Hu, and L. Lin, “Kernel sparse repre-
sentation for time series classification,” Information Sciences,
vol. 292, pp. 15-26, 2015.

[46] L. Zhang, M. Yang, and X. Feng, “Sparse representation or
collaborative representation: which helps face recognition,” in
Proceedings of International Conference on Computer Vision,
pp. 471-478, IEEE, Barcelona, Spain, November 2011.

[47] W. Deng, J. Hu, and J. Guo, “Extended SRC: undersampled
face recognition via intraclass variant dictionary,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 9, pp. 1864-1870, 2012.

[48] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries
for sparse representation modeling,” Proceedings of the IEEE,
vol. 98, no. 6, pp. 1045-1057, 2010.

[49] P. Wang, L. Kong, T. Du, and L. Wang, “Orthogonal sparse
dictionary based on Chirp echo for ultrasound imaging,”
Applied Acoustics, vol. 156, pp. 359-366, 2019.



14

(50]

(51

(52]

(53]

(54]

(55]

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algo-
rithm for designing overcomplete dictionaries for sparse
representation,” IEEE Transactions on Signal Processing,
vol. 54, no. 11, pp. 4311-4322, 2006.

Z. Yu, X. Zheng, F. Huang et al., “A framework based on
sparse representation model for time series prediction in
smart city,” Frontiers of Computer Science, vol. 15, no. 1,
pp. 1-13, 2020.

M. Alkhodari, D. K. Islayem, F. A. Alskafi, and
A. H. Khandoker, “Predicting hypertensive patients with
higher risk of developing vascular events using heart rate
variability and machine learning,” IEEE Access, vol. 8,
pp. 192727-192739, 2020.

H. A. Dau, A. Bagnall, K. Kamgar et al., “The UCR time series
archive,” IEEE/CAA Journal of Automatica Sinica, vol. 6,
no. 6, pp. 1293-1305, 2019.

H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series
forest for classification and feature extraction,” Information
Sciences, vol. 239, pp. 142-153, 2013.

J. Zhao and L. Itti, “Shapedtw: shape dynamic time warping,”
Pattern Recognition, vol. 74, pp. 171-184, 2018.

Journal of Healthcare Engineering



