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Abstract: In this manuscript, we describe a novel methodology for nearfield acoustic holography
(NAH). The proposed technique is based on convolutional neural networks, with autoencoder
architecture, to reconstruct the pressure and velocity fields on the surface of the vibrating structure
using the sampled pressure soundfield on the holographic plane as input. The loss function used for
training the network is based on a combination of two components. The first component is the error
in the reconstructed velocity. The second component is the error between the sound pressure on the
holographic plane and its estimate obtained from forward propagating the pressure and velocity
fields on the structure through the Kirchhoff–Helmholtz integral; thus, bringing some knowledge
about the physics of the process under study into the estimation algorithm. Due to the explicit
presence of the Kirchhoff–Helmholtz integral in the loss function, we name the proposed technique
the Kirchhoff–Helmholtz-based convolutional neural network, KHCNN. KHCNN has been tested
on two large datasets of rectangular plates and violin shells. Results show that it attains very good
accuracy, with a gain in the NMSE of the estimated velocity field that can top 10 dB, with respect to
state-of-the-art techniques. The same trend is observed if the normalized cross correlation is used as
a metric.

Keywords: nearfield acoustic holography; convolutional neural network; Kirchhoff–Helmholtz
integral; finite element method

1. Introduction

Nearfield acoustic holography (NAH) [1,2] is an interesting acoustic-based technique
for the contactless analysis of vibrating structures, such as plates and shells. NAH rep-
resents an appealing alternative to vibrational analysis carried out with accelerometric
sensors when, for example, the structure under analysis is particularly fragile or the de-
ployment of accelerometers is not feasible. Contactless analysis is also preferred when
lightweight objects are considered, since no additional mass needs to be added. Differently
from contactless optical techniques, e.g., laser Doppler vibrometer (LDV), NAH can be
employed with objects made of reflective materials.

NAH estimates the velocity field of a vibrating structure starting from acoustic mea-
surements acquired in its proximity. The sound pressure is typically captured by a micro-
phone array deployed on a plane, known as holographic plane. The holographic plane is
close to the vibrating surface in order to measure the evanescent waves, which are confined
in the proximity of the structure [2]. With the aim of estimating the velocity field of the
source from the pressure on the holographic plane, NAH relies on the inversion of the
well-known Kirchhoff-Helmholtz (KH) integral [2,3]. As a matter of fact, the KH equation
relates the normal velocity of a vibrating surface to the acoustic pressure generated by
the vibration. Sometimes NAH is also cast as a sound field reconstruction problem [4] for
applications in the field of source characterization [5] and sound field navigation [6–8]. The
inversion of the KH integral, targeted by NAH, is known to be a highly ill-conditioned

Sensors 2021, 21, 7834. https://doi.org/10.3390/s21237834 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8765-9657
https://orcid.org/0000-0003-1296-0992
https://orcid.org/0000-0003-4545-0315
https://orcid.org/0000-0002-5803-1702
https://doi.org/10.3390/s21237834
https://doi.org/10.3390/s21237834
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237834
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237834?type=check_update&version=1


Sensors 2021, 21, 7834 2 of 20

problem. Hence, many regularization strategies for NAH have been proposed in the
literature [9–11].

The KH integral can be numerically computed through the boundary element analysis
(BEA) [12,13]. Therefore, a possible solution to NAH is implemented through the inversion
of BEA (IBEA) [14,15], using Tikhonov regularization. This technique is able to provide
accurate results, but its application is limited by the high computational cost.

An alternative regularization strategy is represented by compressed sensing (CS)
in [16,17]. One of the former approaches in this direction was proposed in [16] and named
as Nearfield ACoustic HOlography with Sparse regularization (NACHOS). It aims at
approximating the vibrational data through a linear combination of a limited number of
plane-wave basis functions. However, its use is limited to star-shaped planar plates.

A different approach to NAH is given by the equivalent source method (ESM) [18,19].
This model assumes that the measured acoustic pressure field radiated by the source
can be equivalently expressed as the soundfield generated by a set of point-like virtual
sources located within or in proximity of the real source. The NAH techniques based on
ESM are typically structured in two steps. First, the weights of the equivalent sources are
estimated by minimizing the error between the measurements and the soundfield obtained
by propagating the equivalent sources. Successively, the target velocity field is determined
by propagating the equivalent sources to the surface of the vibrating structure. An aspect
that greatly impacts on the accuracy of ESM is the choice of number and location of th
equivalent sources. To the authors knowledge, only rules of thumb are proposed, which
are not, however, applicable in some contexts. In order to deal with this problem, ESM
techniques based on CS [20–22] have been proposed with the aim of finding small and
sparse subsets of equivalent sources.

For example, Canclini et al. [22] proposed building a dictionary of equivalent sources
in order to solve NAH. This technique, called dictionary-based esm (DESM), exploits
synthetic data for finding the equivalent sources. The resulting set is compressed using
principal component analysis and then it constitutes the learned dictionary. However, the
dictionary is specialized for a single rectangular object with fixed dimensions and validated
on similar objects with different mechanical parameters.

Another method that proves the importance of having a non-redundant representation
of the observed data is presented by Fernandez-Grande et al. in [20]. Authors proposed
a compressive-ESM (CESM) solution for NAH obtaining a sparse representation of the
measured wave field. In particular, they can find the equivalent source weights through
the computation of a `1-norm minimization problem. Nevertheless, although CESM
can be applied to different vibrating objects with different dimensions and geometries,
determining the location and the number of equivalent sources is still an open problem.

Recently, a new approach to NAH based on deep learning [23] has been proposed
in [24]. The authors, inspired by the effectiveness of learned features for NAH [22] and the
well-known feature learning capabilities of deep neural networks (DNN) in the context
of acoustics [25–29], proposed a convolutional neural network (CNN) [30] for performing
NAH. The promising approach of [24] provides accurate results, but the evaluation is
limited to rectangular plates of isotropic material only. Moreover, it considers a dense
spatial sampling of the hologram at a minimal distance from the source, which limits the
adoption to laboratory measurements.

In order to overcome these limitations, in [31] the authors proposed an enhanced
version of [24]. The architecture in [31], called super resolution CNN (RCNN), is able to
perform NAH with 3D structures of complex shape and arching profiles, also built from
orthotropic material as violin top plates. In addition, while retaining the same output
resolution obtained in [24], the number of required pressure points, namely the number
of microphones in the array, in [31] is reduced, achieving super resolution of the data.
Although the SRCNN-based NAH approach is able to estimate the velocity magnitude
field on different shapes of violin top plates, it can estimate only the magnitude of the
vibrational field discarding the phase information. Moreover, the solution in [31] has no
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prior information about the physical problem. Indeed, SRCNN acts an image mapping
between the input and output learned from the specific training set without considering
any physical information.

In this manuscript, we propose a novel approach to solve the NAH problem. The goal
of this work is twofold. On the one side, we combined the advantages of deep learning
solutions, in particular CNNs, with prior knowledge coming from the physical model,
which leads NAH, i.e., the KH integral. On the other side, we built an architecture able to
estimate both the magnitude and the phase information of the normal velocity field on the
vibrating surface.

The proposed model consists of two main blocks. The former takes the form of a
CNN with one input, the hologram pressure field, and two outputs, i.e., the pressure
and velocity fields on the vibrating surface. Successively, the second block propagates
the two network outputs with the Kirchhoff-Helmholtz model in order to provide an
estimate of the pressure at the hologram. For this reason, we called the devised architecture
Kirchhoff-Helmholtz-based CNN (KHCNN).

We focused on the velocity analysis on rectangular plates and violin top plates starting
from a corrupted version of acoustic pressures at the hologram plane with additive noise.
Moreover, in order to consider scenarios compatible with experimental measurements, we
performed NAH starting from a low number of pressure points at the hologram, namely
the number of microphone sensors.

The proposed method is validated comparing the predicted vibrational fields with the
ground truth and estimates given by CESM [20]. Moreover, we compared the performances
also with respect to the fully data-driven approach of SRCNN-based NAH presented in [31].
Simulation results confirm the effectiveness of the proposed KHCNN approach to NAH.
In particular, the presence of the physical model block improves the velocity accuracy of
the network estimates.

It is worth noticing that the dataset that we proposed does not present a Gaussian
distribution of the data [32]. Interestingly, the devised approach is able to accurate model
this variability of the dataset.

The paper is structured as follows. Section 2 presents the data model of the problems.
In Section 3, the mathematical formulation adopted and the overall methodology is intro-
duced. The description of the proposed KHCNN along with the training procedure are
reported in Section 4. Section 5 presents the generation of the simulated datasets. The
validation results with the comparison between the state-of-the-art approaches are report
in Section 6. A discussion of the available experiments is present in Section 7. Finally,
Section 8 draws some final conclusions.

2. Data Model
2.1. Data Model of the Mechanical Vibration

The characterization of a vibrating structure requires the knowledge of its structural
dynamic properties. An essential information is represented by the modes of vibration.
Modes, also called eigenmodes, are natural patterns of deformation that occur in objects
during vibrations. They are associated to the modal frequencies or eigenfrequencies.
Indeed, at these specific frequencies, the structural vibrations produce a stationary wave,
the so-called mode shape. These vibrational patterns are characterized by nodes and
anti-nodes. The former are points where no displacement of the structure is observed,
whereas in the latter, maximum deformation occurs.

It is worth noticing that modes are inherent properties of a structure; thus, they do
not depend on external forces or loads acting on the structure. Modes depend only on
the object geometry, the material properties (i.e., mass, stiffness, damping properties) and
from the boundary conditions (BCs) applied to the structure (i.e., simply supported, free or
clamped BCs) [33].

Conversely, when a structure is excited by external forces, its vibration results in the
Operational Deflection Shape (ODS) [34]. In particular, the ODS represents a combination
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of modes giving a general description for the harmonic evolution of the displacement over
surface. Unlike mode shapes, the ODS depends on the excitation point, the load applied to
the structure, and the frequency content of the excitation signal [34].

2.2. Data Model of the Acoustic Behavior

The pressure radiation produced by the points s belonging to a vibrating surface S
and measured in a point r is predicted by the Kirchhoff-Helmholtz (KH) integral [2], i.e.

α(r)p(r, ω) =
∫

S

(
p(s, ω)

∂

∂n
gω(r, s)− gω(r, s)

∂

∂n
p(s, ω)

)
dS , (1)

where ω is the angular frequency of vibration, p(·, ω) is the pressure field, n is outward
normal vector and gω(r, s) is the free-field Green’s function from s to r, namely

gω(r, s) =
1

4π

e−j ω
c ‖r−s‖

‖r− s‖ , (2)

with c the sound speed in the air and j is the imaginary unit. Notice that the computation
of (1) depends on the parameter α(r), which is determined by the position of the radiation
point r:

α(r) =





1, if r is outside S
1/2, if r is on S
0, if r is inside S

. (3)

Moreover, (1) has to satisfy the Sommerfeld condition, which gives a boundary condi-
tion at infinity [2,35], namely

lim
r→∞

r
[

∂

∂n
p(r)− jkp(r)

]
= 0. (4)

The Euler’s equation [2] defines a fundamental relation between the pressure and the
normal velocity and writes

∂

∂n
p(s, ω) = jωρ0vn(s, ω), (5)

where ρ0 is the mass density of the material, which for the air medium at 20 °C is
ρ0 ≈ 1.225 kg ·m−3 and vn(s, ω) is the normal velocity in point s. By substituting (5)
in (1), we can derive a different formulation of the KH integral equation for the exterior
radiation problem of a vibrating structure

p(r, ω) =
∫

S

(
p(s, ω)

∂

∂n
gω(r, s)− jωρ0vn(s, ω)gω(r, s)

)
dS . (6)

Thanks to this formulation of the KH integral, we can compute the pressure radiated
by a vibrating source starting from the knowledge of the pressure and the normal velocity
fields on the object’s surface.

2.3. Notation in Nearfield Acoustic Holography

In NAH, the soundfield on the holographic planeH is acquired through a microphone
array nearby the object. In a Cartesian coordinate system, a general setup for performing
NAH is shown in Figure 1, whereH is horizontal and its z coordinate is zH.

In solid media, the vibrating structure radiates sound at frequencies higher than the
cutoff frequency [2]. At frequencies lower than the cutoff, the soundfield decays exponen-
tially with z, generating the evanescent waves. For this reason, the near-field condition [2]
is an essential requirement in NAH for capturing all the velocity field components.
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Figure 1. General setup for NAH. The vibrating surface S is a finite plane, vectors r, s and n are
defined according to a Cartesian reference system located at the bottom-left corner of S . The radiated
soundfield is acquired by a microphone array placed in the hologram planeH at elevation zH.

In the NAH context, we are interested in solving the inverse propagation problem. In
practice, this boils down to the inversion of (6), i.e.,

vn(s, ω)

∣∣∣∣
s∈S
≈ F−1(p(r, ω))

∣∣∣∣
r∈H

, (7)

where F is a discrete estimator that approximates the soundfield on the hologram plane.
However, the inverse propagation problem (7) is highly ill-conditioned, thus requiring a
regularization procedure.

In this work, F−1 takes the form of a CNN. From the input pressure field at the
hologram, the devised network is able to estimate the velocity field on the vibrating surface,
thus avoiding explicit matrix inversions.

3. Problem Formulation

In this manuscript, we present a novel approach to NAH that combines the advantages
of deep learning [23] with the physical model of acoustic propagation (6). The underlying
physical model allows us to enrich the recent data-driven NAH approaches in [24,31] with
an estimate of the complex velocity field on the object’s surface (i.e., both magnitude and
phase information) to better characterize the vibrational behavior of the source.

Let us now consider a sampled version of the radiated pressure field acquired through
a uniform planar microphone array placed on the horizontal holographic planeH. Hence,
the hologram pressure field in matrix form is

PH(ω) ∈ CM1×M2 , (8)

where the microphones are located at rm1m2 with m1 = 1, . . . , M1 and m2 = 1, . . . , M2. M1
and M2 are the number of points in the array along the y and x axes, respectively.

Similarly, we can define a sampled version of the normal velocity field and of the
pressure field on the object’s surface in matrix form as

V(ω) = vn(sn1n2 , ω)

∣∣∣∣
sn1n2∈M

� B ∈ CN1×N2 , (9)

PS (ω) = p(sn1n2 , ω)

∣∣∣∣
sn1n2∈M

� B ∈ CN1×N2 , (10)

where � is the Hadamard product,M is a rectangular mesh grid on the source samples at
sn1n2 with n1 = 1, . . . , N1 and n2 = 1, . . . , N2, such that it entirely contains the geometry
of the vibrating surface S . In order to take into account the shape of the object, let B be a



Sensors 2021, 21, 7834 6 of 20

binary mask, which selects the points of the mesh grid belonging to the target surface. In
particular, (bn1n2) = 1 if sn1,n2 lies on the surface, and 0 otherwise.

With the above definitions at hand, we can write the discretized Kirchhoff-Helmholtz
Equation (6) in matrix form as

pH(ω) ≈ F (pS , v, ω) = GH
p (ω)pS (ω)− jωρ0GH

v (ω)v(ω), (11)

where H represents the Hermitian transpose operator, pH ∈ CM×1, and pS , v ∈ CN×1

are the column vector forms of PH, PS and V, respectively. Likewise, Gv ∈ CN×M is the
matrix of Green’s functions relating the N points on the surface with the M points on the
hologram and Gp = ∂

∂n Gv.
Notice that in (11), the number of points M can be different from N. In typical NAH

experimental scenarios M < N, thus having a limited number of microphone sensors
available with respect to the desired velocity resolution. Moreover, the discrete estimator F
represents an estimate of the real pressure field, with accuracy determined by the number
of adopted discrete points.

Figure 2 shows the two-block approach proposed in this paper to combine data-driven
and model-based solutions of the NAH problem.

𝐏ℋ
𝐏""

𝐕"
𝐏"ℋ

Forward
propagation

Inverse 
propagation

Deep Neural Network Mathematical model

Figure 2. Scheme of the overall two-block scheme proposed to solve the NAH problem. The outputs
of the DNN (yellow block) are fed to the forward propagation mathematical model (blue block) in
order to get an estimate of the hologram pressure.

Inspiring by the recent works of CNN–NAH architectures presented in [24,31], where
deep learning solutions have proved the ability to extract a powerful feature representation
to regularize the inverse NAH problem, we employed a DNN to infer the back propagation
relation. In particular, from the input pressure field acquired at the hologram plane PH(ω),
the first block reconstructs the complex fields V̂(ω) and P̂S (ω) on the object’s surface.

On the other hand, the use of physical information makes prior knowledge useful
to regularize the ill-posed inverse problem, as shown for example in ESM-based NAH
techniques. For this reason, we fed a second block with the two DNN outputs in order
to apply a mathematical model of the forward acoustic propagation. This implies also
knowing the Green functions relating the reconstruction points in S with the measurements
locations onH and the frequency at which the object is vibrating. Thanks to this second
block, we can obtain the estimate of P̂H(ω), comparing it with the input pressure, and
tuning the performance of the DNN.

4. Network Description

In this section, we describe in detail the model sketched in Figure 2 along with the
definition of the input and output data and the DNN architecture.

4.1. Kirchhoff–Helmholtz-Based Convolutional Neural Network

The estimated pressure field P̂H(ω) is computed using the discretized version of the
KH equation defined in (11). In addition to PS (ω) and V(ω), this mathematical model
requires knowing the Green function (2) between s and r for all the surface and hologram
grid points pairs.

The DNN model adopted to solve the back propagation problem is inspired by
the architecture of the renowned U-Net [36]. This architecture consists of three main
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components: the contraction, the bottleneck, and the expansion sections. Nevertheless,
we modified such architecture in order to have two different outputs from the CNN, i.e.,
the pressure P̂S (ω) and the velocity V̂(ω). Therefore, the proposed model consists of one
encoder E and two decoders D1 and D2.

In order to apply the KH propagation model from the network outputs, the CNN
has to reconstruct both output fields in complex domain. Therefore, the input and output
data of the devised network are arranged in tensors with two channels containing the real
and imaginary parts of the complex fields, respectively, thus preserving magnitude and
phase information.

For these reasons, we refer to the devised model as Kirchhoff-Helmholtz-based con-
volutional neural network (KHCNN) and the overall scheme is depicted in Figure 3.

Notice that in Figure 3, real and imaginary parts are stacked to emphasize the fact that
they are arranged in two channels. This way, real and imaginary parts are not treated as
separate signals, but a feature sharing between the real and imaginary parts during the
training process of the network is achieved.

ℒ

𝐏ℋ

𝐏#"

𝐕#
𝐏#ℋ

real
imag

real
imag

real
imag

real
imag

ℰ
𝒟1

𝒟2

KH 
propagation

Deep Neural Network Mathematical model

Figure 3. Overall scheme of the proposed KHCNN model. The CNN architecture (yellow block)
predicts the real and imaginary parts of P̂S and V̂ (stacked in two channels) from the input PH. The
two outputs are then propagated with the KH model in order to obtain the estimate of P̂H. A proper
loss function is built on top of the velocity ground truth and the pressure at the hologram.

4.2. Input/Output Data

The network input is the pressure field acquired at the hologram plane PH(ω) ar-
ranged in a tensor of M1 ×M2 × 2. In particular, M = M1 ×M2 is the number of points
used to sample the hologram pressure and the last two channels contain the real and
imaginary part of the complex field.

On the other hand, the two outputs of the CNN coming for decodersD1 andD2 are the
pressure P̂S (ω) and the velocity V̂(ω) on the vibrating surface, respectively. Both outputs
are arranged in a tensor with dimensions N1 × N2 × 2 in order to estimate the real and
imaginary parts of the complex fields in the N = N1 × N2 points on the object’s surface.

It is worth noticing that the value ranges of PH(ω) and V(ω) are different. This is due
not only to the different physical quantities and the elevation of the hologram pressure,
but it also depends on the geometry and boundary conditions of the vibrating source.
Therefore, the input pressure and the output velocity datasets have been normalized with
respect to their maximum absolute value; thus, collecting images with magnitude in [0, 1].
Notice that this operation does not affect the phase information, which remains unaltered,
but only the real and imaginary part of the complex fields, which now are in [−1, 1].

Differently from [24], where the pressure on the surface PS (ω) was considered as
an implicit latent variable, here we consider it as explicit latent variable. Hence, we let
KHCNN estimate P̂S (ω) from the evaluation of the KH propagation model on P̂H(ω).

4.3. CNN Structure

Here we describe the layers of the CNN architecture. We decide to compare two
different networks that differ from the input dimensions and the number of parameters.
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The first CNN aims to estimate V(ω) (9) starting from the input pressure PH(ω) (8),
having the same spatial resolution of the output, i.e., same dimension of M1 × M2 =
N1 × N2 = 16× 64. This architecture is similar to the one proposed in [24] and it is used
here only as a benchmark, since in practical NAH scenarios it is infeasible to measure the
hologram pressure in 1024 points due to wiring and spacing problem. For this reason,
inspired by the SRCNN approach in [31], we considered another architecture that produces
the velocity estimate in 1024 points, but starting from 64 points at the input pressure
acquired in a grid with dimension 8× 8.

For the sake of simplicity, here we describe only the CNN architecture with M = 64
points at the input. Indeed, the benchmark model with the input pressure in M = 1024
points presents the same architecture with only an adaptation on the dimensionality.

The proposed encoder E consists of a series of four downsampling blocks. Each block
includes two consecutive layers of 2D convolutions with filter size 3× 3 and with a rectified
linear unit (ReLU) activation function [37]. Moreover, batch normalization and 2× 2 max
pooling operations are applied after each downsampling block.

From the bottleneck embedding, the expansion section is achieved by two parallel
decoders, D1 and D2, with the same structure. Each upsampling step of both decoders
consists of a Conv2DTranspose layer [38] with stride 2× 2 followed by two convolutions
with ReLU functions and batch normalization. Moreover, skip connections [39] between
each downsampling block of the encoder E and the corresponding upsampling layers ofD1
andD2 are used to enable the reuse of the encoded features. The desired output dimensions
is reached with a super resolution section consisting in two additional upsampling blocks
with asymmetric strides 1× 2 and a final layer with linear activation function.

As a consequence, we obtain a double symmetric structure with one shared encoder
and two parallel decoders.

4.4. Training Procedure

The CNN model is built to extract an estimate of the velocity V(ω) and pressure
PS (ω) on the vibrating surface starting from the input pressure PH(ω). Moreover, the KH
model computes P̂H(ω) from the network outputs. Notice that the quality of the network
estimate can be assessed by the accuracy of both the soundfield on the hologram (input of
the network) and of the velocity field (output of the network), since the former is estimated
through the KH discretized operator from the latter.

Therefore, we define the following mean square error (MSE) loss function:

L =
1
2

∥∥∥Re(v)− Re(v̂)
∥∥∥

2

2
+

1
2

∥∥∥Re(pH)− Re(p̂H)
∥∥∥

2

2

+
1
2

∥∥∥Im(v)− Im(v̂)
∥∥∥

2

2
+

1
2

∥∥∥Im(pH)− Im(p̂H)
∥∥∥

2

2
,

(12)

where Re(·) and Im(·) are operators that take the real and imaginary part of the complex
field, respectively. Moreover, the pressure and velocity fields in (12) are represented as
column vectors and without the dependence of ω for the sake of simplicity.

The network is implemented (https://github.com/polimi-ispl/nah-khcnn, accessed
on 20 November 2021) in Python using Keras [40] and trained through Adam optimizer
with the default parameters presented in [41]. We decreased the learning rate by a factor
of 0.2 on learning plateau. Moreover, we applied the early stopping regularization tech-
nique to prevent overfitting. Hence, we stopped the training after 20 epochs in which no
improvement of the validation loss was observed.

https://github.com/polimi-ispl/nah-khcnn
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5. Dataset Generation

We evaluated the proposed approach using two different vibrating structures: alu-
minum rectangular plates and violin top plates made of Sitka spruce [42]. In the former
case, the vibrating object are planar and the material is isotropic, whereas the latter is made
of a complex 3D orthotropic structure that exhibits different mechanical properties along
the three perpendicular directions of the wood (L, longitudinal; R, radial; T, tangential).

We varied the dimensions and the BCs of the aluminum rectangular plate to build an
extensive dataset, whereas in the violin plate dataset, the outline of the plate was modified
according to [43].

5.1. COMSOL Simulation

Simulations are based on the finite element method (FEM) [44] using COMSOL Multi-
physics® software to compute a numerical approximation of the sound pressure radiated
and the velocity generated by the vibrating structure.

Both for the rectangular plate and for the violin top plate simulations, two steps
have been applied. The first step involves a mechanical study in order to retrieve the
eigenfrequencies ω̄ of each item in the dataset (Eigenfrequency study). In the second step, a
suitable acoustic pressure study in the frequency domain has been accomplished (Pressure
Acoustics, Frequency Domain study).

More specifically, in the acoustic simulation we emulated multiple shaker test setups
by applying an external sinusoidal load at a fixed point on the structure with carrier
frequency equal to each eigenfrequency computed in the previous mechanical study. Then,
we retrieved the radiated sound pressure and the normal velocity associated to that specific
vibrational input. In particular, we selected ω̄ ∈ [0, ωMAX] where ωMAX is defined such
that ωMAX

2π = 2000 Hz. Moreover, in order to validate the devised methodology in scenarios
compatible to experimental NAH setups, we evaluated the holographic pressure at the
elevation zH close to 3 cm.

In order to have accurate estimations of the complex fields, the discretization process
consisted of second-order polynomial interpolation. In particular, the mesh elements
were built in order to have at least five second-order elements for each wavelength, i.e.,
hMAX = λ0/5, where λ0 is the wavelength corresponding to the maximum frequency
considered of 2000 Hz.

Finally, we sampled the synthesized data with a cubic interpolation to yield the discrete
estimations of PH(ω) and V(ω) datasets. As far as V(ω) is concerned, it is sampled on
rectangular grids with dimensions Lx and Ly in N = 1024 points. The grid dimensions
change accordingly to the specific object shape and size, such that the vibrating structure is
entirely contained in the rectangular grid. Therefore, the sampling steps x̄s and ȳs of the
normal velocity are computed according to

x̄s =
Lx

N2 − 1
, ȳs =

Ly

N1 − 1
, (13)

with N1 = 16 and N2 = 64.
As for the acoustic soundfield, an example of the 3D pressure radiation resulting from

COMSOL Multiphysics® is depicted in Figure 4. From the computed acoustic simulation,
we retrieved PH(ω) at the hologram planeH placed at zH.
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(a) (b)

Figure 4. 3D pressure radiation example of a rectangular plate (a) and a violin top plate (b) computed
by the Pressure Acoustics, Frequency Domain study of COMSOL Multiphysics®.

We sampled the hologram pressure in a uniform rectangular grid with the same dimen-
sions Lx and Ly used for V(ω). We defined the pressure sampling steps in order to collect
two different spatial resolutions version of PH(ω) to validate the two proposed KHCNN
architectures described in Section 4. In particular, we collected PH(ω) in M = 1024 points
arranged in M1 ×M2 = 16× 64 and also in M = 64 points arranged in a grid of 8× 8.

Notice that, when PH(ω) is sampled in M = 1024 points, the input and output spatial
resolutions are the same. Conversely, when PH(ω) is sampled with M = 64, we have fewer
pressure points than velocity ones.

We modeled 672 different rectangular plates, with dimensions comparable to the body
of small bowed-string instruments. In particular, with length Lx ∈ [0.23, 0.36] m, width
Ly ∈ [0.15, 0.22] m, and thickness Lz ∈ [0.002, 0.007] m. The Lx and Ly dimensions have
been varied with step of 0.01 m while the Lz dimension with 0.001 m.

For each plate, we analyzed with COMSOL Multiphysics® the mechanical behavior for
three different boundary conditions (BCs), i.e., simply supported, clamped, and free edges.
To avoid exciting the plates on nodal lines and analyze as many different operational
deflection shapes (ODS) as possible, we excited the plate with simply supported and
clamped BCs at x = Lx/5 and y = Ly/4 locations, while for free BC, the excitation point
was in the center of the plate.

We collected a dataset of 15,570 pairs of PH(ω) and V(ω). In particular, we obtained
8707 instances for the free BC, while 2752 and 4111 correspond to clamped and simply
supported BCs, respectively [45].

As for the violin plate dataset, we simulated 1568 different synthetic violin top plates
with variable outline. Authors in [43] described 20 different parameters, which enable the
complete definition of a violin top plate geometry, i.e., shape and dimensions. In [43], shape
parameters are sampled from Gaussian distributions centered around the nominal value of
a reference violin (based on a Stradivarius instrument). Thanks to this approach, we used
different violin-like geometries with parametric outlines in order to ease a generalization
on the 3D shapes. In COMSOL Multiphysics® software, we modeled the radiated pressure
and velocity data by exciting the center position of each violin top plate with free BC, which
yields a total of 72,523 instances in the dataset.

5.2. Data Augmentation and Additive Noise

The pairs of PH(ω) and V(ω) in the training set need to be the same for the simply
supported, clamped and free BCs. This is especially true for the rectangular plate case,
where we want the network to infer the different vibrational behaviors for the three BCs.

Nevertheless, the datasets resulting from the COMSOL Multiphysics® simulation of
rectangular plates are not well balanced. Due to the different dimensions considered, a
larger number of items corresponding to modes at low frequencies can be found in the
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dataset with respect to the high frequency ones. Moreover, plates with clamped BC are
characterized by modes with higher eigenfrequencies than free and simply supported ones.

For these reasons, we set up an analysis on the mode occurrences. Modes that are
underrepresented in the dataset undergo a data augmentation step in order to have a
balanced training set.

The mode occurrence analysis is based on the computation of a correlation matrix
between all of the mode shapes present in the dataset. For all modes that are underrepre-
sented, a replication is accomplished, so that a homogeneous distribution of the vibrational
patterns is obtained.

Moreover, the collected PH(ω) of violin and rectangular plates has been corrupted
with additive white Gaussian noise in order to model the effect of measurement noise in
the pressure sensors. This operation is accomplished for both 1024 and 64 sampled points
data at the hologram.

The additive noise applied to each pressure item in the datasets is such that the signal-
to-noise ratio (SNR) is selected from a uniform distribution in the interval [10, 60] dB.

Table 1 reports the number D of PH(ω) and V(ω) fields for the rectangular and
violin datasets.

Table 1. Dimension of the datasets.

Dataset Total Dimension

Rectangular plate Drectangular = 186,294
Violin top plate Dviolin = 72,523

6. Validation and Results

In this section, we describe the experiments conducted and we discuss the related results.

6.1. Metrics

Two are the metrics used for assessing the performance of KHCNN. They both test
the deviation of the estimated velocity field V̂(ω) with respect to the ground truth V(ω) as
computed from the COMSOL Multiphysics® model.

For notational simplicity, in the rest of this section, we omit ω, but the dependence is
implicit in the metric definition and in the complex field notations.

The normalized cross correlation (NCC) is a metric widely adopted in the NAH
context that assesses the similarity between the prediction and the ground truth and it is
defined as

NCC(v̂, v) =
|v̂H · v|
‖v̂‖2 · ‖v‖2

, (14)

where the complex velocity fields are considered as column vectors. Notice that NCC is in
[0, 1] and it is equal to one if the two velocity fields match perfectly.

The second metric used to evaluate the accuracy is the normalized mean square error
(NMSE), and it is defined in dB as

NMSE(v̂, v) = 10 log10

(
eH · e
vH · v

)
, (15)

where e = v̂− v is the column vector error between the prediction and the true value. It is
worth noticing that NMSE emphasizes scaling and bias errors between v̂ and v, which are
not captured by NCC.

6.2. Validation

In this section, we evaluate the reconstruction capabilities of KHCNN with different
boundary conditions (BCs). Moreover, we compare the results of the reconstruction when
M = 1024 or M = 64 points are used on the holographic plane. For the ease of the reader,
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we will use the apex to emphasize the number of input points at the hologram pressure,
e.g., P(M=64)

H .
The test set consists of 1557 pressure fields of rectangular plates. In the following, the

resulting NMSE and NCC are shown in octave band frequencies from the analysis of all
the modes in the considered band. In particular, median values, standard deviation, and
quartile distributions of NMSE and NCC in a band are depicted with box plots [46].

It is important to notice that, in the lower frequency bands, mainly free BCs are present,
due to the different distribution of the eigenfrequencies along the frequency axis for the
three BCs. In particular, a larger number of mode shapes occur at high frequencies. This
produces a bias in the computation of the arithmetic mean of the metrics with respect
the entire test set. For this reason, in order to correctly understand the overall network
performance it is more insightful to consider the median value.

Figure 5 shows the metrics with M = 64 points of hologram pressure subdivided for
the three boundary conditions of the test set. By inspecting Figure 5, we can notice that
a more accurate reconstruction is obtained for simply supported and clamped plates. A
possible interpretation of this result can be found in the fact that with free BC, mode shapes
are less predictable than with clamped and simply supported ones.
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Figure 5. NMSE (a) and NCC (b) obtained by KHCNN adopting P(M=64)
H . Results are shown in

octave bands and grouped accordingly to BCs.

Nevertheless, KHCNN is able to recognize from the low spatial resolution input
P(M=64)
H the different BCs applied to the vibrating source; thus, producing accurate V̂ in

N = 1024 points. In particular, the estimates reached a NMSE < −10 dB for the whole test
set and NCC steadily above 0.95.

In Figure 6, we compare NMSE and NCC between the networks with P(M=1024)
H and

P(M=64)
H at the input. Notice that, in this case, the plates in the test set have not been

subdivided with respect to the BCs. From Figure 6 it is possible to observe that for both
metrics the network based on an input of 1024 points offers an advantage with respect to
the 64 points one, as one would expect.

It must be noticed that the KHCNN accuracy presents the same trend for M = 1024
and M = 64 for all frequency bands. In particular, the median NMSE value (Figure 6a) with
the hologram pressure at M = 1024 points is −27.49 dB and −19.65 dB for the case with
M = 64 input points. On the other side, the median value of NCC (Figure 6b) decreases
from 99.92% for M = 1024 points to 99.53% for the M = 64 case. These results highlight
scaling differences between the reconstructions produced in the two cases. Nevertheless,
by looking at the definition of NMSE (15), the decrease due to lower input dimensionality
corresponds to a relative error of the two median values around 16%.



Sensors 2021, 21, 7834 13 of 20

62.5 125.0 250.0 500.0 1000.0 2000.0
Octave Band frequencies [Hz]

-10

-15

-20

-25

-30

-35

-40

N
M

S
E

[d
B

]

M points PH

64

1024

(a)

62.5 125.0 250.0 500.0 1000.0 2000.0
Octave Band frequencies [Hz]

0.95

0.96

0.97

0.98

0.99

1.00

N
C

C
[−

]

M points PH

64

1024

(b)

Figure 6. NMSE (a) and NCC (b) shown in octave bands given by the KHCNN estimates with

P(M=64)
H and P(M=1024)

H at the input.

Figure 7 shows the KHCNN reconstruction of a rectangular plate vibrating at 548 Hz
with free BC. Although the network input P(M=1024)

H is corrupted with additive white
Gaussian noise (SNR = 13.8 dB), the velocity estimate V̂KHCNN reaches a NCC value of
99.85% and NMSE = −24.97 dB.

Moreover, a comparison between the reconstructed hologram pressure P̂(M=1024)
H

computed with the KH model using V̂KHCNN and the input pressure P(M=1024)
H is given in

Figure 7. We can notice that P̂(M=1024)
H presents smoother patterns both for the magnitude

and for the phase rather than the input P(M=1024)
H . Therefore, KHCNN is able to perform

a denoising operation at the hologram pressure. This is a general behavior obtained for
all KHCNN reconstructions of the test set and it is more visible for the estimates that start
with low SNR values of input pressures.

| · |

P
(M=1024)
H P̂

(M=1024)
H V̂KHCNN V

0

0.5

1

∠·

−π

0

π

(a) (b) (c) (d)

Figure 7. KHCNN reconstruction example for a rectangular plate with dimensions [Lx, Ly, Lz] =

[0.33, 0.15, 0.002]m vibrating at 548 Hz. The first and the second row depict the magnitude and phase
of the complex fields, respectively. Column (a) is the input pressure at the hologram in M = 1024
points. The reconstructed pressure from the KH model is shown in column (b). The velocity estimate
and ground truth are depicted in column (c,d), respectively.

6.3. Comparison with the Baseline

To validate the devised methodology with respect to state-of-the-art approaches, we
compared the estimations obtained by KHCNN with a model-based and a fully data-driven
approach adopted in the context of NAH. In particular, we compared the rectangular plate
reconstructions computed with the devised KHCNN and the CESM presented in [20].
Furthermore, the velocity reconstructions on the violin top plates was compared with the
SRCNN-NAH approach presented in [31].

Similarly to [20], here, we solved the optimization problem of CESM with the CVX
solver [47]. The equivalent point sources are distributed on a uniform planar grid of
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25× 25 points located at the height zeq = −5 cm behind the surface of the plate. More-
over, the grid of equivalent point sources is 1 cm larger, with respect to each edge of the
rectangular plate under study.

Figure 8 shows the comparison between KHCNN and CESM for what concerns the
velocity field reconstruction of the rectangular plate test set starting from P(M=64)

H .
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Figure 8. The NMSE (a) and the NCC (b) comparison between the rectangular plate estimates of

KHCNN and CESM from P(M=64)
H .

In general, the devised KHCNN outperformed the CESM approach in the whole
frequency range both for NMSE and for NCC. In particular, the median NCC value for the
KHCNN reconstructions is 99.53%, while for CESM it is equal to 76.58%. Moreover, the
NMSE median value decrease from −19.65 dB for KHCNN to −3.46 dB for CESM.

By inspecting the reconstructions, we noticed that KHCNN is more robust than
CESM to the presence of noise in the input pressure. Moreover, although CESM obtains
good accuracy for the simply and clamped BCs, the overall trend decreases due to the
reconstructions with free BC. This is confirmed by the median NCC values of CESM that
correspond to 89.8%, 79%, and 74.3% for the simply, clamped, and free BCs, respectively.

An example of KHCNN and CESM estimate is shown in Figure 9. Both techniques
reconstructed the surface normal velocity of the rectangular plate with simply supported
BC at 1371 Hz from P(M=64)

H . Nevertheless, the V̂KHCNN is more accurate than the V̂CESM
both for the magnitude and for the phase. This is confirmed also by the metrics. In
particular, the NCC values for CESM and KHCNN are 87.39% and 99.56%, respectively.
This is also confirmed by the fact that NMSE = −6.19 dB for the CESM estimate, while
with KHCNN, we obtain NMSE = −20.47 dB.

| · |

P
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H V̂CESM V̂KHCNN V

0

0.5

1
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−π

0

π

(a) (b) (c) (d)

Figure 9. Reconstruction example of CESM and KHCNN for a simply supported rectangular plate
with dimension [Lx, Ly, Lz] = [0.32, 0.17, 0.002]m vibrating at 1371 Hz. The first and the second row
depict magnitude and phase of the complex fields, respectively. Column (a) is the input pressure at
the hologram in M = 64 points. The CESM and KHCNN velocity estimate are depicted in column
(b) and (c), respectively. Column (d) shows the velocity ground truth coming from simulation.
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Furthermore, in order to validate the proposed KHCNN to objects different from
rectangular plates, we analyzed the velocity reconstructions on violin top plates. Moreover,
we compared the results of KHCNN with the ones obtained with the SRCNN architecture
proposed in [31]. Hence, we trained the two systems with P(M=64)

H and V pairs of violin
top plates generated with COMSOL Multiphysics® software.

Figure 10 shows the performance comparison of NMSE and NCC for 7266 pressure
fields of violin top plates. Notice that, since SRCNN reconstructs only the magnitude of
the velocity field, the metrics are computed, considering the absolute value of the velocity
estimates coming from KHCNN.
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Figure 10. The NMSE (a) and the NCC (b) comparison between the violin top plate estimates of

KHCNN and SRCNN with P(M=64)
H at the input.

In general, NMSE and NCC for both architectures present the same trend, with a more
accurate reconstruction in the lower frequency bands with respect to higher ones. Never-
theless, KHCNN can achieve higher accuracy with a NMSE median value of −17.10 dB
and a median NCC of 99.24%. The reconstructions with SRCNN, instead, reached a NMSE
and NCC median value of −9.31 dB and 95.58%, respectively.

Two examples of the velocity magnitude estimates can be seen in Figure 11. The
devised architecture is able to obtain a more accurate and smoother velocity pattern than
the SRCNN one. As a matter of fact, in the second reconstruction example (at 948 Hz), the
NMSE value of SRCNN and KHCNN are −9.17 dB and −16.07 dB, respectively. Likewise,
NCC = 94.19% for SRCNN and for KHCNN the NCC value is 98.82%.

Mode 5

P
(M=64)
H V̂SRCNN V̂KHCNN V

1

0.5

0

Mode 21

1

0.5

0

(a) (b) (c) (d)

Figure 11. Reconstruction examples of SRCNN and KHCNN for two different violin top plates.
The first and second row show the magnitude vibration of mode 5 and 21 at 264 Hz and 948 Hz,
respectively. Column (a) is the input pressure at the hologram in M = 64 points. The SRCNN
and KHCNN velocity estimates are depicted in column (b,c), respectively. Column (d) shows the
magnitude velocity ground truth coming from simulations.

Moreover, in addition to the more accurate results for the magnitude reconstructions,
KHCNN is able to estimate the phase information of the desired V. In Figure 12 an example
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of the KHCNN reconstruction, i.e., complex velocity and hologram pressure fields, for a
violin top plate vibrating at 1829 Hz is shown.

| · |
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Figure 12. Reconstruction example of KHCNN for a violin top plate vibrating at 1829 Hz. The
magnitude and phase of the complex fields are represented in the first and second row, respectively.
Column (a) is the input pressure at the hologram in M = 64 points. The hologram pressure computed
with the KH propagation is shown in column (b). The velocity estimate and ground truth are depicted
in column (c,d), respectively.

7. Discussion

From the analysis of the results displayed in the previous section, KHCNN shows
accurate reconstructions with different shapes and mechanical properties of vibrating
sources, improving the performance with respect to sparsity-based NAH [20] and recent
DNN [31] solutions.

Interestingly, KHCNN is able to retain accurate estimates when the size of the input
data is reduced to one-sixteenth of the output spatial resolution. Hence, KHCNN effectively
achieves the super-resolution of velocity fields as in [31], while improving the overall
accuracy of the reconstruction. In particular, KHCNN with M = 64 input pressure points
of a rectangular test set produces the complex velocity field in N = 1024 points with a
median NMSE value stable around−25 dB for the first four octave bands, i.e., up to 707 Hz.

With respect to the CESM approach [20], KHCNN shows improved results, in terms of
NMSE and NCC. As a matter of fact, KHCNN is able to produce more accurate estimates
of the complex velocity field, i.e., considering both magnitude and phase. The accuracy
of CESM greatly degrades when free BCs are adopted. KHCNN, instead, is able to limit
the performance reduction obtaining comparable results for all three BCs under analysis.
It is worth noticing that the CESM approach is led by an approximation of the acoustic
propagation model. The velocity field, indeed, is estimated from a sparse set of point-like
sources, which equivalently describe the soundfield at the holographic plane. Conversely,
KHCNN employs a neural network to estimate the velocity field and it takes advantage by
the actual propagation model represented by the Kirchhoff-Helmholtz equation.

Results show that the desired velocity field can be computed on the surface of complex
shapes that present arching, such that violin top plates. Here, KHCNN is compared with
respect to SRCNN [31], a recently developed DNN-based NAH technique. The improved
results attained using KHCNN can be noticed especially in the lower frequency bands,
where the difference between the statistical distribution of the metrics is substantial. In
particular, KHCNN reduces the NMSE values of around 10 dB with respect to SRCNN up
to 353 Hz. In the highest frequency range, the difference between KHCNN and SRCNN is
not significantly reduced.

The main difference between the two architectures lies in the propagation model
introduced in KHCNN. As a matter of fact, SRCNN learns a direct mapping between the
magnitude of the input pressure and the magnitude of the surface velocity. Although
effective, this approach does not take into account for possible deviations in the soundfield
generated by the estimated velocity. Differently from the end-to-end approach of SRCNN,
KHCNN explicitly considers the complex velocity field (real and imaginary parts) and the
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propagation through the Kirchhoff-Helmholtz equation. As a result, the estimated velocity
fields improved considerably, allowing us to obtain a more accurate reconstruction of the
violin mode shapes.

Lastly, we can observe that KHCNN performed consistently on both the datasets
under analysis despite the different shapes, BCs and material properties of the objects. As
a matter of fact, in the case of rectangular plates with 64 points at the input the median
values of NMSE and NCC are −19.65 dB and 99.53%, respectively. Similarly, for the violin
plate dataset, we obtained a median NMSE value of −16.83 dB and a NCC median of
99.2%, both computed with the complex fields. Hence, although the violin plates present
diverse shapes and material properties, the difference on the median values is limited to
2.82 dB and 0.33% for the NMSE and NCC, respectively. The proposed CNN approach
aims, therefore, to provide a promising tool for a wide variety of NAH applications.

8. Conclusions

In this manuscript, we introduced a novel technique for NAH. The devised architec-
ture, called KHCNN, combines the advantages of the learning feature of CNN with the
physical information given by the Kirchhoff-Helmholtz forward propagation model. In
particular, the CNN is trained in order to provide an estimate of the velocity field of the
source starting from the acquired acoustic pressure. Through the propagation of the esti-
mated velocity using the Kirchhoff-Helmholtz equation, the prediction was then refined,
comparing the respective acoustic pressure with the input data.

The proposed KHCNN was validated with two different datasets: isotropic rectan-
gular plates and orthotropic violin top plates. The velocity ground truth on the vibrating
structures and the complex pressure field at the holographic plane were generated for
each structure using the finite element method with COMSOL Multiphysics® software.
We varied the dimensions and the boundary conditions for each vibrating plate to ease a
generalization of the method. Moreover, the synthesized pressures were corrupted with
different SNRs of additive white noise in order to simulate sensor noise.

Results show that KHCNN is able to estimate the desired complex velocity field
on vibrating objects, starting from the low spatial resolution of radiated soundfield. We
obtained accurate reconstructions for both the magnitude and the phase information of
the vibrational field. In particular, KHCNN reached a median NMSE value under −16 dB
and a median value of NCC above 99% for both the rectangular plate dataset and the
violin plate one. Moreover, the explicit definition of the forward propagation model into
KHCNN enables further verification of the network estimates by comparing the pressure
reconstruction at the hologram.

Furthermore, we assessed the network accuracy with respect to recent NAH ap-
proaches available in the literature. We compared the rectangular plate estimates of
KHCNN with CESM and the magnitude of violin top plate reconstructions with the fully
data-driven approach of SRCNN. In both cases, the KHCNN results outperformed the
considered approaches in terms of normalized mean square error and normalized cross
correlation for the whole frequency range considered.

Future works will be devoted to the application of KHCNN to experimental measure-
ments following two main directions. On one side, we aim at training the architecture
using simulations while testing the system on the field on real data acquired also in the
presence of reverberation. This will allow us to avoid expensive and time consuming
measurement campaigns exploiting the flexibility of simulations for building extensive
datasets with variable characteristics offline. On the other side, we expect to extend the
KHCNN approach to work with a wide variety of objects without explicitly retraining the
network. For both points, we foresee the application of domain adaptation and transfer
learning strategies in order to tune the network with different data.
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