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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) has resulted in a global pandemic. Most COVID-19 patients are asymp-
tomatic or have flu-like symptoms. However, around 15% of the patients may have severe disease, including 
unilateral or bilateral pneumonia with acute respiratory distress syndrome and progressive hypoxemia that may 
require mechanical ventilation assistance. A systemic inflammatory response syndrome occurs in the most severe 
forms of COVID-19, with multiorgan involvement which can be life threatening caused by a cytokine storm. 
Although what best characterizes COVID-19 are the manifestations of the respiratory system, it has been shown 
that it also acts at the cardiovascular level, producing coagulation abnormalities, which causes thrombotic events 
mainly in the arteries/arterioles, microcirculation and venous system, and potentially increased mortality risk. 
This multiorgan vascular disease overlaps with other known microangiopathies, such as thrombotic micro-
angiopathy or paroxysmal nocturnal hemoglobinuria, where complement overactivation plays an important role 
in the pathophysiology of thrombosis. Furthermore, coagulopathy secondary to COVID-19 occurs in the context 
of an uncontrolled inflammatory response, reminiscent of APS, especially in its catastrophic form. This review 
summarizes the current knowledge regarding the relationship between COVID-19 and the APS.   

1. Introduction 

Coronavirus disease 2019 (COVID-19), an infectious disease caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has 
resulted in a global pandemic. Most COVID-19 patients are asymptom-
atic or have flu-like symptoms [1]. However, around 15% of the patients 
may have severe disease, including unilateral or bilateral pneumonia 
with acute respiratory distress syndrome (ARDS) and progressive hyp-
oxemia that may require mechanical ventilation assistance. A systemic 
inflammatory response syndrome (SIRS) occurs in the most severe forms 
of COVID-19, with multiorgan involvement which can be life threat-
ening caused by a cytokine storm. Analytically, lymphopenia and 
marked elevation of C-reactive protein, ferritin, D-dimers, cytokines and 
chemokines stand out [2,3]. 

SIRS secondary to COVID-19 occurs in a pattern similar to, but still 
distinct from, the autoinflammatory macrophage activation syndrome 
that complicates several autoimmune diseases, such as systemic juvenile 
idiopathic arthritis and systemic lupus erythematosus (SLE) [4–6]. 

In some reports, >50% of hospitalized patients with moderate to 
severe COVID-19 have circulating autoantibodies, which opens the 

question whether SARS-CoV2 can produce a loss of host tolerance, 
triggering an autoimmune disease [7]. The deregulation of the immune 
response has been shown to be a key element in the unefficient responses 
against viruses. It is well known that cytomegalovirus, parvovirus B19, 
and Epstein-Barr virus (EBV) are environmental triggers of autoimmu-
nity in genetically predisposed individuals [8]. These viruses can trigger 
autoimmunity through various mechanisms, such as the tendency to 
cause persistent infection, modulate the host’s immune response by 
causing loss of self-tolerance producing autoreactive lymphocytes, or 
generating abnormal responses by molecular mimicry, superantigen 
activity and the stimulation of inflammatory signaling, including type I 
IFN production [9–11]. The type of organized immune response against 
SARS-CoV2 infection is decisive in the prognosis of the disease and, in 
fact, high Th2 responses are associated with a fatal outcome [12,13]. 
Conversely, immunomodulatory drugs, especially glucocorticoids [14], 
inhibitors of cytokines (or their receptors) [15], and blockers of 
cytokine-mediated signaling as Janus kinase (JAK) inhibitors [16,17] 
seem to improve survival in severe cases of COVID-19. Some clinical 
features of moderate to severe COVID-19 are reminiscent of those seen 
in autoimmune diseases such as inflammatory arthritis, SLE, 
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antiphospholipid syndrome (APS), and anti-MDA5 syndrome [18–20]. 
In addition, there are numerous case reports of patients developing 
classifiable autoimmune diseases, such as rheumatoid arthritis, psoriatic 
arthritis, and type 1 diabetes, concomitantly with or immediately after 
SARS-CoV-2 infection [21–26]. Furthermore, severe cases of COVID-19 
can be explained by the existence of preformed autoantibodies [7]. 
However, work remains to be done to determine whether these anti-
bodies are important contributors to severe disease or an epiphenom-
enon of marked inflammation. 

2. COVID coagulopathy and imunothrombosis 

What best characterizes COVID-19 are the manifestations of the 
respiratory system, although it has been shown that it also acts at the 
cardiovascular level, producing coagulation abnormalities, which cau-
ses thrombotic events mainly in the arteries/arterioles, microcirculation 
and venous system [27,28] and potentially increased mortality risk as a 
consequence [1]. These findings have also been confirmed at necropsies 
[29,30]. These events appear more frequently in an acute infection, but 
they can also occur during the convalescence [29]. 

The reported thromboembolic (TE) event rate in COVID-19 patients 
with severe disease is quite heterogeneous. The state of hypercoagula-
bility and thromboembolic complications correlates with a more severe 
course of the disease, the need for admission to intensive care units 
(ICU), and higher risk of mortality [31]. These can be present in 
approximately 50% of ICU patients whose stay is two weeks or longer 
and were independent of whether the patients had received standard- 
dose thromboprophylaxis [32]. 

Laboratory findings confirm the existence of prothrombotic state. D- 
dimer, fibrin, C-reactive protein levels, lactate dehydrogenase (LDH), 
and moderate thrombocytopenia are usually elevated in patients 
affected by COVID-19 coagulopathy. Therefore, the infection constitutes 
an additional contributing factor that predisposes to a prothrombotic 
state [33]. 

Pulmonary microangiopathy with evidence of activated platelets, 
thrombi, and neutrophil extracellular traps (NETs) within vessels has 
been detected. In addition, infiltration of neutrophils, monocytes, and 
macrophages have been described in additional organs beyond the 
lungs, including the heart, central nervous system, and liver [27,34]. In 
addition to cell activation and local infiltration, there are other several 
mechanisms that could contribute to develop coagulopathy in SARS- 
CoV2 infection. Endothelial activation that stimulates Toll-like re-
ceptors, thus producing systemic inflammation, and prothrombotic state 
increasing levels of von Willebrand factor, and activating the tissue 
factor pathway [35]. In addition, there are indirect mechanisms such as 
decreased diffusion of gases producing ARDS and tissue hypoxia [36]. 
Low oxygen levels at tissues activates cellular transcriptional changes 
elaborating hypoxia-inducible transcription factors (HIF-1 and HIF-2) 
which, in turn, increases thrombin levels [37]. The infection generates 
a large number of apoptotic cells [38] creating a proinflammatory 
environment that can cause ARDS and thrombosis [39]. Therefore, the 
strong immune response secondary to COVID-19 infection induces 
expression of procoagulant factors that implies activation of comple-
ment, platelets and neutrophils, triggering coagulopathy and thrombi 
formation (immunothrombosis) through the pathway [40]. 

NETs are three-dimensional extracellular networks of decondensed 
chromatin, histones and antimicrobial proteins. Their function is to trap 
and kill microorganisms, preventing their expansion at the site of 
infection [41]. NETs have cytotoxic activity causing NETosis, and 
endothelial dysfunction [42]. In this way, NETs are amplifiers of 
inflammation, increasing self-antigen exposure and autoantibody pro-
duction. Thus promoting the generation of aberrant immune response 
like autoimmune procceses [43], and long-term COVID-19 [44]. It has 
been demonstrated that NETs can contribute to formation of thrombi in 
COVID-19 patients with respiratory distress [45]. 

Moreover, the complement system usually plays an important role in 

the context of inflammation, thrombosis and activation of the innate 
response. Complement deposits have been reported in the lung and skin 
tissue that suggests systemic activation of three known complement 
activation pathways, classical, alternative and lectin-based complement 
pathways in severe disease [46–48]. This multiorgan vascular disease 
overlaps with other known microangiopathies, such as thrombotic 
microangiopathy (TMA) or paroxysmal nocturnal hemoglobinuria 
(PNH), where complement overactivation plays an important role in the 
pathophysiology of thrombosis [49,50]. Furthermore, coagulopathy 
secondary to COVID-19 occurs in the context of an uncontrolled in-
flammatory response, reminiscent of APS, especially in its catastrophic 
form [51,52]. 

3. APS and thrombosis [51] 

APS is a systemic autoimmune disease characterized by the appear-
ance of thrombosis and obstetric morbidity (clinical criteria) in a patient 
with persistently high levels of antiphospholipid antibodies (aPL). 

The APS classification criteria require the coexistence of at least one 
clinical (thrombosis or obstetric morbidity) and one laboratory criterion 
(positivity of at least one aPL) [30]. The aPL included in these criteria 
are lupus anticoagulant (LA), anticardiolipin (aCL), and anti-β-2-glyco-
protein I (aβ2GPI) antibodies of the IgG or IgM isotypes. Currently there 
are no defined diagnostic criteria for APS, however, the classification 
criteria are often used in some situations for diagnosis despite their low 
sensitivity. In addition, a second determination of aPL at least 12 weeks 
apart for confirmation to avoid false positives is required [53]. 

APS can be divided into 3 forms: primary APS, associated with 
another autoimmune disease (such as SLE), and catastrophic APS 
(CAPS), characterized by the generation of thrombosis in different lo-
cations in a short period of time, developing a systemic coagulopathy 
with a high mortality rate, a situation very similar to coagulopathy due 
to COVID-19 [54]. 

3.1. APS beyond classification criteria 

APS diagnosis goes beyond classification criteria. In addition to the 
clinical characteristics included in the classification criteria, there are 
other characteristics associated to APS, even more frecuent than clinical 
classification criteria, such as livedo reticularis or thrombocytopenia 
[55]. There are also aPL not included in the classification criteria. The 
most known are a) anti-phosphatidylserine/prothrombin antibodies 
(aPS/PT), associated to with unexplained recurrent pregnancy loss [56], 
and thrombosis possibly due to its possible correlation with the presence 
of LA [57]; b) aPL directed to domain I of β2GPI (IgG) have high spec-
ificity (97.12%) for thrombosis, but their sensitivity is still moderate 
(64.32%) [58,59]; and c) IgA isotype aPL have also been associated with 
thrombotic events. Current evidence does not recommend their testing 
because it does not increase the diagnostic accuracy of the APS [60]. 
This is because IgA aCL positivity is poorly correlated to clinical mani-
festations. However, IgA aβ2GPI presence has been associated to 
thrombotic events [61] and stroke [62]. They are the most prevalent aPL 
(30%) in patients with end-stage organ failure (kidney or heart) where 
β2GPI is produced. Thrombotic events can appear even after the 
replacement of these organs by either cardiac or renal transplantation 
[63,64]. 

The origin of aPL remains unknown. Molecular mimicry theory 
suggests the influence of microbial and viral agents that goes in favour of 
an infectious etiology [65]. Similarities of β2GPI with some molecular 
structures of several microorganisms have been described [66]. This 
phenomenon could occur in predisposed individuals when self-tolerance 
mechanisms fail and produce an abnormal response because their im-
mune system responds to their own molecular structures due to their 
similarity to microbial peptides [67]. Therefore, the steady state would 
not be restored after the resolution of the infection and the presence of 
autoantibodies remains. 
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The mechanism of thrombosis-induction by aPL is also not fully 
understood. Meroni et al. [68] proposed the “two hits” theory: the 
presence of aPL (first hit) induces a thrombophilic state, but clotting 
takes place only in the presence of another thrombophilic condition 
(second hit) that implies an activation of innate immunity, such as 
inflammation, infection, or surgery, is required to trigger the thrombotic 
event. 

4. Prevalence of aPL in COVID-19 patients 

Zhang et al. [69] were the first to report the presence of aPL asso-
ciated to thrombotic events in three patients with COVID-19. Interest-
ingly, IgA aPL was the most prevalent isotype. 

After this finding, numerous studies were published reporting high 
prevalence of aPL in COVID-19 patients, and positivity for any aPL 
ranged between 5 and 71% (Table 1). This prevalence can be highly 
variable, depending on the type of patient cohort (severe vs non-severe 
patients) [70] and the aPL studied (consensus vs. extra criteria). 

Regarding criteria aPL, the most prevalent was LA, present approx-
imately in 50% of patients [71–73], specially among ICU patients 
reaching 90% [74–76]. Elevation of aPTT can be present in 91% of these 
patients [77]. When LA is not analyzed, aCL [78–80], or aβ2GPI [51] are 
the most prevalent aPL. Positivity of IgG and IgM aCL and aβ2GPI is 
around 15%. Double positivity can be present in 25–50% of these pa-
tients [81], most frequently associated to LA positivity [82]. 

Despite not being as well studied as consensus aPL, 54% of studies 

Table 1 
Set of studies on aPL presence in COVID-19 patients.  

Author and reference Setting Study 
design 

Control 
group 

Center Patients 
included 

aPL 
with LA 

Extra 
criteria aPL 

aPL confirmation 
>12w 

aPL 
prevalence 

Clinical 
Association 

Borghi et al. 51 
NO 
ICU P N M 122 N Y N N/A N 

Zhang Y et al. 69 ICU R N U 3 Y Y N N/A Y 
Gazzaruso et al. 71 N/A R N U 192 Only LA N N 50% N 
Constans et al. 72 Both P N U 211 Only LA N N 60% Y 
Najim et al. 73 ICU P N U 60 Y N N 37% N 
Helms et al. 74 ICU P N M 150 Only LA N N N/A Y 
Pineton et al. 75 ICU R N U 25 Y N N 72% N 
Siguret et al. 76 ICU P N U 74 Y N N 88% N 

Bowles et al. 77 
NO 
ICU P N U 35 Only LA N N 91% N 

Trahtemberg et al. 78 ICU R Y U 22 N Y N N/A N 

Galeano-Valle et al. 79 
NO 
ICU P N U 24 N N N N/A N 

Pascolini et al. 80 Both P N U 33 N N N 25% Y 
Amezcua-Guerra et al. 81 ICU R N U 21 N Y N 57% N 
Vollmer et al. 82 Both P N U 79 Y Y y N/A Y 
Espinosa et al. 83 Both P N U 158 Y Y Y 37% N 
Gil-Etayo et al. 84 Both P Y U 362 N Y Y 17% Y 

Gasparini et al. 85 
NO 
ICU R N U 173 N Y N 35% N 

Le joncour et al. 86 
NO 
ICU P N U 104 Y Y N 47% Y 

Frapard et al. 87 ICU R Y U 68 Y Y N 30% N 
Xiao et al. 88 Both R N U 66 Y Y N 47% Y 

Cristiano et al. 90 
NO 
ICU R Y U 92 N Y N N/A N 

Lerma et al. 91 Both R Y U 64 N Y N 5% N 
Gatto et al. 93 NA R Y M 122 Y Y N N/A N 
Gendron et al. 94 Both P Y M 154 Y Y N N/A N 
Bertin et al. 96 Both R N U 56 N N N N/A Y 

Gazzaruso et al. 97 
NO 
ICU R N U 45 Y N N N/A Y 

Anaya et al. 98 
NO 
ICU R N U 120 N N N N/A Y 

Zuo et al. 99 Both R N U 172 N Y N 52% Y 
Fan et al. 100 ICU R N U 86 Y Y N N/A Y 

Reyes et al. 101 
NO 
ICU R N U 68 Only LA N N N/A Y 

Vlachoyiannopoulos 
et al. 102 ICU R N U 29 Y N N N/A N 

Rosales-Castillo et al. 103 
NO 
ICU P N U 189 Y N Y N/A N 

Devreese et al. 104 ICU P N U 31 Y Y N 74% N 

Atalar et al. 105 
NO 
ICU R N U 73 Y N N 20% N 

Gutierrez et al. 106 Both P N U 27 Y Y N 26% N 

Previtali et al. 107 
NO 
ICU R N U 35 N Y N N/A N 

Ferrari et al. 108 Both P N U 89 Y N N 72% N 

Sciascia et al. 109 
NO 
ICU P Y U 87 Y Y Y 53% N 

Tvito et al. 110 Both R N U 43 Y N N 37% N 
Karahan et al. 112 ICU R Y U 31 Y Y N 26% N 
Serrano et al. 122 Both P Y M 474 Y Y N 24% Y 

Abbreviations: aPL: antiphopholipid antibodies, ICU: intensive care unit, LA: lupus anticoagulant; M: multicenter, N: no, N/A: not available, P: prospective, R: 
retrospective, U: unicenter, Y: Yes. 
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included in this review have determined extra-criteria aPL. Interest-
ingly, extra-criteria aPL have been as frequently detected as consensus 
aPL [83], and even more prevalent in many studies [81,84–88]. How-
ever, there is great variability in the prevalence of these aPL. Prevalence 
of different extra-criteria aPL has been shown up to 24% for aPS/PT, 
[81] 19% for anti annexin A5 IgM patients [81], 33% IgA aCL [86] and 
28.8% for IgA aβ2GPI [88], and their presence has been associated with 
more severity [89]. On the other hand, other studies reported low 
prevalence (<5%) of extra-criteria aPL [51,90,91]. 

Overall, the high aPL prevalence was confirmed in five multicenter 
studies [51,74,92–94]. Three of them included control populations 
(without COVID-19) to make a prevalence comparison. 

Gatto et al. [93] made an aPL screening in a cohort of 122 patients, 
including hospitalized and home-quarantined. Despite finding high 
prevalence rates of 22% and 13.4% for LA and IgG aCL respectively, they 
found no significant differences when compared with cohorts of patients 
with primary APS or with other systemic autoimmune diseases. 

Another study with the largest studied cohort included 474 patients, 
35 of them suffered thrombotic events during follow-up. The prevalence 
for any aPL was 23.6% and the most prevalent aPL were IgA aβ2GPI with 
15% positivity. Interestingly, no significant differences in aPL preva-
lence when compared with a reference population of similar age [92]. 

Gendron et al. [94] found a high prevalence for LA (70%); however, 
the prevalence of the rest of aPL is around 5%, except for IgG aPS/PT 
antibodies with 11% positivity, without significant differences in prev-
alence compared to patients without COVID-19. 

The differences in prevalence of aPL observed in the numerous 
published studies vary depending on whether they analyze the aPL 
included in the classification criteria, or those not included. Diagnostic 
kits for criteria aPL are very well standardized, there are hardly any 
differences between the number of positives comparing the systems 
based on beads, with respect to those of solid phase. However, different 
detection systems for aPL not included in consensus, are very hetero-
geneous. Depending on the kit used, the number of positives is highly 
variable, especially in IgA aβ2GPI antibodies [51,95]. Studies which 
show low prevalence (<5%) for these aPL used this beads-based 
methods [51,94]. On the other hand, those studies which determined 
IgA aβ2GPI by solid phase-based assays, show higher prevalence levels 
[83,84,86,92]. 

5. Clinical association of aPL in COVID-19 

There is not consensus about the pathogenicity of aPL during the 
SARS-CoV2 infection. The aPL have been observed only in critically ill 
patients [88], however there are many studies that report similar 
prevalences in patients with noncritical conditions [84–86,96]. Some 
studies have described a higher prevalence of aPL in patients with higher 
disease severity, ICU requirement, high mortality, ARDS, and renal or 
ventilation failure [80,83,87,88,92,96–98]. Combined aPL positivity is 
associated with a higher incidence of ischemic stroke in a cohort in 
which the most prevalent aPL are IgA isotype. Furthermore, the patho-
genicity of IgG aPL has been demonstrated in an animal model [99]. 

Fewer studies found an association between aPL and thrombotic 
events and stroke [82,84,86,88,100,101]. A prospective study with 361 
patients showed asscociation between aPL and incidence of thrombosis 
in the first six months after COVID-19 (OR: 3.7, 95% CI (1.7–8.1) [84]. 
Other multicenter study showed association of IgG aβ2GPI to thrombotic 
events; however, statistical significance was not found in multivariant 
analysis [92]. 

On the other hand, most studies, despite having shown the high 
prevalence of aPL, did not find clinical association with severe COVID- 
19, thrombosis, or other manifestations related to APS 
[51,71,76–79,81,83,85,87,90,91,93,94,102–110]. 

Some authors suggest that the aPL found in COVID-19 are different 
from those presented by patients with APS, so these would be an 
epiphenomenon without pathogenicity [51]. The aPL profile was 

different when comparing patients with known APS and patients with 
aPL detected in the context of infections [109]. Domain I of β2GPI is the 
main immunogenic epitope targeted by aβ2GPI antibodies in APS pa-
tients because it is strongly associated with thrombosis [111]. It has 
been described that only 5% recognize the β2GPI domain I in COVID-19 
patients with aPL positivity [51]. A multicenter study that analyzed aPL 
in COVID-19 patients showed that the prevalence and titers of aPL or LA 
were not consistently increased nor associated with thrombosis when 
measured at a single timepoint [93]. The aPL profile in COVID-19 pa-
tients differed from that of APS patients but was similar to those 
suffering from other infections [109]. In their first measurement, they 
found that, although 52.9% of COVID-19 patients were positive for at 
least one aPL (29% LA positive, 10.3% positive for 2 or more aPL), no 
thrombotic events were observed in these patients. 

The absence of association with the clinical manifestations of APS 
despite the high prevalence of aPL in patients with COVID-19 could be 
explained by the methodology of the different studies. Most of the 
studies did not include control cohorts, so there was no population to 
compare to be able to affirm the presence of high prevalence of aPL in 
COVID-19. The studies which include control group (other infections, or 
autoimmune diseases) did not show significant differences in aPL 
prevalence [84,87,93,94,109], except IgG and IgM aCL (59% vs 35% 
and 32% vs. 10% respectively) [78], LA [112] and IgA aβ2GPI [92]. It is 
known that elderly patients have higher prevalence of aPL [113] and 
other autoantibodies such as antinuclear antibodies [114]. However, 
studies typically use blood donor controls, this population only com-
prises ages 18–65 years [92]. 

The aPL cut-off is very important to estimate a prevalence figure as 
well as a clinical association. Most of the studies carried out have used 
the cut-off recommended by the manufacturer. However, given the great 
heterogeneity of geographical areas, as indicated by the classification 
criteria [53], the most appropriate way to set the aPL cut-off is to 
perform the 99th percentile on the population studied. 

Another critical factor that influences the statistical association is the 
number of patients included in the studies. Most studies included fewer 
than 50 patients; therefore, for this review studies with fewer than 25 
patients were excluded. This problem makes it very difficult to establish 
a statistical association between aPL and APS clinical events. Strikingly, 
the study with the largest cohorts did show an association between the 
presence of aPL and thrombosis [84,92]. 

The aCL have been reported in the context of infectious diseases as 
false positives [115,116]. In addition, aPL in COVID-19 very rarely 
recognize domain I of β2GPI [51]. The clinical association of IgM aPL 
with thrombosis is quite controversial [117]. However, aPL of IgG and 
IgA isotypes could already be performed before infection because it in-
volves a class switch from IgM to IgG or IgA. This process requires a 
latency time that can last up to 2 weeks, so it is unlikely that these an-
tibodies are generated during acute infection [118]. 

Methodology used to determine aPL is also very important. As occurs 
in prevalence, there is controversy about clinical clinical implications of 
IgA aβ2GPI antibodies. Because of the lack of standardization of the 
different assays, depending on the system chosen to detect these anti-
bodies, results can be very heterogeneus [119]. To have reliability is 
mandatory to use accredited based on solid phase assays (ELISA). Thus, 
semi-solid phase systems have lower sensitivity (based on antigens- 
coated beads) [51,95]. This variability does not occur in the case of 
aPS/PT, because practically all the published studies used the same 
ELISA kit [51,74,78,83,84,87,88,91,93,99,104,107,109]. 

Plasma levels of β2GPI (main antigen of aPL) could indirectly play an 
important role beyond aPL. Although no relationship was found be-
tween the presence of aPL and clinical events, low serum β2GPI levels 
has been associated with a higher risk of ventilatory failure [56]. They 
have also been associated with greater predisposition for sepsis and 
mortality in ICU patients [120] and recover during convalescence [99]. 
Low levels of β2GPI are associated with recurrent thrombosis in patients 
with partial β2GPI deficiency (missense mutation), although the 
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mechanisms involved are unknown [121]. This suggests that both a 
decreased production or a high consumption of the protein could occur 
in situations of organic stress. Therefore, patients in the early stages of 
COVID-19 would react in a way similar to an acquired partial deficiency 
of β2GPI triggered by the infection. During recovery, this deficiency 
corrects itself, the patients recovering their β2GPI levels in blood. This 
hypothesis has been supported by the results of some studies [122]. 

6. aPL persistence 

To meet APS classification criteria, aPL positivity must be confirmed 
in 2 determinations 12 weaks apart because they can appear temporarily 
and nonspecifically during acute infectious episodes [123]. However, 
most of the studies reviewed only made one determination, and those 
that did make a second, made it <12 weeks apart. Only 2 studies sys-
tematically confirmation to all aPL positive patients according to the 
classification criteria [82,83]. 

The aPL can become negative in the second determination. This 
phenomenon is more common for LA [82,83,88,104,109], but it has 
been observed also for the rest of aPL [109]. On the contrary, one study 
reported that LA can remain positive [103]. Levels of aCL and aβ2GPI 
antibodies do not present significant variations in a second measure-
ment [82,104] a strong agreement between both determinations for 
criteria aPL (Weighted kappa: 0.85) and for IgA aβ2GPI antibodies 
(Weighted kappa: 0.91). However, concordance in measurements of 
anti-PS/PT antibodies was weak (Weighted kappa 0.43–0.52) [84]. The 
low agreement between aPS/PT samples could be due to already 
described correlation LA and aPS/PT antibodies [57]. In antibodies 
against SARS-CoV2, the opposite phenomenon occurs, where logically a 
large increase is observed in a second determination. This suggests that 
the presence of aPL is independent of infection in most patients with aPL 
[84]. However, Espinosa et al. [83] described that only 25% of retested 
patients presented with the same aPL profile in both samples. 

7. Final remarks 

COVID-19 leaves us with several lessons about aPL:  

1. To carry out a prevalence study, control groups with demographic 
characteristics similar to the study population must be included, 
since otherwise it cannot be ensured that there is a high prevalence of 
aPL, without being able to compare with the free population of 
illness. 

2. An adequate cut off must be used, avoiding using the one recom-
mended by the manufacturer, and 99th percentile must be calculated 
according to the population to be studied.  

3. Extra-criteria aPL can be associated with clinical events, and have 
been shown to be as prevalent or more so than consensus ones, so it is 
important to carry out a complete aPL screening, including both 
criteria and extra-criteria antibodies. 

4. To determine IgA aβ2GPI antibodies, it is important to use stan-
dardized methods based on solid phase, avoiding those based on 
beads.  

5. The heterogeneity of the results on the clinical association of aPL 
could be due to the fact that most of the studies are single-center and 
have been carried out in very small cohorts of patients, and in many 
cases with a low incidence of thrombotic events, which could lead to 
statistical hypothesis testing errors, both type I error (rejection of a 
true null hypothesis) and type II error (the mistaken acceptance of a 
false null hypothesis).  

6. A second determination of aPL must be performed with a minimum 
separation of 12 weeks, since it has been seen that LA can become 
negative, although the rest of aPL do not usually become negative 
but can change the positivity profile of the antibodies.  

7. Despite the lack of consensus on the role of aPL in COVID-19, studies 
with a larger number of patients have shown a clinical association.  

8. Low serum levels of the protein β2GPI, the main target of aPL, could 
be associated to morbidity in the context of acute infection. 

It is commonly accepted that aPL in the context of COVID-19 could 
be an epiphenomenon secondary to the infection. The aPL carriers could 
have 2 different behaviors. On the one hand, during the first days of 
infection, there is an aPL-independent mechanism secondary to SARS- 
CoV2 infection. And in the other hand, aPL carriers would have an 
additional later risk of thrombosis. The presence of aPL (first hit) is not 
sufficient to provoke a thrombotic event, it is necessary an intense in-
flammatory activity (second hit), like COVID-19, that triggers a throm-
botic event [69, 127]. Thus, aPL would have an additive effect on the 
risk of thrombosis generated by the infection itself. 

However, it has been demonstrated the pathogenesis in animal 
models [124] of aPL that recognize epitopes located in domains 3 and 4 
of β2GPI [66,125]. Interestingly, these epitopes of domains 3 and 4 are 
found in hidden areas in the closed (circular) form of β2GPI (most 
common conformation in circulation), only exposed after the activation 
of the molecule and its transformation in open conformation [126]. 

In conclusion, this pandemic may be a unique opportunity to un-
derstand the relationship between infections and APS; however, in order 
to make a solid evaluation, multicenter studies with large cohorts of 
patients must be carried out, to avoid results as heterogeneous as those 
obtained to date, which may give a false idea that aPLs are of no 
importance in the context of COVID-19. 
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