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Metabolome-based prediction of yield heterosis
contributes to the breeding of elite rice
Zhiwu Dan , Yunping Chen, Weibo Zhao, Qiong Wang, Wenchao Huang

Improvement of the breeding efficiencies of heterotic crops
adaptive to different conditions can mitigate the food shortage
crisis due to overpopulation and climate change. To date, di-
verse molecular markers have been used to guide field phe-
notypic selection, whereas accurate predictions of complex
heterotic traits are rarely reported. Here, we present a practical
metabolome-based strategy for predicting yield heterosis in
rice. The dissection of population structure based on untar-
geted metabolite profiles as the initial critical step in multi-
variate modeling performed better than the screening of
predictive variables. Then the assessment of each predictive
variable’s contribution to predictive models according to all
latent factors was more precise than the conventional first one.
Metabolites belonging to specific pathways were closely as-
sociated with yield heterosis, and the up-regulation of galac-
tose metabolism promoted robust yield heterosis in hybrids
under different growth conditions. Our study demonstrates that
metabolome-based predictive models with correctly dissected
population structure and screened predictive variables can
facilitate accurate predictions of yield heterosis and have great
potential for establishing molecular marker–based precision
breeding programs.
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Introduction

Hybrid rice has a higher yield than conventional rice and has
contributed greatly to boosting global food production over the
past four decades (Cheng et al, 2007). However, to feed 9.1 billion
people by 2050 (FAO, 2009), the rate at which the annual yield of
staple crops increases must be more than double (Hickey et al,
2017). Worse yet, severe global yield losses of rice, maize, and
soybean are plausible under dramatic climate change (Zhao et al,
2016, 2017). Therefore, the breeding of new heterotic varieties
adaptive to different growth conditions is a promising option for
ensuring global food security.

Elite hybrid rice, such as the wild abortive and Honglian series
(Luo et al, 2013; Huang et al, 2015), are perfect combinations of
sterile and restorer lines for generating yield heterosis through
successful breeding (Chen et al, 2014). The yield potential of a new
combination is unknown before field hybridization and pheno-
typing, which are labor-intensive and time-consuming tasks. To
improve breeding efficiency, biomarkers, including DNA, RNA,
proteins, and metabolites, that can reflect parental genetic dif-
ferences have been adopted for crop improvement. The results of
marker-based performance prediction in maize, rice, wheat, sor-
ghum, and potato demonstrate that various factors, including
genetic relatedness (Zhao et al, 2015; Yu et al, 2016), environmental
differences (Li et al, 2018; Sprenger et al, 2018), predictive variable
number (Technow et al, 2014; de Abreu et al, 2017; Sprenger et al,
2018), feature selection method (Xu et al, 2014; de Abreu et al, 2017),
and population structure and size (Riedelsheimer et al, 2012a; Xu
et al, 2014; Zhao et al, 2015), can affect the power of predictivemodels.
In addition, the absence of high-quality reference genomes and the
genome complexity of polyploids also hinder the establishment of
highly efficient molecular breeding programs (Rasheed et al, 2017).

The metabolome is a bridge between the genome and phenome,
andmetabolite levels have close and comprehensive connections
with polygenic complex traits (Schauer et al, 2006; Riedelsheimer
et al, 2012a, 2012b). Metabolic prediction of agronomic traits has
been preliminarily explored in maize and rice (Dan et al, 2016; Xu
et al, 2016; de Abreu et al, 2017), and metabolic analytes detected in
young rice seedlings can predict grain weight in hybrids from
different populations (Dan et al, 2019). However, the accurate
prediction of yield heterosis remains a challenge because the
mechanisms of yield heterosis are highly complex and the corre-
sponding component traits (grain weight, grain number per panicle,
tiller number, and seed setting rate) are polygenic. Moreover, the
performance of complex quantitative traits such as yield and
disease resistance is determined by the genotype, environment,
and their interaction (Thomas, 2010; Scheres et al, 2017; Li et al,
2018). Here, we provide a practical metabolome-based strategy for
predicting yield heterosis in rice that has wide applicability and can
contribute to the breeding of climate-resilient hybrid crops,

State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Yangtze River Valley Hybrid Rice Collaboration & Innovation
Center, College of Life Sciences, Wuhan University, Wuhan, China

Correspondence: wenchaoh@whu.edu.cn

© 2019 Dan et al. https://doi.org/10.26508/lsa.201900551 vol 3 | no 1 | e201900551 1 of 10

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.201900551&domain=pdf
https://orcid.org/0000-0002-3930-9158
https://orcid.org/0000-0002-3930-9158
https://orcid.org/0000-0003-1572-4071
https://orcid.org/0000-0003-1572-4071
https://doi.org/10.26508/lsa.201900551
mailto:wenchaoh@whu.edu.cn
https://doi.org/10.26508/lsa.201900551


especially those of orphan varieties without reference genomes or
polyploidy.

Results

Determination of predictive variables for yield heterosis

To build predictive models for rice hybrids under different growth
conditions, we measured the grain yield of two F1 hybrid populations
(Pop2012 and Pop2015) and calculated better-parent heterosis for
yield per plant (BPH-YPP) for subsequent analysis (Table S1). The
YPPs of parents from the two populations were significantly different
(Fig 1A and Table S2), and hybrid YPP and BPH-YPP also differed
significantly between populations (Fig 1B and Table S2). Then, we
performed untargeted liquid chromatography–mass spectrometry
(LC-MS) analysis of 15-d-old seedlings of the parents of both pop-
ulations, and a total of 3,746 metabolic analytes were detected in the
parents (Table S3). A dendrogram of parents from Pop2012 based on
parentalmetabolite profiles showed a clustering trend similar to that
based on indica–japonica–specific insertion and deletion DNA
markers (Figs 1C and S1) (Dan et al, 2016). Moreover, principal
component analysis (PCA) (Jolliffe, 1986) of the metabolome of the
parents from both populations revealed little overlaps between
populations (Fig 1D).

To determine predictive variables for yield heterosis, we then
performed metabolite profiling of seedlings of three pairs of re-
ciprocal F1 hybrids and investigated the relationship between
hybrid metabolite profiles and corresponding transformed pa-
rental metabolite levels (Table S3). The means of, differences in,
and ratios of parental metabolite levels were calculated for each
hybrid, and the ratios of parental metabolite levels were highly
distinct from the hybrid metabolite profiles according to PCA score
plots (Fig 1E and Table S4). In contrast, themeans of and differences
in parental metabolite levels showed closer connections, and the
parental means displayed the distributions most similar to the
hybrid metabolite profiles (Fig 1F and Table S4), suggesting that
mean parental metabolite levels are appropriate for representing
hybrid metabolite profiles.

Subsequently, the means of and differences in all detected
analytes were calculated between every pair of parents for the two
populations and assigned as predictive variables to corresponding
hybrids. Partial least squares (PLS) regression (Wold, 1982), which can
model quantitative and multivariate complex relationships, was
applied to the predictive variables and BPH-YPP for hybrids from
Pop2012. No more than 17 latent factors were extracted, and the
adjusted R-square values of the means used as predictive variables
were much larger than those of the differences (Fig 1G). Furthermore,
PCA of the mean metabolite levels of the parents of hybrids dem-
onstrated distant genetic relationships between populations (Fig 1H),
suggesting that the materials were suitable for reliable cross-
validation (Wray et al, 2013). In summary, these results show that
the means of parental metabolite levels are suitable predictive
variables for yield heterosis and the two populations used in this
study are suitable for exploring predictive models for genetically
distant hybrids under different growth conditions.

Prediction of BPH for grain yield across environments

To predict BPH-YPP for Pop2015 based on Pop2012, parameters of
predictive analytes and the constant in Fig 1G (three latent factors
with an adjusted R-square value of 0.3647) were used to construct
an equation for predicting yield heterosis. The predictability of
BPH-YPP was 0.61 for Pop2012 (Fig 2A; P = 5.7 × 10−31) but only 0.24 for
Pop2015 (Fig 2B; P = 0.01). Then, quantiles of BPH-YPP for Pop2012
were calculated to divide the hybrids into high- and low-BPH-YPP
subgroups to increase predictability by grouping appropriate
predictive variables (Fig 2C). Themetabolome-based PLS-discriminant
analysis (PLS-DA) (Barker et al, 2003) grouped hybrids with high- and
low BPH-YPP separately (Fig S2). Next, the top 1,000 predictive vari-
ables were chosen for modeling based on the variable im-
portance in projection (VIP) of component 1 (VIP > 1.0198; Table
S5). Unexpectedly, although the predictability of BPH-YPP for
Pop2012 was as high as 0.61 (Fig 2D), the predictability of BPH-
YPP for Pop2015 was only 0.17 (Fig 2E; P = 0.09). We obtained even
lower predictabilities of BPH-YPP for Pop2015 by changing the
number of predictive variables (Fig 2F and G; VIP > 1.4631, 500
predictive analytes) and the numbers of high- and low-BPH-
YPP hybrids from Pop2012 for screening predictive variables
(Figs S3–S5).

Next, PCA was performed on both populations based on the top
1,000 predictive variables selected as shown in Fig 2D (Fig S6), and the
principal component 1 scores were ordered to identify core hybrids
(Tables S6 and S7). Finally, one of every three hybrids from Pop2012
(herein named the 1/3N set) and one of every two hybrids from
Pop2015 (1/2N set) were combined as the training set (1/3N + 1/2N
set) to predict the remaining hybrids. However, the predictability for
Pop2015 was only 0.16 (Fig 3A; P = 0.26). Clues from the slight pre-
dictability changes in Pop2012, as shown in Fig 2D (r = 0.61) and Fig 3A
(r = 0.51), indicated that the low predictability of BPH-YPP for Pop2015
might have been caused by improper selection of core hybrids.

The proportions of variance explained by the first two principal
components were smaller than those shown in Fig S6A and C (Fig
S6B and D and Tables S8 and S9), indicating that the PCA of all 3,746
predictive variables rather than the top 1,000 predictive variables
helped dissect population structure. The predictability of BPH-YPP
for Pop2015 increased to 0.34 when the top 1,000 predictive vari-
ables were used (Fig 3B; P = 0.01). Next, the performance of
“noncore” hybrids from both populations was predicted with all
3,746 predictive variables. A correlation analysis between the ob-
served and predicted BPH-YPPs indicated that the predictability of
BPH-YPP for Pop2015 was further improved (Fig 3C; r = 0.44, P =
0.001). Therefore, for predicting component traits (e.g., grain weight)
(Dan et al, 2019), the dissection of population structures as the
initial step in building predictive models is better than the
screening of predictive variables.

Optimization and validation of the predictive model

To further increase the predictability of BPH-YPP, we filtered low-
contribution or unrelated predictive variables among the 3,746
analytes based on VIP values of the first latent factor (Table S10). As
shown in Fig S7A, the predictabilities of BPH-YPP for Pop2015 varied
with changes in the number of predictive variables. Then, the mean
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Figure 1. Determination of predictive variables for BPH-YPP.
(A) YPP of parents from Pop2012 and Pop2015. ***P = 2.7 × 10−4, two-tailed, independent-samples t test. (B) YPP and BPH-YPP of hybrids from Pop2012 and Pop2015. For
YPP, ***P = 2.1 × 10−19, two-tailed, independent-samples t test. For BPH-YPP, ***P = 5.2 × 10−7, two-tailed, independent-samples t test. (C) Dendrogram of the 18 cultivars
from Pop2012 based on the 3,746 detectedmetabolic analytes. (D) Three-dimensional distribution of parents from Pop2012 and Pop2015 based on PCA of the 3,746 detected
analytes. (E, F) Distributions of three pairs of reciprocal hybrids and corresponding parents based on PCA of 3,746 metabolic analytes. The ratios of (E), means of, and
differences in (F) parental metabolite levels were calculated and compared to hybrid metabolite profiles. Slashes indicate crosses between two parents, and female and
male parents are on the left and right of the slash, respectively. Shadows with color are 95% confidence regions. (G) Changes in the number of latent factors and adjusted
R-square values. PLS regression analysis was performed between the BPH-YPP of hybrids from Pop2012 and the means of/differences in parental metabolite profiles.
No more than 17 latent factors were extracted in both analyses. (H) Three-dimensional distribution of hybrids from Pop2012 and Pop2015 based on PCA of the 3,746
predictive variables.
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VIP values of the first three latent factors were calculated (Table
S10), and the predictabilities did not increase (Fig S7B). Un-
expectedly, the predictabilities of BPH-YPP for Pop2015 increased
when all seven latent factors were used (Fig 4A), peaking at 0.58 with
1,400 predictive variables (P = 5.0 × 10−6; Fig 4B and Table S11). Thus,
hybrids from both populations were predicted with predictabilities
close to 0.6, although the ranges of yield heterosis differed greatly
between the two populations. Moreover, no improvement in pre-
dictability was observed after another 400 predictive variables were
removed from the 1,400 correlated predictive analytes (Fig S8A and B;
r = 0.55, P = 1.9 × 10−5).

We next performed t tests for high- and low-BPH-YPP hybrids
from Pop2012 according to the results shown in Fig 2C. A total of 1,311
analytes were significantly different between the two subgroups

(Fig 4C and Table S12), and most of them overlapped with the 1,400
predictive variables (Fig 4D). The results from MetaboAnalyst (Xia
et al, 2011) indicated that metabolic pathways, including that for
galactose metabolism, were enriched for both populations (Fig 4E
and F, Tables S13 and S14, Figs S9, and S10), which was consistent with
findings in previous reports (Schauer et al, 2006; Obata et al, 2015;
Wen et al, 2015). In addition, galactose metabolism was detected
when dysregulated metabolic pathway analysis was performed on
high- and low-BPH-YPP hybrids from Pop2012 with MetDNA (Shen et
al, 2019) (Fig 4G and Table S15). The average levels of metabolites
involved in galactose metabolism in high-BPH-YPP hybrids were
higher than those in low-BPH-YPP hybrids (Fig 4H, Tables S16, and
S17), and significant differences in metabolites involved in galactose
metabolism were detected between the two subgroups (Table S18).

Figure 2. Prediction of BPH-YPP with predictive variables selected from PLS-DA.
(A) Prediction of BPH-YPP for Pop2012 with 3,746 predictive variables (PVs). (B) Prediction of BPH-YPP for Pop2015 based on the predictive model constructed in Fig 2A.
(C) Box plot of BPH-YPP for Pop2012. Hybrids were divided into low- and high-BPH-YPP subgroups according to the 25th and 75th percentiles. (D) Prediction of BPH-YPP for
Pop2012 with the top 1,000 predictive variables based on PLS-DA of 72 high- and 72 low-BPH-YPP hybrids. (E) Prediction of BPH-YPP for Pop2015 based on the predictive
model constructed in Fig 2D. (F) Prediction of BPH-YPP for Pop2012 with the top 500 predictive variables based on PLS-DA of 72 high- and 72 low-BPH-YPP hybrids.
(G) Prediction of BPH-YPP for Pop2015 based on the predictive model constructed in Fig 2F. The dotted lines are the fit lines.

Figure 3. Dissection of population structure
increases predictabilities.
(A) Prediction of BPH-YPP for Pop2012 and Pop2015 with
the top 1,000 predictive variables used in Fig 2D and
population structure determined by the top 1,000
predictive variables. (B) Prediction of BPH-YPP for
Pop2012 and Pop2015 with the top 1,000 predictive
variables used in Fig 2D and population structure
determined by 3,746 predictive variables. (C) Prediction
of BPH-YPP for Pop2012 and Pop2015 with 3,746
predictive variables and population structure
determined by 3,746 predictive variables. The dotted
lines are the fit lines.
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These results show that the 1,400 analytes identified in this study are
predictive of BPH-YPP and that the up-regulation of galactose
metabolism is closely associatedwith high degrees of yield heterosis.

Next, we substituted the metabolome of Yuetai A (the female
parent of Pop2015) with that of Yuetai B (the maintainer line) in the
calculation of predictive variables for Pop2015 to increase pre-
dictability. However, the predictabilities of BPH-YPP for Pop2015
decreased after switching to the maintainer lines (Fig S11A). More-
over, regarding the effects of changes in training set population size
on predictability (Windhausen et al, 2012; Riedelsheimer et al,
2013), half (1/2N) and a quarter (1/4N) of the hybrids from Pop2012
were combined with half (1/2N) of the hybrids from Pop2015 to
check for predictability variations. As shown in Fig S11B, the
predictabilities of BPH-YPP for Pop2015 decreased in both the
1/2N + 1/2N and 1/4N + 1/2N sets. Thus, the 1/3N + 1/2N training
set was the best combination of population sizes for the pre-
diction of yield heterosis in this study.

To further check the stability of the predictive model across
conditions, 41 hybrids that were mainly reciprocal and had sig-
nificant differences between reciprocals in 2012 were phenotyped
again in 2015 (Table S19). Because of environmental changes, the
BPH-YPPs of the 41 hybrids exhibited significant differences be-
tween the 2 yr (Fig 5A and Table S19). Based on the predictive
model established in Fig 4B and Table S11, parameters of the 1,400
predictive variables and the constant were used to predict BPH-

YPP for the 41 hybrids. Surprisingly, the correlation coefficient
between the observed and predicted values of BPH-YPP was as
high as 0.62 (Fig 5B; P = 1.4 × 10−5), which further confirmed the
accurate prediction of yield heterosis for hybrids under different
growth conditions.

Figure 4. Feature selection for BPH-YPP.
(A) Predictabilities of BPH-YPP with different numbers of predictive variables selected according to mean VIP values of all seven latent factors. (B) Prediction of BPH-
YPP for Pop2012 and Pop2015 with the top 1,400 predictive variables selected according to the mean VIP values of the seven latent factors. (C) Differential analytes
between 72 high- and 72 low-BPH-YPP hybrids from Pop2012. Independent-samples t test, equal group variance assumed, adjusted P-value cutoff: 0.05. (D) Comparison of
the 1,400 predictive variables used in Fig 4B (PLS) and differential analytes identified in Fig 4C (t tests). (E) Differential metabolic pathways between high- and low-
BPH-YPP hybrids from Pop2012. (F) Differential metabolic pathways between high- and low-BPH-YPP hybrids from Pop2015. (G) Enriched metabolic pathways between
high- and low-BPH-YPP hybrids from Pop2012 based on dysregulated metabolic pathway analysis with MetDNA. (H) Comparison of the average levels of metabolites
involved in galactose metabolism between high- and low-BPH-YPP hybrids from Pop2012. ***P = 2.7 × 10−5, two-tailed, independent-samples t test.

Figure 5. Validation of the predictive model.
(A) BPH-YPP of reciprocal hybrids phenotyped in 2012 and 2015. ***P = 4.5 × 10−4,
two-tailed, paired-samples t test. (B) Prediction of BPH-YPP for 41 hybrids
planted in 2015 according to the predictive model built in Fig 4B. The dotted line is
the fit line.
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Precision Breeding 1.0 for climate-resilient superior hybrid rice

Finally, we present a schematic diagram of Precision Breeding 1.0
for guiding the breeding of heterotic and climate-resilient rice
based on metabolomics. At least two hybrid populations are used
to build predictive models. The first population (Pop1) is the main
population, and a half-diallel cross design is recommended. The
parental inbred lines should be sufficiently representative; widely
planted conventional rice accessions and core accessions from the
3K Rice Genomes Project (Wang et al, 2018) are candidate parents.
For parents of another hybrid population (Pop2), either homozy-
gous (conventional, localized, and wild cultivars) or heterozygous
(outcrossed and recombinant inbred lines) lines can be the sterile
and restorer lines, which provides an advantage in using a wide
range of germplasms independently of the degree of heterozygosity
and availability of a reference genome. Parental seedlings of both
populations were cultivated under uniform conditions. On ap-
proximately the 15th day, seedlings were harvested for untargeted
LC-MS analysis (Fig S12A). Next, untargeted parental metabolite
profiles were obtained, and the mean relative abundances of all
detected analytes in every pair of parents were assigned as pre-
dictive variables to corresponding hybrids (Fig S12B). Population
structure was then dissected by PCA of all predictive variables (Fig
S12C). Core hybrids selected from both populations according to
principal component 1 scores were combined as a training set, and
phenotypic data of core hybrids were collected in field trials (Fig
S12D). Subsequently, PLS regression between hybrid performance
and corresponding predictive variables was applied to build a
predictive model. After filtering low-contribution or unrelated
variables according to the mean VIP values of all latent factors, the
predictive model was established for both populations (Fig S12E).
Then, the performance of “noncore” hybrids was predicted based
on parameters of predictive variables (Fig S12F). Finally, hybrid-
izations between parents with predicted good-performance hy-
brids were conducted, and the candidate hybrids were field
validated to determine the elite hybrid combinations (Fig S12G).

Discussion

The prediction of agronomic traits for single-cross hybrids based on
parental differences can transform redundant conventional breeding
programs into targeted hybridization tasks, which can significantly
reduce the amount of breeding work and improve breeding ef-
ficiencies. Here, we found that the average values of parental
metabolite levels showed close relationships with hybrid me-
tabolite profiles (Fig 1F), and the means of parental metabolic
analytes were predictive of yield heterosis in rice (Fig 1G). A total of
1,400 analytes, some of which are involved in galactose meta-
bolism, were used in the predictive model of BPH-YPP (Figs 4B and
E–G). Other metabolic pathways with up- or down-regulated
metabolic levels were also found to be associated with yield
heterosis in the analyses (Tables S13–17 and Fig S9), suggesting
that an optimal balance between these metabolic pathways may
contribute to the formation of yield heterosis (Dan et al, 2015). The
newly comprehensive metabolite profiling analysis of hybrids

from high- and low-BPH-YPP subgroups will provide more direct
proof for the selection of predictive analytes.

For precision breeding of hybrid rice, further research is required
to optimize the strategy proposed here. To ensure the stability of
predictive models, a larger number of parents, representing col-
lections of rice core germplasms, need to be included in the main
population (Pop1). More comprehensive untargeted metabolite
profiles (larger numbers of detected peaks) which are obtained in
positive ionization mode or the combination of negative and
positive ionization datamay also influence predictabilities. Notably,
the ranges of heterosis that are predicted from models are always
much smaller than those observed experimentally (Figs 2B–4B, S5,
and S8B); we speculate that this may be caused by unknown factors
that can lead to phenotypic variances, such as dynamic environ-
ments or interactions between genotype and the environment
(Riedelsheimer et al, 2012a; Yu et al, 2016; Li et al, 2018). The breeding
of elite hybrid rice involves desirable values for multiple polygenic
traits, including heading date, plant height, grain quality, disease,
and stress resistance, not just yield. Moreover, determining the
effects of training and validation set size on predictability requires
more investigation (Windhausen et al, 2012; Riedelsheimer et al,
2013; Schulthess et al, 2017). Hence, robust versions of metabolome-
based prediction for multiple polygenic traits remain urgently
needed along with extensive and in-depth cooperation among
global universities and breeding institutes.

Metabolome-based prediction of agronomic traits has benefited
from rapid advancements in metabolite profiling technologies
(Blazenovic et al, 2019; Shen et al, 2019). Crop breeders can obtain
high-throughput metabolic data without considering the accessi-
bility of reference genomes and ploidy in just a few days, in-
dependent of the season. Metabolic markers have demonstrated
application potential for both qualitative and quantitative traits in
maize (de Abreu et al, 2017; Westhues et al, 2017; Schrag et al, 2018),
wheat (Zhao et al, 2015), potato (Steinfath et al, 2010; Sprenger et al,
2018), barley (Heuberger et al, 2014), and Miscanthus (Maddison
et al, 2017). Therefore, the untargeted metabolome-based pre-
diction strategy, which has wide accessibility, may be further used to
breed climate-resilient major and orphan crops, perennial trees, and
animals (Hickey et al, 2017) and even perform personalized/localized
disease diagnosis for humans (Wray et al, 2013).

Materials and Methods

Plant materials

Details of the plant materials have been presented previously
(Dan et al, 2019). Briefly, two hybrid populations were used to
explore predictive models of heterosis for rice grain yield. For one
population in 2012, 18 indica–intermediate type–japonica cultivars,
some of which have been planted on more than six million hectares
in China (including Liaoxing 1 and Wuyunjing 8), were used as the
parents with a complete diallel cross design. For another population,
recombinant inbred lines (F5) from single- or multiple-cross and
backcross hybrids were test-crossed with a Honglian-type cyto-
plasmic male-sterile line (Yuetai A). Plants of the two populations
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were grown separately at different planting densities in 2012 and
2015. In addition, 41 reciprocal hybrids and corresponding parents
that were chosen from Pop2012 were planted again under the
same conditions as the hybrids in 2015. A randomized block design
with three replicates was used for each genotype in each envi-
ronment. Ten seedlings were planted for each replicate, and the
middle five plants of each row were harvested to measure the YPP.
Phenotypic data of parents and hybrids are provided in Table S1.
The relative BPH-YPP was calculated with the following equation:
BPH-YPP = (F1 − PH)/PH, where PH and F1 are the YPP of the high-
value parent and hybrid, respectively.

Young rice seedlings used for LC-MS/MS analysis were prepared
by a previously reported method (Dan et al, 2019). More than 30
seeds of three pairs of reciprocal hybrids, 18 cultivars, 107 recombi-
nant inbred lines, and Yuetai Awere submerged inwater at 30°C for 48
h and then transferred to an incubator for germination at 30°C for 24
h. Ten seedlings at the same developmental stage were transplanted
into plastic pots with a spacing of 2 × 2 cm. Two biological replicates
were used for each genotype. Seedlings were grown at 30°C in a light
incubator set to 70% humidity with a 16-h light/8-h dark photoperiod.
On the 15th day, ~10 seedlings without parts close to soil (~0.5 cm) and
rootswere harvested andplaced in liquidnitrogen after beingwashed
with ddH2O three times. Two biological replicates of the three pairs of
reciprocal hybrids and 18 parents were treated as two independent
experimental samples, and two replicates of the 107 recombinant
inbred lines, and Yuetai A were combined as a single experimental
sample for each genotype. All tissues of each experimental sample
were ground into homogenized powders with liquid nitrogen, and 80
mg of powder was transferred into 2-ml EP tubes. After 1 ml of
precooled extraction liquid (methanol/acetonitrile/water, 2/2/1, vol/
vol/vol) was added with the Agilent Bravo automated liquid handling
system (Agilent Technologies), the samples were vortexmixed for 60 s.
Tenmicroliters of all sampleswere pooled as a quality control sample.
Two 30-min ultrasonic treatments were applied, and the tubes were
kept at −20°C for 60 min. Then, the samples were centrifuged for 15
min at 14,000g at 4°C. The supernatants were dried in a vacuum
concentrator, and 100 μl of acetonitrile (acetonitrile/water, 1/1, vol/
vol) was added to each tube. After vortex mixing, the samples were
centrifuged for 15 min at 14,000g at 4°C, and the supernatants were
used for subsequent LC-MS analysis.

UHPLC-Q-TOF MS/MS for untargeted metabolomics analysis

Samples were separated on a Waters (Milford) reversed-phase T3
column (ACQUITY UPLC HSS T3, 2.1 × 100 mm column containing 1.8-
μm particles) using the Agilent 1290 Infinity LC system (Agilent
Technologies). After the injection of 2 μl of the sample, the T3
column was washed with solvent A (0.5 mM ammonium fluoride;
Sigma-Aldrich) at a flow rate of 0.3 ml/min at 25°C. The LC gradient
elution began with 1% solvent B (acetonitrile; Merck) for 1 min,
linearly increased to 100% B in 7 min, was maintained for 2 min at
100% B, was reduced to 1% B in 0.1 min, and was maintained for
another 1.9 min at 1% solvent B for re-equilibration. Experimental
samples were analyzed in a random order at 4°C, and a quality
control sample was injected every nine experimental samples to
check the stability of the LC-MS system.

MS data of all samples were collected with a quadrupole time-
of-flight mass spectrometer (Agilent 6550 iFunnel QTOF; Agilent
Technologies) in negative electron spray ionization mode. The
temperature and flow rate of the drying gas were 250°C and 16 L/
min, respectively. The temperature and flow rate of the sheath gas
were 400°C and 12 L/min, respectively. The pressure of the neb-
ulizer gas was 20 pounds per square inch (psi). The capillary voltage,
nozzle voltage, and fragment voltage were 3,000, 0, and 175 V, re-
spectively. The TOF mass spectra data were collected from 60 to
1,200 kD. The acquisition rate was 4 spectra/s and the cycle time
was 250 ms.

Subsequently, another quadrupole time-of-flight mass spec-
trometer (TripleTOF 6600, AB Sciex) was used to acquire tandem
mass spectrometry (MS/MS) data of the quality control sample. The
parameters of ion source gas1, ion source gas2, and the curtain gas
were 40, 80, and 30 psi, respectively. The source temperature was
650°C, and the floating ion spray voltage was −4,500 V. The mass
range for the TOF MS scan was 60–1,200 kD, and the quality control
sample was injected twice to increase the data acquisition rate with
the mass range divided into four sequential windows: 60–200,
190–400, 390–600, and 590–1,200 kD and 200–600, 590–750, 740–900,
and 890–1,200 kD. The MS accumulation time was 200 ms/spectra
and the tandem mass spectra were collected in an information-
dependent manner in high-sensitivity mode. The declustering
potential was −60 V, and the collision energy was 35 ± 15 eV. Ten
candidate ions were monitored per cycle using an isotope isolation
width of 4.0 kD, and the MS/MS accumulation time was 50 ms.

Quantification of metabolomics data

The msconvert function in ProteoWizard (Chambers et al, 2012) was
used to convert raw MS files (.d) to the mzXML format. Then, these
files were uploaded to the XCMS (Gowda et al, 2014) for data
processing, including feature detection, retention time correction,
and alignment with the method described previously (Jia et al,
2018). The MS/MS data were matched against the in-house stan-
dard spectral library (Wang et al, 2016) and lipid MS/MS spectral
library (Tu et al, 2017), andmetabolites were identifiedwith accurate
mass (<25 ppm). To align the MS and MS/MS data, m/z errors less
than 15 ppm and retention time errors fewer than 20 s were applied.
To check the reliability of the metabolomics data, a PCA was
performed on both the experimental and quality control samples
before the data normalization procedure. The location of the
quality control sample in the three-dimensional histogram and
plots of the top five principal components indicated that the ob-
tained metabolite profiles were accurate and appropriate for
subsequent analyses (Fig S13). Normalization of the relative
abundances of the 3,746 detected analytes was performed with
MetaboAnalyst 4.0 (Xia &Wishart, 2011). Samples with two biological
replicates were averaged first. Sample normalization (normaliza-
tion by sum), data transformation (none), and data scaling
(autoscaling) were performed with MetaboAnalyst 4.0 to make the
samples and features suitable for statistical analyses. We trans-
formed parental metabolite levels to obtain themeans, differences,
and ratios of parental metabolite files for each hybrid with
equations FMeans = (P1 + P2)/2, HDifferences = P1 − P2, and FRatios = P1/P2,
where F, P1, and P2 are the metabolic levels of the hybrid, female
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parent, and male parent, respectively. Some of the metabolic data
were reported in a previous study (Dan et al, 2019), and the
complete metabolic data corresponding to all parents and hybrids
used for analyses are provided in Table S3, which was prepared
according to recommendations (Fernie et al, 2011).

Determination of population structure and selection of predictive
analytes

The 3,746 detected analytes and 34 pairs of InDel markers were used
to assess the genetic differences of parents of Pop2012. Dendro-
grams were drawn based on the relative abundances of detected
analytes and genotypes of each marker with the Statistical Analysis
module (with Euclidean and Ward as the distance measure and
clustering algorithm, respectively) on MetaboAnalyst. PCA was
performed on the metabolome of parents of both populations. The
mean relative abundances of the 3,746 detected analytes in every
pair of parents were calculated as predictive variables for corre-
sponding hybrids. PCA was performed to demonstrate the pop-
ulation distances. Scores for the first principal component were
reordered from high to low, and hybrids were chosen every two,
three, or four intervals as the core hybrids.

In the exploration of predictive models for BPH-YPP, hybrids
from Pop2012 were divided into two subgroups based on low- and
high-BPH-YPP values. PCA and PLS-DA were performed on hybrids
in the low- and high-BPH-YPP subgroups to investigate their
metabolic relationships. Analytes were screened according to VIP
values from the results of PLS-DA, and analytes with low VIP values
were removed from the models. Subsequently, core hybrids from
both populations were combined as a training set, and PLS was
applied to bridge the predictive variables and hybrid performance.
The BPH-YPP of the hybrids and the predictive variables were
dependent and independent variables, respectively. The number of
latent factors was selected when the largest adjusted R-square
value of cumulative Y variance emerged. The mean VIP values of all
latent factors were used to screen predictive analytes. Variables
with large contributions in the model were retained for modeling,
and the number of predictive analytes was adjusted to achieve high
predictability.

Pathway mapping of metabolic analytes

Differential analytes with m/z, P-values, and t scores from t tests
comparing high- and low-BPH-YPP hybrids were mapped to met-
abolic pathways through the module “MS Peaks to Pathways” on
MetaboAnalyst (Xia & Wishart, 2011). The mass accuracy was 5.0
ppm. The analytical mode was negative, and the data format was
three-column according to the data preparation instructions. GSEA
was the algorithm, and the Oryza sativa japonica (Japanese rice)
pathway library was selected for enrichment analysis. Dysregulated
network analysis was performed with MetDNA (Shen et al, 2019). The
tandem mass spectra data with a mass range of 60–1,200 kD col-
lected from the quality control sample were uploaded for me-
tabolite identification. Hybrids with high- and low BPH-YPPs were
grouped into the control and case groups, respectively. The ioni-
zation polarity was negative, and reversed-phase LC was used. The
mass spectrometer instrument type was Sciex TripleTOF, and the

collision energy was 35 ± 15 eV. t test was selected as the statistical
method. The library of Arabidopsis thaliana (thale cress) was
chosen for enrichment analysis. The cutoff P-value was 0.05, and
the P-values were corrected with a false discovery rate in the
analysis.

Statistical analysis

Independent-samples t test (two-tailed) was performed to com-
pare differences of YPP for parents and hybrids, the BPH-YPP for
hybrids from both populations, and the average levels of metab-
olites in pathways between high- and low-BPH-YPP hybrids with
SPSS (IBM SPSS Statistics for Windows, Version 20.0; IBM Corp.).
Levene’s test was used to determine the equality of variances.
Paired-samples t test (two-tailed) was used to compare differences
of BPH-YPP between reciprocal hybrids that were selected from
population 2012 and hybrids that were phenotyped in both years.
PLS and bivariate correlation analyses were implemented with
SPSS. PCA and PLS-DA were conducted with the “Statistical
Analysis” module on MetaboAnalyst (Xia & Wishart, 2011). The
correlation coefficient of Pearson correlation (two-tailed) be-
tween the observed and predicted BPH-YPP values was treated as
predictability.

Data access

Rawmetabolomics files generated in this study have been deposited to
themetabolomicsdatabaseMetaboLights (www.ebi.ac.uk/metabolights)
under the study identifier MTBLS742.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900551.
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