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Abstract 
Individuals with psychiatric disorders frequently experience comorbid cardiometabolic 

conditions, complicating treatment and worsening health outcomes. Both psychiatric and 
cardiometabolic disorders have been individually associated with alterations in brain 
structure. Yet, it remains unclear whether these associations reflect a shared genetic basis 
that also contributes to their frequent co-occurrence. Here we analyzed genome-wide 
association summary statistics for psychiatric disorders, cardiometabolic disease, and brain 
morphology using complementary genetic approaches to disentangle genetic factors 
underlying brain alterations and comorbidity. Our results highlighted differences in patterns 
of genetic overlap across disorders. Schizophrenia showed substantial polygenic overlap 
with cortical thickness and type 2 diabetes, despite low genetic correlation. In contrast, 
ADHD was more genetically correlated with cardiometabolic disease but showed limited 
overlap with cortical morphology. Mediation analysis suggested that cortical surface area 
may partly mediate the genetic link between ADHD and type 2 diabetes. Pathway 
enrichment highlighted metabolic stress in ADHD and neurodevelopmental and immune 
processes in schizophrenia. These findings suggest that psychiatric–cardiometabolic 
comorbidity arises through both shared and disorder-specific genetic pathways, clarifying the 
genetic architecture of multimorbidity and informing trait-targeted prevention strategies in 
psychiatry. 
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Introduction 
A whole-body perspective on mental health redefines the study of psychiatric 

disorders by emphasizing their integration with broader physiological systems1. Traditionally, 
mental health research has focused on the brain as the central organ of interest2. However, 
emerging evidence highlights how physical health, including cardiovascular function, 
immune responses, and metabolic pathways, contribute to the onset, progression, and 
manifestation of psychiatric disorders3–6. Given that most human diseases result from a 
complex interplay of multiple genetic variants and environmental factors7, exploring the 
genetic links between mental health, physical health, and brain organization offers a window 
into shared biological mechanisms. This multi-system perspective can pave the way for 
more effective treatment and prevention strategies. 

 
Severe psychiatric disorders are known to be highly heritable, with twin studies 

estimating genetic contributions to vary between 40% and 80%8–11. Genome-wide 
association studies (GWAS) have advanced our understanding of the genetic complexity 
underlying mental disorders by identifying thousands of common genetic variants, each with 
an individually small effect12. Furthermore, novel analytical methods together with expanding 
genomic resources have revealed shared genetic architectures between distinct traits and 
disorders13–15. Specifically, studies indicate that multiple disorders may be linked by common 
genetic and biological pathways16,17. These pleiotropic mechanisms may contribute to the 
co-occurrence of conditions and call for a thorough examination of disease-specific vs. 
generalized patterns to better understand multimorbidity as well as the unique characteristics 
of each disorder. 

 
Multimorbidity is an escalating global challenge18. Individuals with severe mental 

illness are more than twice as likely to experience physical multimorbidity19–21. These 
individuals often suffer from a range of physical health issues, including diabetes mellitus, 
hypertension, obesity or coronary heart disease, which further complicate diagnosis, 
treatment, and management22. Notably, all types of mental disorders are associated with 
significantly increased mortality rates23. Patients with schizophrenia (SCZ) have a life 
expectancy 15–20 years shorter than that in the general population where the higher 
mortality is predominantly due to cardiovascular and respiratory disease24,25. Similarly, 
Attention-Deficit/Hyperactivity Disorder (ADHD) has been associated with elevated risks of 
nervous system disorders (particularly sleep disorders), as well as cardiovascular, 
respiratory, musculoskeletal, and metabolic diseases26,27. While cardiometabolic diseases 
emerge as a common thread among several psychiatric disorders28, the potential underlying 
mechanisms for this comorbidity are mainly unknown. Several studies have implicated 
shared genetic factors between mental disorders and cardiometabolic traits29–31, yet the 
extent to which multimorbidity arises from shared genetic risk factors versus environmental 
influences remains a topic of ongoing investigations32. Recent results suggest that some 
links between cardiometabolic diseases and mental health disorders are primary, driven by 
shared biological mechanisms, while others are secondary, resulting from lifestyle factors, 
medication effects, or poor healthcare. The neurobiological mechanisms underlying the 
body-brain interplay thus remain unclear. 

Brain alterations often mediate the effects of genetic variation on behavioral 
differentiation. Psychiatric disorders are accompanied by alterations in heritable regional 
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brain metrics, including cortical thickness (CT) and surface area (SA)33–37. Recent analyses 
demonstrated extensive pleiotropy between psychiatric disorders and MRI-based 
measurements of CT as well as SA16,38–40. At the same time, studies have shown that brain 
morphometry is linked to cardiometabolic disorders41,42, with evidence suggesting a genetic 
basis for this association43. Despite numerous studies exploring brain MRI as a link between 
cardiometabolic disease and mental disorders, it remains unclear whether this relationship is 
disease-specific or reflects a generalized pattern shared across disorders. Clarifying this 
distinction could have significant clinical implications, particularly in determining whether the 
same therapeutic interventions can be applied across conditions. These insights are 
especially relevant for prevention and treatment efforts, as the gap in physical multimorbidity 
between those with and without severe mental illness is greatest in younger individuals, 
highlighting the need for early intervention19. 

The growing availability of large-scale clinical, genetic, and neuroimaging data, 
combined with advanced analytical methods, offers new opportunities to dissect the shared 
genetic architecture of mental and physical health. We hypothesize that by simultaneously 
analyzing genetic overlap among psychiatric disorders, cardiometabolic disease, and cortical 
morphology, we can uncover whether the body-brain interplay underlying multimorbidity 
follows a disease-specific pattern or reflects a broader, cross-disorder mechanism shared 
across multiple conditions. For this purpose, we investigated genome-wide data from the five 
most prevalent psychiatric disorders—ADHD, autism spectrum disorder (ASD), major 
depressive disorder (MDD), bipolar disorder (BIP), and SCZ—together with average CT and 
total SA (following 40), as well as coronary artery disease (CAD) and type 2 diabetes (T2D). 
We focused on CAD and T2D as representative cardiometabolic diseases due to their high 
prevalence, consistent links to adverse brain outcomes, and complementary coverage of 
vascular and metabolic dysfunction44,45. We employed a comprehensive suite of genetic 
tools ranging from genetic correlation and polygenic overlap to causal inference, mediation 
analysis, and pathway enrichment. Notably, the novel trivariate MiXeR tool allowed us to 
deconstruct the patterns of polygenic overlap among three complex phenotypes that could 
not be deduced from bivariate methods46. Our results reveal both common and distinct 
genetic patterns across psychiatric disorders, emphasizing the heterogeneous genetic 
architecture that shapes their links to cardiometabolic health and brain structure. 
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Results 

Genetic architectures of psychiatric and cardiometabolic 
diseases 

We systematically analyzed the genetic overlap among psychiatric disorders, 
cardiometabolic diseases, and cortical morphology. To this end, we utilized respective 
GWAS summary statistics to quantify shared genetic architecture across these traits (Table 
1). We begin by revisiting previous findings from our and other groups16,40, where LD score 
regression (LDSC) analysis revealed notable genetic distinctions among psychiatric 
disorders, laying the foundation for the current study. Specifically, ADHD and SCZ displayed 
the lowest genetic correlation among the investigated psychiatric disorders (rG = 0.20; Fig. 
1A). Furthermore, we observed striking differences in the genetic correlation of major mental 
disorders with cardiometabolic diseases represented by CAD and T2D (Fig. 1B). While 
ADHD and MDD displayed positive genetic correlations with CAD (ADHD: rG = 0.30; MDD: rG 
= 0.25), ASD, BIP, and SCZ showed correlations close to zero (ASD: rG = -0.01; BIP: rG = 
0.03; SCZ: rG = -0.03). A similar pattern of associations was observed for T2D (Fig. 1B). In 
addition, psychiatric disorders differed in their associations with cortical morphology 
represented by CT and SA. While all of them showed minimal genetic correlation with CT, 
ADHD and MDD exhibited negative correlations with SA (ADHD: rG = -0.19, MDD: rG = -
0.10). The relatively low genetic similarity between SCZ and ADHD, coupled with their 
divergent associations with CAD and T2D, highlights differences in their genetic architecture 
and suggests that these disorders may be linked to cardiometabolic disease through distinct 
biological mechanisms (Fig. 1C). All phenotypes included in the analysis passed 
recommended quality control criteria, including adequate polygenicity and heritability to 
support advanced statistical modeling (Fig. 1D). Collectively, these findings indicate that 
SCZ and ADHD represent genetically distinct diagnoses that are well suited for further 
investigation into their shared and unique genetic links with cardiometabolic disease and 
cortical morphology. 

Trivariate overlap between cardiometabolic disease, brain, and 
mental health 

We leveraged trivariate MiXeR to directly estimate the genetic overlap between 
psychiatric disorders, cardiometabolic diseases and cortical morphology. Notably, the 
trivariate overlap was less pronounced for ADHD compared to SCZ. Given that ADHD 
exhibited stronger genetic overlap and genetic correlation with SA, we focused on presenting 
the overlaps between ADHD, SA, and cardiometabolic diseases (Fig. 2A). Results for CT are 
provided in Sup. Fig. 1. We found a similar degree of genetic overlap between ADHD and 
CAD (4%) and between ADHD and SA (4%), while fewer than 1% of trait-influencing variants 
were shared across all three traits. In contrast, the overlap between ADHD and T2D was 
higher (11%), compared to SA (4%), with an additional 1% of trait-influencing variants 
shared jointly among ADHD, SA, and T2D. 

 
In contrast to ADHD, SCZ exhibited substantially larger trivariate overlaps with 

cortical morphology, and cardiometabolic disease. Given the stronger genetic overlap 
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between SCZ and CT, we focused on presenting the overlaps between SCZ, CT, and 
cardiometabolic diseases (Fig. 2B). Results for SA are provided in Sup. Fig. 1. Notably, we 
did not observe trait-influencing variants uniquely shared between SCZ and CAD 
independent of CT. SCZ shared 9% of trait-influencing variants with CT, along with an 
additional 4% shared jointly among SCZ, CT, and CAD. The genetic overlap between SCZ 
and T2D (10%) was comparable to that between SCZ and CT (9%), with an additional 3% of 
trait-influencing variants shared among SCZ, T2D, and CT. In summary, our trivariate 
analyses revealed substantial genetic overlap among SCZ, CT, and cardiometabolic 
diseases, suggesting a shared genetic basis among neurodevelopmental and metabolic 
phenotypes. By comparison, ADHD exhibited a distinct genetic architecture characterized by 
smaller trivariate overlaps. 

 
In order to investigate whether the observed genetic overlap is disease-specific, we 

extended our trivariate analysis to the additional psychiatric disorders (i.e., BIP, ASD, and 
MDD). The detailed results are provided in Sup. Fig. 2, 3. We then performed hierarchical 
clustering on the derived genetic overlaps with cardiometabolic disease separately for CT 
and SA, based on Ward distance (Fig. 2C). In other words, we searched among the five 
psychiatric disorders for similar patterns of overlap with cardiometabolic diseases and CT as 
well as SA. These post-hoc analyses again highlighted SCZ and ADHD as two disorders 
exhibiting distinct genetic overlap patterns. Furthermore, all five disorders demonstrated 
notable genetic overlap with T2D. Conversely, the degree of overlap with CAD and cortical 
morphology varied among disorders. SCZ and BIP exhibited the strongest genetic overlap 
with cortical morphology, while ADHD, BIP, and MDD showed the highest levels of genetic 
overlap with CAD. In contrast, ASD exhibited only minimal overlap with both CAD and 
cortical morphology. 

Furthermore, we quantified how much of the genetic overlap between psychiatric 
disorders and cardiometabolic diseases is also shared with cortical morphology by 
computing the ratio of trivariate overlap to the total bivariate overlap for each disorder pair 
(i.e., trivariate / [trivariate + unique bivariate]) (Fig. 2D). We found that a substantial portion 
of the genetic overlap between psychiatric disorders and CAD was also shared with CT 
(ASD: 100%, SCZ: 100%, BIP: 46, MDD: 42%, ADHD: 0%).  

Finally, we quantified the overall genetic overlap between cortical morphology and 
cardiometabolic disease by averaging trivariate MiXeR results across all psychiatric 
disorders. We observed a stronger average genetic overlap between T2D and both CT and 
SA compared to CAD (Fig. 2E). The overlap between CAD and SA was notably smaller, 
supporting a more prominent link between T2D and cortical morphology. Collectively, our 
results highlight potential cardiometabolic contributions to brain-related genetic risk for 
psychiatric disorders. 

Distinct causal relationships in psychiatric disorders 
Our trivariate analyses demonstrated distinct genetic signatures of ADHD and SCZ. 

To follow up these results of genetic overlaps, we probed causal relationships between 
cortical morphology, psychiatric disorders and cardiometabolic diseases (Sup. Tab. 1). 
Focusing on the trait combinations with the highest genetic overlap, we further investigated 
the bidirectional causal relationships between ADHD, T2D, and SA, as well as SCZ, T2D, 
and CT, using inverse-variance weighted (IVW) Mendelian randomization (MR) (Fig. 3A). 
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We found evidence that genetic liability for T2D has a causal effect on ADHD risk, with 
higher T2D liability associated with increased genetic susceptibility to ADHD (β = 0.13, FDR-
correct pFDR = 9.5×10-11). In addition, lower SA was associated with increased genetic risk for 
ADHD (β = –0.26, pFDR = 0.0003). 
 

In contrast to the findings for ADHD, IVW MR did not reveal any significant causal 
effect of SCZ on CT or T2D. Finally, we identified a significant negative effect of T2D on CT 
(β = –0.03, pFDR = 0.03), suggesting that increased genetic liability for T2D may contribute to 
cortical thinning. These findings suggest that ADHD is embedded in a bidirectional causal 
network involving SA and T2D risk, whereas SCZ may be indirectly shaped by T2D liability 
through its effects on CT. 

 
Building on our bivariate MR results, we next examined whether cortical morphology 

mediates the associations between psychiatric disorders and cardiometabolic disease. Using 
GenomicSEM-based mediation models, we focused on the strongest causal signals 
identified earlier: ADHD–SA–T2D and SCZ–CT–T2D (Fig. 3B). In the ADHD model, we 
observed a significant indirect effect through SA on the association between ADHD and T2D 
(β = 0.013, p = 0.006), indicating partial mediation. This was supported by significant paths 
from ADHD to SA (β = –0.131, p = 4.1×10-5) and from SA to T2D (β = –0.102, p = 0.002). 
The direct effect of ADHD on T2D remained strong (β = 0.249, p = 3.5×10-30), with SA 
accounting for approximately 5% of the total effect. 

 
In contrast, CT did not mediate the association between SCZ and T2D (Fig. 3B). 

Neither the effect of SCZ on CT (β = –0.021, p = 0.593) nor the effect of CT on T2D (β = –
0.016, p = 0.544) was significant, resulting in a negligible indirect effect (β = 0.0003, p = 
0.69). The direct effect of SCZ on T2D (β = –0.069, p = 0.001) accounted for nearly the 
entire total effect. These findings suggest that while SA may play a modest intermediary role 
in the genetic link between ADHD and cardiometabolic risk, the association between SCZ 
and T2D likely reflects independent or parallel genetic pathways, rather than mediation 
through brain structure. 

Shared loci underlying psychiatric and cardiometabolic 
comorbidity 

To gain deeper biological insights into the mechanisms underlying multimorbidity, we 
aimed to identify shared biological pathways linking mental health with cardiometabolic 
disease and cortical morphology. To do so, we began with a conjunctional FDR analysis 
(conjFDR) that identified genetic variants that are shared between ADHD and T2D, ADHD 
and SA, SCZ and T2D, as well as SCZ and CT. 

The first conjFDR analysis, conducted at a threshold of conjFDR < 0.05, revealed 93 
lead SNPs jointly associated with ADHD and T2D (Fig. 4A). Applying the same threshold of 
conjFDR < 0.05, we identified 17 lead SNPs jointly associated with ADHD and T2D (Fig. 
4B). We then targeted loci shared between SCZ and T2D. The conjFDR analysis revealed 
320 lead SNPs jointly associated with SCZ and T2D (Fig. 4C). Finally, we identified 38 lead 
SNPs jointly associated with SCZ and CT (Fig. 4D). Results using a stricter conjFDR 
threshold of <0.01 are presented in Sup. Fig. 4.  
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Following the identification of shared SNPs, we mapped all candidate variants to 
genes using OpenTargets (see Methods). The shared candidate SNPs between ADHD and 
T2D were mapped to 42 genes, between ADHD and SA to 15 genes, between SCZ and T2D 
to 213 genes, and SNPs shared between SCZ and CT were mapped to 32 genes (Sup. Tab. 
2). In summary, conjFDR analyses followed by gene mapping identified extensive cross-trait 
genetic overlap, revealing numerous genes jointly associated with both cardiometabolic and 
psychiatric disorders. 

Overlapping biological pathways of multimorbidity 
In the next step, the four gene sets derived from the combination of conjFDR results 

and gene mapping were sequentially tested for enrichment of biological pathways from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome using DAVID 
(Database for Annotation, Visualization, and Integrated Discovery). KEGG and Reactome 
are comprehensive databases that provide insights into biological processes, molecular 
interactions, and disease mechanisms. We calculated the fold enrichment of each KEGG 
and Reactome pathway for each conjFDR analysis, providing a measure of 
overrepresentation of pathways in the identified gene sets (Sup. Tab. 3). 
 

Analysis of genes jointly associated with ADHD and SA revealed enrichment in 
multiple biological pathways (Fig. 5A). These could be broadly grouped into vascular 
signaling processes (e.g., VEGFR2-mediated vascular permeability, VEGFA–VEGFR2 
signaling), metabolic and endocrine regulation (e.g., TP53-regulated metabolic genes, 
adipocytokine signaling, transcriptional regulation of MITF-M), and cell signaling 
mechanisms (e.g., RAB GEFs exchange). Additional enrichment was observed in pathways 
related to cancer biology (e.g., endometrial cancer) and longevity regulation across species. 

Pathway enrichment analysis of genes shared between ADHD and T2D highlighted 
several pathways related to autophagy and intracellular degradation, including selective 
autophagy, macroautophagy, and general autophagy reflecting processes involved in 
cellular quality control and metabolic balance (Fig. 5B). Enrichment was also observed in 
post-translational modification, specifically the SUMOylation pathway, as well as in TP53-
related transcriptional and stress-response pathways, including Regulation of TP53 Activity 
and Transcriptional Regulation by TP53. 

For genes jointly associated with SCZ and T2D, enriched pathways reflected cell 
death and survival processes (programmed cell death, apoptosis, signaling by MST1), 
protein homeostasis (ubiquitin-mediated proteolysis, synthesis of active ubiquitin via E1 and 
E2 enzymes), and chromatin regulation (chromatin-modifying enzymes, chromatin 
organization) (Fig. 5C). Additional pathways involved developmental and intracellular 
signaling, including the Notch signaling pathway and the CDC42 GTPase cycle. 

Finally, pathway enrichment analysis of genes shared between SCZ and cortical 
thickness revealed involvement of core metabolic pathways, including fructose and mannose 
metabolism, tryptophan metabolism, and protein modification (asparagine N-linked 
glycosylation) (Fig. 5D). 
 

As a final step in exploring potential points of convergence across cortical 
morphology, psychiatric disorders, and metabolic disease, we examined overlapping genes 
and enriched pathways between selected pairs of conjFDR results (Fig.�5E). Specifically, 
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we performed within-disorder comparisons (ADHD & SA vs. ADHD & T2D; SCZ & CT vs. 
SCZ & T2D) to assess whether genetic links to brain and metabolic traits arise through 
shared mechanisms, as well as a cross-disorder comparison (ADHD & T2D vs. SCZ & T2D) 
to determine whether distinct psychiatric conditions share common pathways to 
cardiometabolic risk. These comparisons revealed eight shared genes in the within-disorder 
analyses for both ADHD (ADHD & SA vs. ADHD & T2D) and SCZ (SCZ & CT vs. SCZ & 
T2D), and seven shared genes in the cross-disorder comparison of ADHD & T2D and SCZ & 
T2D. This overlap points to possible shared biological mechanisms linking brain structure, 
psychiatric liability, and cardiometabolic risk (Fig.�5F). 

 
Notably, only two biological pathways were shared across any of the comparisons: 

Regulation of TP53 Activity and Transcriptional Regulation by TP53, both linking 
ADHD�&�SA and ADHD�&�T2D (Fig.�5G). This convergence highlights a potential role 
for TP53-related transcriptional regulation in bridging genetic risk for ADHD across brain 
structure and metabolic dysfunction.  
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Discussion 
In this study, we systematically investigated the shared and distinct genetic 

architecture linking psychiatric disorders, cardiometabolic diseases, and cortical morphology. 
Using a combination of trivariate MiXeR, MR, and pathway enrichment analyses, we provide 
converging evidence that ADHD and SCZ exhibit overlapping yet distinct patterns of genetic 
architecture. SCZ showed substantial polygenic overlap with both CT and T2D, suggesting a 
shared genetic basis among neurodevelopmental and metabolic phenotypes. In contrast, 
ADHD displayed a more distinct genetic profile, with less polygenic overlap with cortical 
morphology but stronger connections to cardiometabolic traits. Overall, our results suggest 
that multimorbidity between psychiatric and cardiometabolic conditions is shaped by a 
combination of disorder-specific mechanisms and partially shared biological pathways, 
where common regulatory processes may intersect with distinct trait-specific genetic 
architectures. 
 

Despite widespread recognition of psychiatric–cardiometabolic comorbidity, the 
extent to which this overlap is driven by shared genetic factors or mediated through brain 
structure remains unclear. Using trivariate genetic overlap analysis, we observed substantial 
genetic overlap among SCZ, CT, and T2D. However, mediation analysis provided no 
evidence for CT as a pathway linking SCZ to cardiometabolic risk. On the other hand, ADHD 
showed a smaller trivariate overlap with SA and T2D, yet mediation analysis revealed that 
SA partially accounted for the genetic association between ADHD and T2D. Notably, TP53-
related pathways were enriched in both ADHD & SA and ADHD & T2D overlaps, pointing to 
transcriptional stress regulation as a potential shared mechanism linking neurodevelopment 
and metabolic vulnerability in ADHD. As such, SCZ may involve broader systemic and 
neurodevelopmental mechanisms, whereas ADHD appears to follow more specific genetic 
pathways linking it to cardiometabolic risk, potentially mediated by cortical surface area. 
 

These findings prompt the examination of biological mechanisms that might explain 
the shared genetic architecture between brain structure, psychiatric conditions, and 
cardiometabolic diseases. Brain architecture has long been recognized as a fundamental 
determinant of cognition, mental resilience, and susceptibility to psychiatric disorders47–49. 
Despite overlapping symptomatology, psychiatric disorders often exhibit distinct patterns of 
subcortical and cortical alterations50. As an example, SCZ is primarily associated with 
widespread reductions in CT, with particularly pronounced effects in frontal and temporal 
regions34. These effects on CT are notably stronger than those observed for SA. In contrast, 
ADHD is more strongly linked to reduced SA, especially in the frontal, cingulate, and 
temporal regions, while differences in CT tend to be subtle in childhood and largely absent in 
adolescence and adulthood51. 

At least partially, these differences can be explained by the differences in genetic 
architecture. Here, we observed that SCZ aligned more closely with cortical morphology 
compared to ADHD. In line with our results, a significantly higher number of SNPs have 
been previously identified as jointly associated with SCZ and CT compared to ADHD and 
CT52. Almost 50% of genes linked to SCZ were previously associated with brain 
morphology53. However, the genetic correlations between SCZ and cortical morphology were 
close to zero, consistent with previous findings40. Conversely, ADHD showed a significant 
genetic correlation with SA40. This link is further supported by our MR results, which revealed 
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a directional effect of SA on ADHD as well as a significant mediation pathway linking ADHD 
to T2D through SA. Although our MR analysis did not identify a significant effect of SCZ on 
global CT, previous studies have reported such associations when focusing on regional 
cortical thickness measures54. Collectively, these findings suggest that although ADHD 
shares fewer variants with SA than SCZ does with CT, the effects of these variants may be 
more directionally consistent, enabling both causal inference and mediation.  

Pathway enrichment analysis highlighted a stronger metabolic signature in the 
genetic overlap between ADHD and cortical morphology than in the overlap with SCZ. For 
ADHD & SA, we observed enrichment in several metabolic-related pathways suggesting that 
metabolic regulation may be a key biological mechanism linking neurodevelopmental 
alterations in cortical SA with ADHD liability. In contrast, the SCZ & CT overlap yielded fewer 
enriched pathways, with tryptophan metabolism standing out as a plausible contributor. 
Tryptophan metabolism, which is influenced by diet, inflammation, and insulin resistance, 
may represent a more indirect or environmentally sensitive mechanism linking metabolic 
dysfunction to cortical morphology in SCZ55. These findings provide a foundation for 
exploring how cardiometabolic traits might shape brain structure in ways that contribute to 
psychiatric vulnerability. 
 

A large body of research documents the tight connection between cardiometabolic 
traits and brain architecture56. Specifically, obesity, hypertension, high cholesterol, diabetes, 
as well smoking have been linked to brain atrophy42,57,58. In addition, MR studies indicate that 
higher BMI may causally contribute to reduced gray matter volume59. Our results further 
show that T2D exerts a modest but significant causal effect on cortical thickness. These 
adverse effects on brain tissue and gray matter were further reported to increase in severity 
with the number of chronic diseases, particularly when metabolic and cardiometabolic 
conditions are involved60. Going beyond cross-sectional evidence, individuals with 
multimorbidity also show a steeper decline in total brain tissue volume and accelerated 
ventricular enlargement over time compared to their non-multimorbid peers61. Consequently, 
adults with T2D might exhibit cognitive dysfunction, characterized by impairments in 
attention, psychomotor speed, planning, executive functions, and memory62. Although the 
clinical and imaging evidence linking metabolic health to brain structure is well established, 
the extent to which these associations reflect shared genetic architecture or directional 
causal effects remains poorly understood. 

To address this uncertainty, researchers have begun applying genomic approaches 
to disentangle common heredity from causation in cardiometabolic–brain connections. 
Genetic correlation studies have revealed significant overlapping heritability between 
adiposity-related traits (e.g. BMI) and brain structure measures63,64, suggesting that some of 
the same genetic variants may predispose individuals to both metabolic dysfunction and 
neuroanatomical changes. Here, we observed substantial polygenic overlap among T2D and 
CT as well as SA supporting the existence of shared genetic components across these 
domains. Our findings are consistent with recent metabolomic studies showing that 
circulating metabolic markers, many of which are altered in T2D65, are genetically associated 
with cortical morphology56. The collective evidence thus points to a shared genetic basis 
between metabolic health and brain structure, raising the question of how these 
interconnected pathways may also contribute to psychiatric disorders and their 
cardiometabolic comorbidities. 
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Psychiatric and cardiometabolic disorders are known to co-occur at high rates, 
prompting an investigation into their shared genetic underpinnings. We observed that the 
genetic relationships between psychiatric and cardiometabolic disorders are heterogeneous, 
suggesting disorder-specific patterns of comorbidity. Among the five disorders, ADHD and 
MDD showed the strongest genetic correlations and the most prominent overlap with CAD, 
in contrast to the weaker associations observed for SCZ and ASD. The genetic architecture 
of MDD was already shown to be more similar to cardiometabolic diseases than those of 
SCZ and BIP based on patterns of genetic overlap with metabolic markers66. This partly 
shared genetic architecture between CAD and MDD as well as ADHD might be one of the 
reasons why genetic liability for ADHD was proposed as a potential causal factor for CAD67. 
In another study, childhood ADHD problems were predictive of multiple cardiovascular risk 
factors by mid-life68. However, ADHD comorbidity with cardiometabolic disorders was 
proposed to be mainly driven by environmental factors rather than genetics32. Therefore, 
while genetic overlap may indicate shared biological pathways, environmental and lifestyle 
factors likely play a crucial role in determining whether this genetic risk translates into actual 
disease manifestation. 

In comparison to CAD, all studied psychiatric disorders displayed substantial overlap 
with T2D based on trivariate MiXeR analyses. This aligns with prior evidence showing high 
comorbidity between psychiatric disorders and T2D, with suggestions of shared genetic 
underpinnings32,69. These genetic links between T2D and psychiatric disorders may be 
particularly pronounced in neurodevelopmental conditions70. Notably, despite a near-zero 
genetic correlation, SCZ and T2D have been shown to share substantial polygenic overlap29. 
Moreover, genes jointly associated with SCZ and T2D have been found to show high 
expression in brain tissue and immune cells, and are enriched for pathways related to 
neurodevelopment, synaptic signaling, immune function, intracellular transport, and 
metabolic regulation29,70. This brain- and immune-enriched functional profile aligns with our 
findings, suggesting that the SCZ & T2D genetic overlap may involve shared 
neurodevelopmental and systemic biological pathways. Collectively, our findings support 
distinct genetic architectures underlying psychiatric–cardiometabolic comorbidity. The SCZ & 
T2D overlap may involve brain-related mechanisms and indirect pathways, such as 
antipsychotic medication effects or lifestyle changes. In contrast, ADHD and MDD appear to 
have a more direct genetic predisposition to cardiometabolic conditions, likely compounded 
by behavioral and environmental risk factors. 

Pathway enrichment analyses also suggested distinct biological mechanisms 
underlying the genetic overlap between T2D and psychiatric disorders. For ADHD and T2D, 
we observed strong enrichment in autophagy-related and metabolic stress pathways, 
including selective autophagy, SUMOylation, and TP53 regulation. These results point to 
systemic metabolic processes as a shared mechanism, which aligns with prior evidence 
linking ADHD to insulin resistance, oxidative stress, and energy metabolism 
abnormalities71,72. Overall, the enrichment profile suggests that metabolic vulnerability may 
represent key biological links between ADHD and T2D. In contrast, the SCZ & T2D overlap 
was enriched for pathways involved in protein homeostasis, chromatin organization, and 
immune regulation. These processes, including disruptions in protein turnover, epigenetic 
control, and neuroimmune signaling, may underlie both systemic and neurodevelopmental 
dysregulation in SCZ29. Taken together with the distinct enrichment profile observed for 
ADHD, our findings support the notion that ADHD and SCZ may follow different biological 
routes to cardiometabolic comorbidity. 
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In conclusion, we demonstrated how studying trivariate genetic overlaps can provide 
novel and more refined insights into the genetic etiology of multimorbidity. In doing so, we 
uncovered patterns of genetic overlap among psychiatric, cardiometabolic, and brain 
structural traits that are not detectable using traditional bivariate methods. Our findings 
highlight a substantial polygenic overlap between SCZ, T2D, and CT, suggesting that 
systemic processes such as neuroimmune signaling and cellular maintenance may 
contribute to their shared liability. In contrast, ADHD showed stronger genetic ties to SA and 
T2D, with enrichment in metabolic stress and autophagy-related pathways, pointing to a 
more direct, metabolically driven route to comorbidity. These disorder-specific signatures 
emphasize the importance of integrative, biologically informed approaches to understanding 
psychiatric–cardiometabolic comorbidity and may ultimately inform more targeted strategies 
for prevention and treatment.  
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Methods 

Participant cohorts 
This study sets out to disentangle genetic overlaps between mental disorders, 

cardiometabolic disease, and brain organization. The study of genetic overlap is based on 
genetic architecture represented by genome-wide association studies (GWAS) (Table 1). 
The GWAS schizophrenia was retrieved from the Psychiatric Genomics Consortium (PGC) 
and included 53,386 participants diagnosed with SCZ and 77,258 controls73. Similarly, 
GWAS of ADHD was retrieved from PGC and consisted of 38,691 participants with ADHD 
diagnosis and 186,843 controls74. The summary statistics of other psychiatric disorders are 
summarized in Table 1. The genetic architecture of T2D was based on data from 1,569,731 
controls and 242,283 cases75. CAD was represented by GWAS from the study of 181,522 
participants with CAD and 984,168 controls76. Finally, GWAS of CT were based on the UK 
Biobank (UKB) sample. We accessed UKB data under accession number 27412. The 
design, participant composition, and data collection protocols of the UKB have been 
described in detail elsewhere77. We selected 39,098 unrelated individuals (KING cutoff = 
0.0884)78 with T1 MRI data. All GWAS summary statistics are based on Human Genome 
Build 37 (GRCh37/hg19). 

To minimize the confounding effects of ancestral differences in linkage disequilibrium 
(LD) structure and due to the limited availability of sufficiently powered multi-ancestry 
samples, we restricted our analysis to individuals of European ancestry. We excluded 
variants within the extended major histocompatibility complex (MHC) region (chr6: 25–35 
Mb) for all subsequent analyses. We further excluded the 8p23 inversion region (chr8: 7.2–
12.5 Mb) and APOE locus (chr19:42–47 Mb) due to their high LD and complex structure. 
The local ethics committees approved all GWASs used in the current study, and all 
participants provided informed consent. Regional Committees for Medical Research Ethics - 
South-East Norway has evaluated the current protocol and found that no additional 
institutional review board approval was necessary because no individual data were used. 

Statistical analyses 

Calculating genetic correlation 
We applied cross-trait LDSC79 to estimate genetic correlations between psychiatric 

disorders and cardiometabolic diseases. In addition, we used univariate LDSC to estimate 
SNP-based heritability for each trait. GWAS summary statistics were processed following 
recommended guidelines, including standard “munging” procedures. Precalculated LD 
scores from the European 1000 Genomes reference cohort were used 
(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). P-values were 
corrected for multiple testing using the Benjamini–Yekutieli procedure for controlling the false 
discovery rate80. 

Quantifying trivariate genetic overlap 
To quantify the genetic overlap between psychiatric disorders, cardiometabolic 

disease and cortical morphology, we leveraged the trivariate MiXeR tool46. The trivariate 
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MiXeR model uses summary statistics from GWAS to quantify the polygenic overlap 
between three complex phenotypes beyond global genetic correlation. While genetic 
correlation is a popular approach for quantifying genetic overlap, it is restricted to detecting 
overlaps in pairs of phenotypes where most variants have effects in similar or opposing 
directions81. 

The trivariate MiXeR extends the widely used univariate MiXeR82 that calculates the 
number of genetic variants influencing a phenotype (i.e., polygenicity) and bivariate MiXeR 
model83 that quantifies the overlapping polygenic components between two phenotypes 
regardless of the effect directions. In our study, we also used univariate MiXeR to estimate 
the polygenicity of each phenotype individually prior to trivariate modeling. Despite the 
important insights that studying pairwise genetic overlaps brought12,14, genetic correlation 
and bivariate MiXeR cannot directly estimate genetic overlap across three phenotypes. 

Similarly to previous MiXeR implementations, the trivariate MiXeR decomposes the 
observed genetic effects into shared causal variants affecting multiple traits and unique 
causal variants affecting only one trait. By iteratively adjusting the model parameters, this 
tool identifies the configuration (number and size of shared/unique effects) that best fits the 
observed data, maximizing the likelihood of the summary statistics under the model. 
Therefore, we used this tool to estimate the total number of shared and unique trait-
influencing variants among psychiatric disorders, cardiometabolic disease and cortical 
morphology. Results presented in the main body of the article represent optimal estimates 
across 100 independent optimization runs, while results for each of the 100 runs are 
available in the Sup. Fig. 5. 

Estimating causal relationships 
We first conducted bidirectional Mendelian Randomization (MR) analyses to 

investigate potential causal relationships between pairs of psychiatric disorders, cortical 
morphology, and cardiometabolic diseases. MR was performed using the TwoSampleMR R 
package (v0.6.15) applied to GWAS summary statistics. Instrumental variables were 
selected as genome-wide significant SNPs (p < 5×10⁻�), and clumping was performed using 
PLINK with the following parameters: clump_p = 1, clump_r2 = 0.001, and clump_kb = 
10000, using the 1000 Genomes Phase 3 European reference panel (n = 503). All other 
settings were kept at default. Causal estimates were obtained using the Inverse Variance 
Weighted (IVW) method. All estimates with associated standard errors and p-values are 
available in Sup. Tab. 1. We also include estimates using weighted median84, MR-Egger85, 
Simple Mode, and Weighted Mode86 methods (Sup. Tab. 1). 

To determine whether brain morphology mediates the relationship between 
psychiatric and cardiometabolic traits, we conducted mediation analysis using the 
GenomicSEM R package (v0.0.5). We specified trivariate models with the psychiatric trait as 
the exposure, the cardiometabolic disease as the outcome, and cortical morphology as the 
mediator. SNP effect estimates and standard errors were extracted from GWAS summary 
statistics for each phenotype. We calculated direct, indirect, and total effects, and evaluated 
the significance of each path. 

Mapping shared genetic loci 
After the explorations of genetic overlap between multiple complex traits, we focused 

on the identification of shared SNPs among distinct traits. Specifically, ConjFDR can detect 
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loci jointly associated with two phenotypes (e.g., SCZ and T2D)81. ConjFDR is an extension 
of the condFDR tool estimating the probability that a genetic variant is a false positive for 
one trait, given its association with the other traits81. In other words, this method adjusts the 
ranking of test statistics for a primary phenotype by incorporating information from the 
association of the same genetic variants with a secondary phenotype. This re-ranking 
increases the power to detect genetic signals shared between phenotypes by leveraging 
pleiotropic effects. After calculating the condFDR for each trait pair, the resulting conjFDR is 
defined as the maximum of condFDR values across all traits being analyzed81,87. P-values 
are adjusted for inflation using a genomic inflation control method81,87. Consistent with 
previously published studies, we used thresholds of 0.01 and 0.05 for adjusted p-
values29,31,88. 

Variant-to-gene mapping via functional annotation 
We further analyzed genetic variants identified using conjFDR analysis at a threshold 

of conjFDR < 0.05. To reduce redundancy due to LD, we performed clumping on these 
SNPs using an LD threshold of r² < 0.6, resulting in a set of independent index variants. For 
each index SNP, we then identified all SNPs in high LD (r² ≥ 0.6) based on the 1000 
Genomes Project European reference panel, defining them as candidate SNPs. These 
candidate variants were mapped to genes using the Variant-to-Gene (V2G) pipeline from 
Open Targets Genetics89, which integrates evidence from expression and protein QTLs, 
chromatin conformation (e.g., promoter–enhancer interactions), in silico functional 
predictions, and genomic proximity to transcription start sites. We retained only gene 
assignments with a V2G score greater than 0.3, indicating moderate-to-strong functional 
support. 

Pathway enrichment analysis 
To gain insight into the biological mechanisms underlying the identified loci, we 

performed pathway enrichment analysis on the gene sets derived from each conjFDR 
analysis. Specifically, we used the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) to map the genes identified by OpenTargets to curated biological 
pathways90,91 . We focused on two major pathway databases: the Kyoto Encyclopedia of 
Genes and Genomes (KEGG)92 and Reactome93, which provide comprehensive annotations 
of molecular functions, biological processes, and disease-related pathways. For each of the 
four gene sets, enrichment was assessed separately using DAVID’s functional annotation 
tool. We calculated fold enrichment for each KEGG and Reactome pathway to determine the 
degree to which each pathway was overrepresented relative to what would be expected by 
chance. The resulting enrichment values provide an indication of the biological relevance of 
the gene sets to specific pathways.  
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Tables 
Table 1: GWAS summary statistics 
Overview of GWAS summary statistics used in the study. All analyses were restricted to 
individuals of European ancestry. Abbreviations: ADHD = attention-deficit/hyperactivity 
disorder, ASD = autism spectrum disorder, BIP = bipolar disorder, CAD = coronary artery 
disease, CT = cortical thickness, MDD = major depressive disorder, PGC = Psychiatric 
Genomics Consortium, SA = surface area, SCZ = schizophrenia, T2D = type 2 diabetes. 
 

Phenotype Source n cases (n controls) 

Psychiatric disorders 

ADHD PGC-ADHD74 38,691 (186,843) 

ASD iPSYCH-PGC94 18,381 (27,969) 

BIP PGC-BIP95 158,036 (2,796,499) 

MDD PGC-MDD96 135,458 (344,901) 

SCZ PGC-SCZ73 53,386 (77,258) 

Cardiometabolic disease 

CAD CARDIoGRAMplusC4D76 181,522 (984,168) 

T2D DIAGRAM75 242,283 (1,569,731) 

Cortical morphology 

CT UK Biobank77 39,098 

SA UK Biobank77 39,098 

Figure captions 
 
Figure 1: The distinct and shared genetic architecture of ADHD and SCZ 
A. ADHD and SCZ show differences in genetic architecture. We calculated genetic 
correlations using LDSC between all pairs of the five most common psychiatric disorders. 
The resulting heatmap is then re-represented as a network diagram where each node is a 
psychiatric disorder and each edge corresponds to genetic correlation. B. Diverging 
relationship with cardiometabolic disease. The heatmap displays genetic correlations 
between the five psychiatric disorders and two representatives of cardiometabolic disease 
and cortical morphology, i.e., coronary artery disease (CAD) and type 2 diabetes (T2D) as 
well cortical thickness (CT) and surface area (SA). Statistically significant correlations after 
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FDR correction are marked with asterisks. C. Genetic architecture of ADHD and SCZ. The 
outer ring shows the -log10(p-values) of SNP associations with ADHD, while the inner ring 
displays the -log10(p-values) for ADHD. The color gradient on the left represents SNP density 
across the genome. D. Heritability and polygenicity of analyzed traits. The bar plots display 
the estimated heritability estimated by LDSC and polygenicity estimated by univariate MiXeR 
of psychiatric disorders (SCZ, ADHD), cardiometabolic diseases (CAD, T2D), and cortical 
morphology (CT, SA). Heritability estimates for the disorders/diseases are presented on the 
liability scale, using population prevalence values consistent with those reported in 16. 
Polygenicity indicates the number (in thousands) of causal variants with the strongest effect 
sizes required to explain 90% of the SNP-based heritability. Collectively, the differences 
observed in genetic correlation analyses of SCZ and ADHD motivate further investigation 
into their genetic overlaps with cardiometabolic disease and cortical morphology. 
 
Figure 2: Trivariate overlap between psychiatric disorders, cardiometabolic disease 
and cortical morphology 
A. Genetic overlap between ADHD, SA, and cardiometabolic disease. Based on trivariate 
MiXeR analyses, the Venn diagrams illustrate the extent of genetic overlap between cortical 
morphology (i.e., SA), ADHD, and cardiometabolic traits (CAD and T2D). Only genetic 
overlaps exceeding 1% are annotated. The complete set of overlaps and standard errors are 
provided in Sup. Fig. 4. B. Genetic overlap between SCZ, CT, and cardiometabolic disease. 
Genetic overlaps between CT, SCZ, and the cardiometabolic traits CAD and T2D are 
presented using Venn diagrams. C. Trivariate analyses for all five psychiatric disorders. The 
first three columns display overlaps between psychiatric disorders, cortical morphology, and 
CAD, while the second three columns display overlaps between psychiatric disorders, 
cortical morphology, and T2D. Results are first presented for CT followed by SA. 
Hierarchical clustering of disorders highlight their similarities in terms of morphology and 
cardiometabolic overlaps, shown separately for CT and SA. D. Zooming in on trivariate 
overlaps. The heatmap shows the percentage of genetic overlap between each psychiatric 
disorder and cardiometabolic disease (CAD or T2D) that is also shared with either CT or SA. 
Higher values indicate greater trivariate convergence across psychiatric, cardiometabolic, 
and cortical morphology domains. The calculation is demonstrated on SCZ, T2D, and CT, 
where the trivariate overlap accounted for 23% of the genetic overlap between SCZ and 
T2D. E. Genetic overlap between cortical morphology and cardiometabolic disease. The bar 
plot illustrates the average proportion of shared genetic variants between cortical 
morphology (CT and SA) and cardiometabolic traits (T2D and CAD) across all trivariate 
MiXeR analyses. Error bars indicate 95% confidence intervals. Collectively, the presented 
analyses revealed substantial genetic overlap between SCZ, CT, and T2D. In contrast, 
ADHD displayed a distinct genetic pattern, with smaller trivariate overlaps. 
 
Figure 3: Causal and mediated genetic pathways from psychiatric traits to 
cardiometabolic risk 
A. Bivariate causal effect mapping. Bar plots display the magnitude and direction of 
estimated causal effects from inverse-variance weighted (IVW) Mendelian randomization 
(MR) analyses focused on SCZ and ADHD. Based on prior findings, we conducted a series 
of bivariate IVW MR analyses to assess causal relationships among ADHD, T2D, and SA, 
followed by a second set of analyses among SCZ, T2D, and CT. Error bars represent 
standard errors of the causal effect estimates. Associations with FDR-corrected p-values > 
0.05 are shown in grey. Full results are provided in Sup. Table 1. B. SA mediates the effect 
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of ADHD on T2D. Mediation model evaluating surface area (SA) as a mediator of the 
association between ADHD (exposure) and T2D (outcome). Path coefficients (β) and 
corresponding p-values are shown for direct and indirect effects. The total effect 
(c′�+�a�×�b) is reported below the model. A side bar indicates the proportion of the total 
effect attributable to the direct and indirect paths. C. CT does not mediate the effect of SCZ 
on T2D. Mediation model evaluating CT as a mediator between SCZ (exposure) and T2D 
(outcome), presented using the same structure as panel B. Presented results suggest that 
SA may partially mediate the genetic link between ADHD and T2D, whereas the association 
between SCZ and T2D likely reflects independent or parallel genetic pathways. 
 
Figure 4: Cross-trait genetic enrichment and shared loci 
We leverage the presented genetic overlaps to identify shared variants between 
cardiometabolic disease, psychiatric disorders, and cortical morphology. Specifically, we 
search for SNPs jointly associated between ADHD and SA (A), ADHD and T2D (B), SCZ 
and T2D (C), as well as SCZ and CT (D). For these four analyses, the Q-Q plot first 
compares observed (y-axis) and expected p-values (x-axis) to evaluate whether there is 
sufficient cross-trait enrichment of genetic associations, which is a prerequisite for 
conducting the conjFDR analysis. The diagonal line represents the expected distribution 
under the null hypothesis. The colored lines represent Q-Q plots for SNP subsets filtered by 
their association strength with cardiometabolic disease. Points above the diagonal indicate 
enrichment, where observed p-values are stronger (smaller) than expected, suggesting 
associations between traits or enrichment in specific regions. The associated Manhattan plot 
displays genetic variants shared by the respective two traits. Each Manhattan plot shows the 
–log10 transformed conjFDR values for each SNP on the y-axis. SNPs with conjFDR < 0.05 
(i.e., −log10 conjFDR > 1.3) are shown with enlarged data points. A black circle around the 
enlarged data points indicates the most significant SNP in each linkage disequilibrium block. 
The large number of shared SNPs across conjFDR analyses provides evidence for shared 
genetic pathways underlying multimorbidity between psychiatric and cardiometabolic 
disorders. 
 
Figure 5: Biological pathways underlying multimorbidity 
Genes mapped using FUMA from the four conjFDR analyses were assessed for pathway 
enrichment using the DAVID tool, focusing on KEGG and Reactome databases. The bar 
plots illustrate the top enriched biological pathways (up to ten per analysis) for genes 
associated with each of the four conjFDR results: genes mapped to SNPs jointly associated 
with ADHD and SA (A), ADHD and T2D (B), SCZ and T2D (C), and SCZ and CT (D). E. 
Comparison of shared genes and pathways. Each tile in the diagram represents a conjFDR 
analysis, and we examined the overlap in shared genes and enriched pathways between 
neighboring analyses. F. Gene overlaps visualized using an UpSet plot. The horizontal bar 
chart on the left displays the total number of identified genes for each conjFDR analysis. The 
intersection matrix at the center represents overlaps between the analyses, where colored 
dots indicate set membership and connected lines between dots denote intersections of 
multiple gene sets. The vertical bar chart above the matrix shows the size of each 
intersection. G. Overlap in biological pathways. The network diagram highlights the shared 
biological pathways across the gene sets. The four large nodes represent the four conjFDR 
analyses, with dots inside each node indicating biological pathways unique to that analysis. 
The thickness of the edges connecting pathways corresponds to their respective fold 
enrichment, illustrating the strength of the associations. Pathway enrichment analyses 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2025. ; https://doi.org/10.1101/2025.05.22.25328130doi: medRxiv preprint 

https://doi.org/10.1101/2025.05.22.25328130
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggested that TP53-related transcriptional regulation may represent a potential point of 
convergence between brain structure, psychiatric disorders, and cardiometabolic traits. 
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Data Availability 
All GWAS summary statistics used in this study are publicly available through their 

respective consortia or original publications, as detailed in Table 1. Tools used for genetic 
overlap, causal inference, and functional annotation are also publicly available: 

● cleansumstats (GWAS preprocessing): https://github.com/BioPsyk/cleansumstats 
● LDSC: https://github.com/bulik/ldsc, https://github.com/comorment/ldsc 
● Trivariate MiXeR: https://github.com/precimed/mix3r 
● TwoSampleMR: https://mrcieu.github.io/TwoSampleMR 
● GenomicSEM: https://github.com/GenomicSEM/GenomicSEM 
● conjFDR: https://github.com/precimed/pleiofdr 
● Open Targets Genetics (V2G mapping): https://genetics.opentargets.org/ 
● DAVID (pathway enrichment): https://davidbioinformatics.nih.gov/ 

All processed data and intermediate results (e.g., trivariate MiXeR outputs, mediation 
estimates, gene-pathway mappings) are available from the corresponding author upon 
reasonable request. 
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