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Supplementary Note 1: Group SELFIES representation

of edge SBUs

In this work, we use Group SELFIES1 strings to represent edge SBUs. In addition to the

semantically robust alphabet of SELFIES,2 we encode common substructures of known MOF

materials using Group tokens, as shown in Figure S1. These Group tokens were chosen to

be consistent with the functional groups used to augment / expand the diverse edge dataset

Figure S1: Group SELFIES tokens used to encode MOF edge SBUs. The Group SELFIES
token is provided in quotation marks above each substructure, along with the relevant SMILES
string. The *N notation represents the Nth attachment point, indicating how the group can par-
ticipate in bonding.
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of Yao et al.,3 which is the dataset of linkers we sampled from to train our deep dreaming

models (see the Dataset curation section in the main article). Note that functional groups

such as F, Cl, Br, and OH are represented by single SELFIES tokens ([F], [Cl], [Br], [O])

and thus do not require explicit Group tokens.

The decision to use Group SELFIES for the edge SBU was chiefly motivated by the

fact that relevant chemical substructures from the MOF seed (the initial structure to be

optimised) are rarely preserved in deep dreaming experiments when SELFIES2 strings are

used. For example, in Figure S2 we show how simple operations such as token substitution,

addition / subtraction, or shuffling, affects the molecular character of the initial seed. Impor-

tant scaffolds such as the aromatic rings are often lost after these operations are executed

on the SELFIES representation. Conversely, because pyridine and benzene are explicitly

encoded using the [:2pyridine] and [:0benzene] Group SELFIES tokens, respectively,

Figure S2: SELFIES vs Group SELFIES representation of edge SBUs. Taking the same
edge SBU as the initial seed structure, we encode both the SELFIES and Group SELFIES rep-
resentations. Three separate operations are performed on the seed encodings: (1) a single token
is substituted with another token randomly (blue arrow); (2) a single token is randomly inserted
or deleted (red arrow); (3) the original encoding is randomly shuffled (green arrow). Fr is a pseu-
doatom used to represent the connection points of the linker.
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they are more frequently observed in the decoded structures. This simple example is used as

a proxy demonstration of the deep dreaming experiment, where seed structures are subject

to multiple token substitutions, additions, and subtractions during optimisation.
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Supplementary Note 2: MOF string vocabulary

Table S1: Edge SBU Group SELFIES token vocabulary.

[nop] [#Branch] [#C] [#N]

[->] [#:1methyl_amine] [:0O_nitrile] [:0alkene]

[:0amide] [:0benzene] [:0benzenealcohol] [:0benzenediol]

[:0carboxylic_acid] [:0imidazole] [:0isocyanate] [:0methyl]

[:0methyl_amine] [:0nitrile] [:0phosphoric_acid] [:0propyl]

[:0pyridine] [:0pyrimidine] [:0sulfonic_acid] [:1alkyne]

[:1amide] [:1benzenealcohol] [:1benzenediol] [:1carboxylic_acid]

[:1imidazole] [:1methyl_amine] [:1pyridine] [:1pyrimidine]

[:1sulfonic_acid] [:2benzenealcohol] [:2benzenediol] [:2imidazole]

[:2pyridine] [:2pyrimidine] [:3benzenealcohol] [:3benzenediol]

[:3imidazole] [:3pyridine] [:3pyrimidine] [:4benzenealcohol]

[:4benzenediol] [:4pyridine] [:5benzenealcohol] [:5benzenediol]

[:=0amide] [:=0methyl_amine] [:=1methyl_amine] [=Branch]

[=C] [=N] [=O] [=P]

[=Ring1] [=Ring2] [=S] [Br]

[Branch] [C] [Cl] [F]

[FrH0] [N] [O] [P]

[Ring1] [Ring2] [SH2] [S]

[pop]
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Table S2: Pormake nodes used to construct the training set.

N100 N101 N105 N108 N109 N112 N115 N117
N125 N127 N128 N133 N136 N137 N139 N143
N144 N146 N147 N148 N151 N152 N153 N156
N158 N161 N162 N164 N167 N17 N170 N173
N174 N178 N180 N183 N184 N186 N188 N192
N193 N194 N2 N200 N205 N206 N209 N211
N213 N214 N219 N220 N222 N233 N234 N235
N238 N240 N245 N246 N250 N254 N256 N257
N259 N262 N263 N265 N267 N27 N274 N282
N283 N284 N288 N29 N292 N295 N298 N302
N304 N307 N308 N31 N310 N314 N315 N317
N32 N321 N324 N328 N330 N332 N335 N336
N337 N34 N341 N342 N343 N346 N348 N35
N350 N355 N359 N36 N360 N364 N365 N366
N37 N371 N372 N375 N376 N379 N381 N383
N390 N392 N393 N398 N409 N411 N415 N417
N42 N424 N425 N432 N434 N435 N437 N440
N445 N447 N448 N45 N450 N455 N461 N464
N47 N470 N472 N480 N483 N485 N486 N489
N491 N492 N493 N494 N50 N500 N503 N505
N507 N508 N51 N512 N513 N515 N519 N520
N521 N524 N525 N526 N529 N533 N534 N538
N539 N540 N543 N545 N547 N549 N55 N551
N553 N555 N556 N557 N559 N560 N561 N569
N572 N574 N579 N580 N581 N583 N585 N591
N593 N595 N598 N60 N601 N606 N611 N613
N618 N621 N624 N627 N628 N641 N645 N65
N654 N657 N666 N668 N678 N68 N680 N681
N682 N689 N691 N694 N696 N702 N708 N709
N713 N715 N717 N718 N719 N76 N85 N87
N89 N90 N93 N96

7



Table S3: Node SBU SELFIES token vocabulary.

[nop] [#Branch1] [#Branch2] [#C] [&&] [=Branch1]

[=Branch2] [=C] [=N] [=O] [=P] [=Ring1]

[=Ring2] [=S] [Ag] [Al] [B] [Be]

[Bi] [Br] [Branch1] [Branch2] [C] [Cd]

[Ce] [Cl] [Co] [Cr] [Cu] [Dy]

[Er] [Eu] [F] [Fe] [Fr] [Gd]

[Ge] [Ho] [I] [In] [La] [Lu]

[Mg] [Mn] [Mo] [N] [Nd] [Ni]

[O] [P] [Pd] [Pr] [Pt] [Rh]

[Ring1] [Ring2] [S] [Sc] [Si] [Sm]

[Tb] [Tm] [U] [Y] [Yb] [Zn]
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Table S4: Topology (tokens) which are used to construct MOFs in pormake.

[acs] [ana] [bcg] [bcu] [bnn] [cag]

[cds] [crb] [crs] [dia-f] [dia] [dmp]

[ecu] [eta] [gis] [gme] [hex] [lcy]

[lon] [lvt-a] [lvt] [nbo-a] [nbo] [neb]

[pcu] [qtz] [reo] [rho] [rob] [sod]

[sra] [srs] [sxb] [ths] [unc] [utk]

[utp]
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Supplementary Note 3: Deep dreaming regression per-

formance plots

We report the regression performance of our model, trained using 10,000 data points, in

Table S5. Evidently, the deep dreaming architecture is capable of predicting out-of-sample

testing data with good accuracy for a diverse set of material properties. Almost perfect

agreement is observed between the reference and predicted cp values. Despite the fact that

no 3D coordinate information is encoded into the MOF strings, the model shows respectable

accuracy in predicting the GSA and VF. For the bandgap, QCO2 , and SCO2/N2 , the agreement

between “ground truth” data and the model predictions are more modest. Learning curves

for these properties indicate that adding more training data would likely lead to better

performance. However, we found 10,000 training points to be acceptable for the purposes of

our investigation. Parity plots of the model predictions are provided in Figure S3.

Table S5: Regression metrics for the predictive performance of the deep dreaming model
for several MOF properties.a R2 is the coefficient of determination, SRCC is the Spearman
ranking correlation coefficient, and MAE is the mean absolute error.

GSA VF cp Bandgap QCO2 SCO2/N2

(m2 g-1) (-) (J g-1 K-1) (eV) (kJ mol-1) (-)
R2 0.93 0.91 0.99 0.71 0.76 0.69
SRCC 0.96 0.95 0.99 0.83 0.90 0.85
MAE 368.45 0.05 0.01 0.34 4.14 2.24

aNote that a separate model is trained for each property.
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Supplementary Note 4: Linker validity constraints

By design, all molecules generated during deep dreaming are chemically valid, however they

may not necessarily be valid from a linker chemistry point of view. Two connection points are

required to form bonds with the node SBUs in a given topology. To facilitate the formation

of these connection points, we include an additional loss term to the target losses (computed

as the mean squared target error) during the deep dreaming process. As each token position

is represented by a probability distribution across the edge SBU vocabulary, we can represent

the “probability mass” of each token as the sum of their continuous, noisy one-hot activations

in each token position, which we will denote ptoken. We focus on the token representing a

connection site — labelled as [FrH0] in our vocabulary — such that the pFr allocated to this

token across the sequence corresponds to the effective number of connection points. Rather

than enforcing a hard constraint by decoding to a discrete molecule and counting the exact

number of francium pseudoatoms, we introduce a smooth penalty based on a “soft count” of

[FrH0]. Specifically, we apply a quadratic penalty, α(pFr−2)2, to discourage deviations from

the desired count of two connection points. Because pFr remains a real-valued, differentiable

function of the underlying continuous representation, the gradient is well-defined even when

pFr is near 2. This preserves a smooth gradient signal throughout deep dreaming, while still

yielding valid, integer-valued molecular compositions upon decoding.

It is also important that these connection points do not arise too close together to avoid

the formation of unphysical structures. To inform our decision on what constitutes a phys-

ically meaningful distance between connection points, we consider the edge dataset used to

train our model, which was obtained from Yao et al.3 Yao et al. randomly functionalised

linkers extracted from the CoRE MOF database,4 which are a subset of MOFs that have

been experimentally realised and thus represent linkers with physically meaningful connec-

tion point distances. We therefore compute the distance between connection points based on

graph connectivity for these linkers and normalise them relative to the maximum distance
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Figure S3: Parity plots of the deep dreaming model out-of-sample predictive perfor-
mance for several MOF properties. Hexagonal binning is used to represent the density of
points, with dark colours representing a high density and light colours representing a low density.
The top row shows the models trained on the noise-free MOF strings, while the bottom row shows
the performance of the models trained on noisy (k = 0.6) representations. Regression metrics,
such as the coefficient of determination (R2), Spearman rank correlation coefficient (SRCC), and
mean absolute error (MAE), are displayed in each subplot. The line of parity is given by the solid
diagonal line. Note that 1,000 out-of-sample data points are used to generate these figures and
derive the relevant statistics. Source data are provided as a Source Data file.
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path of the molecule. Most of the linkers are formed by connection points with normalised

distances ≥ 0.6, as shown in Figure S4. We assign this as our constraint for linker validity.

Figure S4: Normalised graph distances between connection points in linkers obtained from
the dataset of Yao et al.3 Source data are provided as a Source Data file.
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Supplementary Note 5: Shifting property distributions

Figure S5: Single objective optimisation of several MOF properties. Here we show the
optimisation results for 1,000 seed MOFs in each case study. Blue distributions refer to property
values that are minimised, while red distributions refer to property values that are maximised.
Typically, we wish to maximise GSA and VF to improve the adsorption properties of MOFs. The
cp of MOFs may be minimised or maximised, depending on the target application. Low bandgap
MOFs are desirable for the next generation of semiconductors, and so this property value is min-
imised. In the context of direct air capture applications, we wish maximise the QCO2 and SCO2/N2

.
Note that the “ground truth” values are shown in each of these distributions, recomputed using
either high-fidelity simulation or via machine learning surrogates (see MOF property determination
in the Methods section in the main article). Source data are provided as a Source Data file.

14



Impact of structural relaxation

Given the hypothetical nature of the generated MOFs, their crystalline structures are unlikely

to be perfect. Therefore, structural relaxation is generally required to optimise their atomic

coordinates and achieve more realistic configurations. Although the results in the main article

are derived from unrelaxed structures to initially showcase the deep dreaming approach for

inverse MOF design, incorporating this additional post-processing step will likely be required

before translating hypothetical MOFs into real materials.

To evaluate the impact of this optimisation on MOF properties, we selected a represen-

tative subset of n = 100 MOFs from the distributions presented in Figure S5 (of size n =

1,000). We fitted a probability density function to these distributions and drew samples that

retained the features of the original datasets. These MOFs were then structurally optimised

using the UFF forcefield as implemented in the Forcite Module of Materials Studio 2019,5

with property values recalculated as outlined in the MOF property determination section of

the main article.

In the case studies for optimising cp, our findings reveal that structural relaxation has a

minimal impact on the overall results. The mean absolute error (MAE) between the relaxed

and unrelaxed structures is approximately 0.03 J g-1 K-1, indicating a deviation of around

3.75%. This comparison is detailed in Figure S6. However, more significant differences

are observed in other parameters, including the bandgap, QCO2 , SCO2/N2 , and gravitational

surface area (GSA). The respective MAEs for these parameters are about 0.64 eV, 5.94 kJ

mol-1, 0.79, and 288.5 m2 g-1, translating to average deviations ranging from 15% to 30%.

These differences are comparable to the prediction errors of our ML models, as reported in

Table S5. Most notably, the MAE for pore volume (VF), as shown in Figure S6, is 0.27,

which is approximately five times greater than the prediction errors in Table S5.

Evidently, structural relaxation plays a critical role in accurately evaluating properties

that solely rely on the exact atomic coordinates (i.e., VF), an important role for other

properties that depend on both the chemistry and structural features (i.e., the bandgap,
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QCO2 , and SCO2/N2), and a minimal role for properties predominantly determined by the

material’s chemistry, such as the cp.
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Figure S6: Impact of structural optimisation on MOF property distributions. We strate-
gically sampled 100 MOFs (middle column) from the original dreamed distributions of size 1,000
(left column), which are obtained from unrelaxed structures. We show how these sampled distri-
butions are affected by structural relaxation in the right column. Source data are provided as a
Source Data file. 17



Supplementary Note 6: Automated interpretation of

transmutation pathways

To help uncover important design rules, we have provided functionality that automates the

interpretation and visualisation of deep dreaming pathways. This is demonstrated in a case

study focussed on minimising the cp of a MOF.

In Figure S7, we show how, in charting a path towards a MOF with lower cp, the model

opts to retain the pyridine substructure of the seed linker while appending bromine atoms

to the molecular backbone. This is noted as a consistent strategy in this particular opti-

misation, where the model identifies the important tokens utilised at steps between valid

linker transmutations. The intermediate steps are the collection of modifications suggested

by the model that are invalid, according to our definition of linker validity in Supplemen-

tary Note 4. In particular, [Br] tokens and nitrogen-containing Group tokens (such as

[pyrimidine] and [pyridine]) are considered important in these intermediate pathways.

Importantly, different pathways may emerge from the same seed structure under different

noise initialisations. As shown in Figure S8, this pathway favours sulphur and chlorine

additions, while another pathway (in Figure S9) prefers the addition of sulphur followed by

bromine. These visualisations illustrate how the same optimisation objective can be achieved

through multiple distinct routes.
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Figure S7: This figure illustrates the valid transmutation pathway in a snake-like pattern, from
left to right, starting from the seed linker to the final optimised linker. At each step, we compute
normalised attention score distributions for the tokens of molecules suggested by the model to
traverse one valid transmutation to the next. These scores are used to evaluate the importance of
each token, with the median values plotted in descending order to highlight their relative importance
in the intermediate pathways. Additionally, the target property value is recorded at each valid step,
demonstrating how it changes in response to the transmutations. In this example, the bromine
token consistently ranks among the top two most important tokens, reflecting its critical role in
the desired objective of minimising the cp of the seed MOF.
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Figure S8: This figure illustrates an example whereby, in order to minimise the cp of a seed MOF,
the model charts a pathway that considers sulphur and chlorine tokens as important tokens in the
first few transmutations, followed by the pyrimidine group token, chlorine, and sulphur SELFIES
tokens in the last few transmutations. The importance of these tokens manifest in the decoded
structures, whereby we see sulphur-, chlorine-, and nitrogen-containing groups as a common strategy
in the optimisation pathway.
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Figure S9: This figure illustrates an example whereby, in order to minimise the cp of a seed MOF,
the model charts a pathway that considers sulphur- and nitrogen-containing tokens as important
transmutations in the first instance, followed by the importance of bromine tokens in the last
transmutation. As in the previous case studies, the importance of these tokens manifest in the
valid decoded molecules.
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Supplementary Note 7: Model uncertainty quantifica-

tion

Deep dreaming relies on using a regression model to reverse engineer new MOFs. These

architectures are typically designed to interpolate within the range of data they have been

exposed to during training. When tasked with predicting properties or generating structures

that are outside this range, there will invariably be some challenges with extrapolation.6

To illustrate the novelty of the linkers optimised for the cp case study in the main article

(Shifting property distributions section), we employed a t-SNE projection to visualise the

chemical space coverage relative to the training set. This revealed that our dreamed linkers

can map to points far from the training manifold. Here, we group MOFs in the dreamed

distributions based on the Tanimoto similarity of the linker to their nearest neighbour linker

in the training set and computed the average prediction errors within each group. Our

findings, depicted in Figure S10, indicate that MOFs with lower Tanimoto similarity (i.e.,

with features more dissimilar to the training set) exhibit greater prediction errors compared

to those with higher similarity. This observation highlights the regions where the model’s

predictions are less reliable.

Figure S10: Prediction mean absolute error (MAE) for cp-optimised MOFs, grouped according to
the Tanimoto similarity of their dreamed linkers relative to their nearest neighbour linker in the
training dataset. MOFs with lower Tanimoto similarities show higher prediction MAEs. We use ∼
2,000 data points to generate this figure. Source data are provided as a Source Data file.
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Figure S11: The uncertainty in the deep dreaming model predictions, grouped according to the
Tanimoto similarity of their dreamed linkers relative to their nearest neighbour linker in the training
dataset. We use ∼ 2,000 data points to create this figure. Source data are provided as a Source
Data file.

To address the issue of generalisation, we can adopt “uncertainty-aware” deep dreaming

models by implementing an uncertainty quantification approach. For example, we train 10

deep dreaming models using different training sets, resampled with replacement, and esti-

mate the uncertainty in our model using the variance in the predictions of the ensemble.

By grouping these uncertainty estimates by Tanimoto similarities, similar to Figure S10, we

find that this method is fairly effective at differentiating between regions of high and low un-

certainty (Figure S11). This additional layer of uncertainty quantification provides valuable

insights into the model’s reliability across various chemical spaces. It also supports a more

informed exploration of novel chemical spaces through an iterative generative and training

feedback loop. Specifically, samples identified with high uncertainty could be prioritised for

inclusion in the training set in subsequent model iterations, enhancing the model’s generalis-

ability. By incorporating these strategies, practitioners may expand the applicability beyond

the initial training domain, which, in turn, can facilitate more reliable MOF design.
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Supplementary Note 8: Multiobjective optimisation of

uncorrelated properties

In addition to an appreciable heat of CO2 adsorption at infinite dilution, QCO2 , MOFs with

low gravimetric heat capacities, cp, are desired for direct air capture (DAC) applications.

Therefore, as a supplement to the multiobjective case study of QCO2 and SCO2/N2 in the main

article, we seek here to minimise cp and maximise QCO2 simultaneously. This optimisation

problem is more challenging as cp and QCO2 are relatively uncorrelated (i.e., a Pearson

correlation of 0.24 is computed from the training data) compared to QCO2 and SCO2/N2

(with a Pearson correlation of 0.94). In Figure S12, we show the dreamed distributions

obtained after optimising 100 MOFs. We observe similar shifts in the multiobjective property

distributions compared to the single objective case studies shown in Figure S5. Over 80%

of the dreamed MOFs show improved material properties for both cp and QCO2 compared

to their seed structures, demonstrating that both properties are indeed being optimised

simultaneously.

Figure S12: Multiobjective optimisation of cp and QCO2. From a seed distribution of 100
MOFs, (a) and (b) show the dreamed distributions obtained from minimising cp and maximising
QCO2 simultaneously. Note that these distributions show the recomputed “ground truth” values
obtained from the ML model of Moosavi et al.7 (for cp) and molecular simulation (for QCO2) using
unrelaxed crystal structures. Source data are provided as a Source Data file.

24



Supplementary Note 9: Deep dreaming compared to

other generative modelling approaches

Given the complexity of reticular materials relative to other, simpler molecules and materi-

als (such as small inorganic crystals), inverse design of complete MOF structures at atomic

resolution has not yet been achieved. This arises for several reasons: (1) organic-inorganic

complexes like MOFs are comprised by diverse element types compared to small organic

molecules, which usually only contain C, N, O, and H; (2) direct optimisation of 3D crystal

structures has been rare due to the challenges in obtaining a continuous representation; (3)

MOF unit cells are much larger than small inorganic crystals (on the order of 102–103 as op-

posed to 101); and (4) there are complex chemistry constraints associated with metal clusters

that typically preclude the use of atomic-scale generative modelling. It is therefore common

to abstract the representation of MOFs to the level of structural building units (SBUs), and

deploy inverse design principles towards optimising these SBUs and their connectivity (i.e.,

the topology).

Focussing on this coarse-grained representation of MOFs, there are two classes of ap-

proaches to inverse design worth differentiating. The first class belongs to what we call

”SBU library” methods: these seek to find the optimal combination of SBUs and topologies

from a library of predetermined building blocks and topological nets. This may be achieved

with the use of genetic algorithms,8 GFlowNets,9 and diffusion models,10,11 for example. The

other class of generative models, which our MOF dreaming approach belongs to, are those

that seek to generate novel (linker) building blocks. This may be the sole focus of the inverse

design, as in our study, or it may be complimented by an additional search for optimal node

SBUs and topological nets, as in other studies. The relevant works in this context are by Yao

et al.3 who developed a generative model based on the principles of variational autoencoders,

Park et al.12 who utilise diffusion models and regression models for MOF design, and Park

et al.13 who use transformers and reinforcement learning.
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While the objective of inverse design remains consistent, a systematic benchmarking

effort with precedent models is not possible, currently. This limitation stems partly from

the diversity in the datasets used for training, the design focus, optimisation strategies, and

the target KPIs, which can vary widely. More critically, the quality of samples produced by

generative models remains unquantifiable, since a clear definition of ”quality” for MOFs has

yet to be established. For instance, as we explore in the main article, practical aspects like

the synthesisability of MOFs still lacks a clear framework for thorough evaluation within the

MOF community. We must therefore be cautious in our selection of parameters and models

when making comparisons.

Here, we compare in more detail the differences between our MOF dreaming model and

generative models that belong to the second class of inverse design approaches. Although a

thorough assessment of sample quality is currently unfeasible, we can still make meaningful

quantitative comparisons based on criteria such as the training requirements (number of

Table S6: Deep dreaming compared to other generative modelling approaches for MOF
design.

Deep dream
(this work)

Sm-VAE3 GHP-
MOFassemble12

RL transformer13

Training
requirements

12K labelled 45K labelled
∼2M unlabelled

∼300K unlabelled
organic molecules
∼137K labelled
MOF structures

24-33K labelled
∼1.9M unlabelled

Design focus Linker Full MOF Linker Full MOF

Unconditional or
targeted
generation?

Targeted
generation
only

Both Unconditional
generation only

Both

Optimisation
approach:

• scope

• strategy

• chemical space

• local

• gradient-
based

• real

• local

• gradient-based

• latent

N/Aa

• global

• reinforcement
learning

• real

Validity (%) 95.5 61.5 15.6 69

Uniqueness (%) 99.4 99.7 67.5 79
a There is no direct optimisation of structures in this approach. The authors generate linkers via

unconditional diffusion, construct MOFs with these linkers, and then screen for a desired material property
afterwards.
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labelled and unlabelled data points) and the validity / uniqueness of the structures generated.

Importantly, a structure that is ”valid” does not necessarily mean ”realistic”, and we discuss

more on what constitutes a ”realistic” structure in the main article. However, the ”validity”

of MOFs generated through inverse design typically refers to whether the correct reticular

information could be sampled, i.e., its CIF file could successfully be constructed and, in some

cases, whether the 3D atomic coordinates of the MOF could be optimised through structural

relaxation. ”Uniqueness” is often related to how many non-duplicate organic linkers are

produced in the generative process. Where possible, we make comparisons between models

on a consistent basis in these coordinates in Table S6, and reflect on the qualitative differences

between each approach below.

Deep dreaming (this work)

• Summary: Benefits: Deep dreaming requires the lowest training requirements of all

the models considered in Table S6. MOFs are also generated with the highest validity.

Direct optimisation of these linkers occurs within the real chemical space, which helps

reveal what the model has learned of the structure-property relationship. Our model

is also useful because many researchers develop machine learning models for property

predictions. By leveraging our approach, users can create generative strategies on top

of existing models, provided that the MOFs are encoded using molecular strings. This

capability enhances the utility of current predictive models by enabling the generation

of new MOF structures that meet specific design criteria. Drawbacks: its design focus

is limited to MOF linkers, and the algorithm used to optimise these linkers relies on

gradient-descent, which is local in scope.

• Overview: The model architecture is described in full detail in the main article.

• Training requirements: Relative to other generative approaches, our method is

relatively ”light-weight”, in that only 12,000 labelled MOF structures were used to
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achieve good regression performance (Figure S3). As the same architecture is used for

the task of inverse design, the full training requirements are embodied by the dataset

needed for the regression task. Our training set was generated using pormake, as

described in the methodology of the main article.

• Design focus: Metal clusters are not amicable to continuous differentiation in the

same way that MOF linkers are. For this reason, our design focus has been on linker

design, while keeping the node and topology fixed. By focussing only on the linker

representation — which is encoded using a 100% robust molecular string and is op-

timised to always guarantee a valid linker — we are able to design MOFs with very

high success rate (∼96% validity, see Validity discussion below). Nevertheless, this

benefit is counterbalanced by its more limited (local) scope, which we discuss more

about below.

• Unconditional or targeted generation: Deep dreaming differs from typical gener-

ative models. Our approach does not learn to unconditionally generate samples that

follow a training distribution like, for example, the Sm-VAE or RL transformer models.

Our model only performs conditional (targeted) generation, as we learn a mapping be-

tween structures and their properties first (f(X) → ŷ) and then invert the architecture

to obtain new MOFs (f(ŷ) → X) with improved property values. To do this, we must

always define a value ŷ and optimise X towards this value.

• Optimisation approach: As described in the main article, we use gradient-based

algorithms to optimise the linker representations, which are local in scope. This opti-

misation does, however, occur in the real chemical space rather than within a latent

space, which is a notable advantage of deep dreaming due to its inherent interpretabil-

ity.

• Validity: In our work, we define a MOF as valid if: (1) its 3D coordinate information

is successfully generated and saved in CIF format from its optimised MOF string
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representation, and (2) the CIF file successfully undergoes structural relaxation. We

report a validity of 95.5% based on the cmin
p @ 10K case study (see Table 1 in the

main article). The main reason we create ∼5% structures that are invalid is due to

step (1) above. Specifically, despite the robustness of SELFIES and our optimisation

algorithm only retaining valid linkers (see Supplementary note 4), we can fail to embed

(use distance geometry to obtain the initial 3D coordinates for a molecule) the linker

molecule from its string-based representation using RDKit.14 This means there are no

conformers available for generating the appropriate 3D coordinates in XYZ format,

which is needed to construct a CIF file using pormake.

• Uniqueness: For the 10,000 MOF linkers optimised in the cmin
p @ 10K case study,

99.4% of them are unique (as reported in Table 1 of the main article).

Sm-VAE

• Summary: Benefits: Sm-VAE is capable of unconditional and conditional generation

of MOFs, and can optimise the full MOF structure (topology, node, and chemical

linker). Also, because of its well-organised latent space, Sm-VAE is capable of inter-

polating between known structures, or exploring local latent chemical spaces based on

distance measures (MOFs that are closer in the latent space have similar features).

In principle, global optimisation algorithms can be used to optimise MOFs within the

latent space of Sm-VAE, however only local gradient-based optimisation is explored in

their work. Drawbacks: Sm-VAE has the greatest training requirements of the models

considered in Table S6. The structural validity of MOFs sampled is also relatively low

at 61.5% because both the reticular information and the linker SELFIES representation

is optimised simultaneously.

• Overview: Sm-VAE (supramolecular variational autoencoder) by Yao et al.3 is built

on the principles of a VAE, which consists of an encoder and a decoder. The encoder
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compresses the input data — in this case, a string representation known as reticular

framework (RF) codes, which decomposes the frameworks into chemical linkers (as

SELFIES strings), (in)organic nodes, and topologies (as categorical variables) — into

a lower-dimensional latent space, and the decoder reconstructs the data from this la-

tent space. Once properly trained, sampling from the learned latent space recovers a

distribution of materials that follows the training distribution, i.e., one can uncondi-

tionally generate new MOF structures that resemble those used to train the model.

As the latent space is a vector space (and is therefore differentiable, similar to deep

dreaming’s vectorised representation within the real chemical space), it is amicable

to continuous optimisation, i.e., one can bias the generative process to produce new

MOF structures with targeted properties. To achieve this, one must incorporate some

information on the structure-property mapping within the model itself. As such, Yao

et al.3 train Sm-VAE on a large dataset of unlabelled frameworks and a smaller dataset

with property labels, optimising the model to predict properties effectively. Property-

guided optimisation then occurs within the latent space using a Gaussian process (GP)

model, trained on the latent vectors of MOFs and their property values, to search for

new MOFs with improved properties.

• Training requirements: In order to (unconditionally) generate realistic samples

(MOFs), approximately 2 million unlabelled MOF structures were needed to train the

model. To incorporate information on the structure-property mappings, 45,000 MOFs

were labelled with the relevant property values. Sm-VAE therefore has the highest

training requirements of the models considered in Table S6. Both the labelled and

unlabelled MOF structures were generated in-house with an augmented linker dataset

(of ∼300,000 linkers) and a limited number of nodes / topologies using the ToBaCCo15

constructor.

• Design focus: Because the full RF code is projected to a continuous latent space,
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the entire MOF structure (topology code, the category of the nodes, and the SELFIES

representation of the linker) can be optimised.

• Unconditional or targeted generation: As discussed above, both unconditional

and conditional generation can be achieved.

• Optimisation approach: A GP predictor model is used to locally optimise MOFs

within the latent space of the Sm-VAE model using gradient-based algorithms.

• Validity: Yao et al.3 report that randomly sampling 10,000 points from the trained

latent space of Sm-VAE (also referred to as the prior validity) recovers approximately

6,150 valid RF codes (i.e., the correct reticular information paired with valid SMILES

strings for the organic linker). The authors also report that, of the valid RF codes

generated by unconditional sampling, 99.6% of them are successfully reconstructed by

the Sm-VAE model (otherwise referred to as the posterior validity). We take the overall

structural validity of MOFs within this framework to simply be the prior validity of

61.5%, given how high the posterior validity is (i.e., we assume the posterior validity

to be 100%, and that all MOFs would successfully undergo structural relaxation).

• Uniqueness: A uniqueness metric was not reported by Yao et al.3 However, by run-

ning their code (https://doi.org/10.24433/CO.8185164.v1) and reproducing the

results of their original publication, we are able to recover the raw reticular framework

(RF) codes generated from their prior validity checks. 99.7% of the (valid) SMILES

strings that encode the MOF linkers are unique, i.e., 99.7% of 6,150 linkers.

GHP-MOFassemble

• Summary: Benefits: GHP-MOFassemble is capable of generating novel linker chemistries

at an atomic level directly in 3D coordinates. The approach also relies on available

datasets and models for training: the diffusion model (used for generating linkers) is
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trained on standard benchmark datasets (such as ZINC, CASF, and GEOM), and the

property predictor is trained on a separate labelled MOF dataset. This is less cumber-

some than producing the training data from scratch. Drawbacks: The design focus is

rather limited, as it only considers 3 different inorganic nodes and a single topology.

There is also no capability for targeted generation — the performance of MOFs must

be screened separately rather than directly optimised. The validity and uniqueness

metrics for this approach are also the lowest out of all models in Table S6.

• Overview: GHP-MOFassemble presents a multistep approach towards discovering

new MOFs with enhanced CO2 capture capabilities. The process begins with de-

composing high-performing MOF linkers from an existing dataset into molecular frag-

ments. Using the diffusion model DiffLinker,16 new MOF linkers are generated by

bridging these fragments and evaluating them for synthesisability, validity, and unique-

ness. Valid linkers are then assembled with pre-selected metal nodes into novel MOF

structures. The performance of these MOFs for carbon capture applications are then

screened in a separate step using a pre-trained modified Crystal Graph Convolutional

Neural Network (CGCNN).

• Training requirements: GHP-MOFassemble relies on two separate pre-trained mod-

ules for (1) MOF linker generation, and (2) MOF property prediction. MOF linkers

are generated using DiffLinker, which is a diffusion model trained on the order of

105 organic molecules from datasets such as ZINC (https://zenodo.org/records/

7121271), CASF (https://zenodo.org/records/7121264), and GEOM (https://

zenodo.org/records/7121278). For MOF property prediction, Park et al.12 use a

pre-trained CGCNN, trained on approximately 137,000 labelled MOF structures from

the hMOF dataset of Bobbit et al.,17 to screen for CO2 adsorption capacities at 0.1

bar.

• Design focus: The main focus is towards generating novel linker chemistries. The
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authors do not actively search for optimal MOF nodes or topologies.

• Unconditional or targeted generation: As no information on the structure-property

mapping is posited into DiffLinker, there is no capability for targeted generation. Only

unconditional generation of organic linkers is possible within this approach.

• Optimisation approach: There is no direct optimisation of MOFs in this work.

• Validity: The value of 15.6% reported in Table S6 is calculated directly from the dis-

cussion of Park et al.:12 the authors constructed 120,000 MOFs by randomly sampling

from 12,305 valid linkers generated by the DiffLinker16 model and combined these link-

ers with one of three common inorganic node SBUs from the hMOF dataset of Bobbit

et al.17 Of these 120,000 MOFs, only 18,770 MOFs (15.6%) are deemed valid based on:

(1) interatomic distance checks, and (2) the number of structures that are amicable to

structural relaxation using the UFF4MOF18,19 forcefield.

• Uniqueness: We compute the uniqueness of generated linkers in Table S6 by referring

to Table 4 in the original article of Park et al.12 Specifically, the authors report the

fraction of unique linkers amongst various subsets of the full 12,305 linkers generated

by DiffLinker. We therefore computed the number of unique linkers within each subset,

sum them, and then divide this number by 12,305 to obtain a percentage of 67.5%.

RL transformer

• Summary: Benefits: RL transformer by Park et al.13 can optimise full MOF struc-

tures using a global optimisation strategy (reinforcement learning). This optimisation

also occurs within the real chemical space, which is more interpretable than, for ex-

ample, the Sm-VAE optimisation strategy. Drawbacks: The training requirements are

quite similar to Sm-VAE (large-scale self-supervised learning on millions of unlabelled

structures, and then fine-tuning using smaller subsets of labelled structures). As the
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generator utilises a batch of scaffolds to construct organic linkers, the uniqueness met-

ric is relatively low compared to deep dreaming and Sm-VAE. This more coarse-grained

approach also means that linkers are not optimised with atomic resolution.

• Overview: The reinforcement learning (RL) transformer approach by Park et al.13

represents MOF structures similar to Sm-VAE: metal nodes and topologies are encoded

as categorical variables, and organic linkers are encoded using SELFIES strings. The

framework comprises two main components: (1) a transformer generator (acting as

the agent), which creates new MOFs by selecting topologies and metal nodes sequen-

tially, and then generates organic linkers using a scaffold-based approach where up to 4

chemically semantic fragments are joined to create new linker scaffolds. (2) The predic-

tor, functioning as the environment, evaluates these generated structures to estimate

their CO2 capture performance (i.e., CO2 heat of adsorption at infinite dilution and

CO2/H2O Henry’s selectivity), returning a reward signal based on these properties.

This reward is used to iteratively refine the generator’s parameters through a policy

gradient method, which aims to maximise the expected cumulative reward by improv-

ing the quality of the generated MOFs over successive iterations. The training process

involves pre-training the generator on a large dataset of MOFs before fine-tuning it with

the reinforcement learning algorithm. During this process, a dual-generator approach

is employed to balance exploration and exploitation, with one generator focusing on

known good strategies (exploitation) and the other exploring new possibilities (explo-

ration).

• Training requirements: To embed basic chemical knowledge and patterns, the gen-

erator is trained in a self-supervised manner on an unlabelled dataset of approximately

1.9 million MOFs. These MOFs were created using pormake, where nodes and topol-

ogy codes were retained without modification, while an augmented edge dataset of

approximately 30,000 linkers was created by merging linkers stored within the por-
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make software. To generate MOFs with targeted property values, the RL framework

is used in conjunction with a property predictor (the environment), which required

between 24,000–33,000 labelled MOF structures depending on the property of interest

(CO2 heat of adsorption or Henry’s selectivity).

• Design focus: The RL policy learns to select optimal topologies, metal nodes, and

batches of scaffolds to construct MOFs. Therefore, the full MOF structure is optimised.

• Unconditional or targeted generation: The generator (before fine-tuning) learns

to create MOF samples unconditionally, while targeted generation occurs via reinforce-

ment learning. Therefore, both conditional and unconditional samples may be drawn.

• Optimisation approach: Reinforcement learning is used to generate MOFs with

preferred material properties, which is a global optimisation approach. This optimi-

sation also occurs directly on the string-based representation of the MOF, i.e., within

the real chemical space.

• Validity: For a test of 10,000 MOFs, A validity of 69% is reported by Park et

al.,13 prior to optimising their transformer generator using reinforcement learning (i.e.,

”scratch” in Table 1 of the original article). This metric is computed on the basis

that the transformer generator is able to: (1) produce the correct reticular information

(match connection points of metal clusters and organic linkers in a given topology),

and (2) produce chemically valid linkers. This validity evaluation is similar to that

used for the Sm-VAE model. We also assume here that, of the MOFs considered valid,

all of them would undergo structural relaxation successfully. As such, we retain the

value of 69% in Table S6 for RL transformer.

• Uniqueness: The uniqueness of 79% for generated linkers was also taken directly

from the work of Park et al.12 without modification.
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Supplementary Note 10: Comparing linker string rep-

resentations

We explored the use of other textual representations — such as SMILES20 and DeepSMILES21

— to encode the linkers in our MOF strings. In Figure S13, we find that SMILES and

DeepSMILES outperform Group SELFIES in the forward process. This may be attributed

to the context-dependent nature of Group SELFIES tokens, which can represent different

chemical entities or structural features depending on their position in the string.1 While this

particular feature is what imbues it with 100% chemical robustness, it likely leads to greater

difficulty during learning. Similar challenges have been noted with DeepSMILES compared

to SMILES, where the more advanced grammar of DeepSMILES sometimes leads to less

effective generative modelling outcomes.22

However, our primary focus is on the reverse process, where we modify the MOF linker

representation directly in the real chemical space using gradient-based algorithms. This

works best with an optimisation landscape where every point is chemically valid — a con-

dition that SELFIES, known for its semantic and syntactic robustness, uniquely fulfils. For

example, we found that SMILES-based representations significantly underperform in deep

dreaming operations due to their tendency to produce semantically and / or syntactically

invalid molecular strings (Figure S14). Therefore, SELFIES strings are the preferred choice

for our framework, aligning with the demands of the deep dreaming process.

1To satisfy syntactic robustness, (Group) SELFIES tokens are overloaded, meaning a token can be used
to define a chemical entity or can be used to define the length of a branch, for example. The token ‘[O]’
may be interpreted as an oxygen atom, or it may be interpreted as a branch of length 10, depending on
whether it appears directly after a branch or ring token in a SELFIES string. For Group tokens, a similar
overloading takes place when interpreting the attachment points of the group: an ‘[O]’ after a Group token is
interpreted as a relative index of 6, meaning that subsequent tokens after ‘[O]’ would be generated from the
6th attachment point index relative to the initial Group token attachment point. SELFIES also implements
a series of derivation rules to satisfy semantic constraints (i.e., valency) and generate valid molecules. In
deriving SMILES molecules from (Group) SELFIES strings, the (Group) SELFIES string is traversed, and
each token is interpreted as a rule vector that depends on the state of the derivation. For example, ‘[=O]’
may be translated to a ‘=O’ or ‘O’ SMILES token (i.e., an oxygen atom which shares two pairs of electrons
or one pair of electrons with another atom), depending on the preceding tokens.
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Figure S13: Parity plots of the deep dreaming model out-of-sample predictive per-
formance for cp using different string-based representations to encode MOF linkers.
Here we compare ML models built upon strings derived from the Group SELFIES (left), SMILES
(middle), and DeepSMILES (right) representations. We use 10,000, 1,000, and 1,000 MOFs for
training, validation, and testing purposes in each case study, and apply noise to the zero-elements
of the one-hot encodings by sampling from a uniform distribution using k=0.6. Source data are
provided as a Source Data file.

Figure S14: A single deep dreaming case study, whereby we attempt to optimise the cp of a
seed MOF towards higher values, using ML models trained on different molecular string repre-
sentations to encode the linkers of MOFs. In the case of SMILES, most of the generated strings
are syntactically incorrect (violate the SMILES vocabulary), while a smaller number of generated
strings (3.9%) are syntactically correct but do not correspond to a chemically valid molecular graph
(i.e., are semantically incorrect). DeepSMILES — developed to overcome syntactic limitations of
SMILES strings — produce fewer syntactically incorrect strings, but still fail to overcome the se-
mantic limitations within the deep dreaming framework. Group SELFIES strings, on the other
hand, only produce valid molecules, 31.9% of which are valid linkers (i.e., have the correct number
of connection points, represented as francium pseudoatoms).
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