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Abstract: Carcinogenic N-nitrosamine contamination in certain drugs has recently caused great con-
cern and the attention of regulatory agencies. These carcinogens—widely detectable in relatively low
levels in food, water, cosmetics, and drugs—are well-established and powerful animal carcinogens.
The electrophiles resulting from the cytochrome P450-mediated metabolism of N-nitrosamines can
readily react with DNA and form covalent addition products (DNA adducts) that play a central role in
carcinogenesis if not repaired. In this review, we aim to provide a comprehensive and updated review
of progress on the metabolic activation and DNA interactions of 10 carcinogenic N-nitrosamines
to which humans are commonly exposed. Certain DNA adducts such as O6-methylguanine with
established miscoding properties play central roles in the cancer induction process, whereas others
have been linked to the high incidence of certain types of cancers. We hope the data summarized
here will help researchers gain a better understanding of the bioactivation and DNA interactions
of these 10 carcinogenic N-nitrosamines and facilitate further research on their toxicologic and
carcinogenic properties.
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1. Introduction

Peter Magee and John Barnes reported in 1956 that N-nitrosodimethylamine 1 (NDMA,
Figure 1), a simple water-soluble compound with only 11 atoms, readily induced liver
tumors in rats [1]. This was remarkable because most carcinogenesis studies at the time
had been performed with higher molecular weight non-water-soluble compounds such
as polycyclic aromatic hydrocarbons. Sakshaug et al., and Ender and Ceh made the
connection between NDMA formation from nitrite-treated herring meal and liver toxicity
in farm animals and provided evidence for the occurrence of this carcinogen in smoked
fish and meat [2,3]. Thus, concern arose that N-nitrosamines in food treated with nitrite
could be a carcinogenic hazard to humans. Sen and colleagues demonstrated the presence
of N-nitrosamines in cured meat products [4] and this was followed by a surge in interest
in the N-nitrosamine contamination of foods, which persists to the present.

In the meantime, cancer researchers investigated the powerful carcinogenic properties
of multiple structurally diverse N-nitrosamines. Druckrey and co-workers and Lijinsky and
colleagues demonstrated the carcinogenicity and frequent organoselectivity of multiple
N-nitrosamines [5,6]. A review published in 1984 by Preussmann and Stewart summarizes
the carcinogenicity of more than 200 N-nitrosamines, which commonly affect specific
organs in laboratory animals, independent of the route of administration [7]. A book by
Lijinsky also summarizes the extensive carcinogenicity data [5]. Bogovski and Bogovski
published a summary of the carcinogenic activity of nitroso compounds in different animal
species; NDMA induced tumors in 16 different animal species and NDEA in 26 ranging
from rainbow trout to cynomolgus monkey [8]. Such a remarkable database hardly exists
for any other type of carcinogen.

Int. J. Mol. Sci. 2022, 23, 4559. https://doi.org/10.3390/ijms23094559 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23094559
https://doi.org/10.3390/ijms23094559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-5403-5880
https://doi.org/10.3390/ijms23094559
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23094559?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 4559 2 of 47Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 47 
 

 
Figure 1. Chemical structures of carcinogenic N-nitrosamines to which humans are commonly ex-
posed. NDMA, N-nitrosodimethylamine; NMEA, N-nitrosomethylethylamine; NSAR, N-nitro-
sosarcosine; NDEA, N-nitrosodiethylamine; NDPA, N-nitrosodi-n-propylamine; NDELA, N-nitro-
sodiethanolamine; NDBA, N-nitrosodi-n-butylamine; NPYR, N-nitrosopyrrolidine; NPIP, N-nitro-
sopiperidine; NMOR, N-nitrosomorpholine. 

Thus, there was intense interest in the possible role of N-nitrosamines in human can-
cer in the latter part of the 20th century. The International Agency for Research on Cancer 
(IARC) held a series of regular meetings dedicated to this subject between 1966 and 1991. 
Figure 2 shows the participants at the 1983 meeting in Banff, Canada, a clear indication of 
the high interest in the topic. Fortunately, methods were developed to decrease levels of 
N-nitrosamines in food, beer, and other consumer products and interest in the topic 
waned somewhat in the early part of this century. Recently, however, concern regarding 
N-nitrosamine contamination of consumer products has re-emerged as they were found 
in certain pharmaceutical agents and drinking water [9]. It is worth noting that the car-
cinogenic potency of most N-nitrosamines is so great that they are excluded from the 
widely used Threshold of Toxicological Concern concept in the risk assessment of expo-
sure to potential carcinogens in food and other consumer products [10]. 

Figure 1. Chemical structures of carcinogenic N-nitrosamines to which humans are commonly
exposed. NDMA, N-nitrosodimethylamine; NMEA, N-nitrosomethylethylamine; NSAR, N-
nitrososarcosine; NDEA, N-nitrosodiethylamine; NDPA, N-nitrosodi-n-propylamine; NDELA, N-
nitrosodiethanolamine; NDBA, N-nitrosodi-n-butylamine; NPYR, N-nitrosopyrrolidine; NPIP, N-
nitrosopiperidine; NMOR, N-nitrosomorpholine.

Thus, there was intense interest in the possible role of N-nitrosamines in human
cancer in the latter part of the 20th century. The International Agency for Research on
Cancer (IARC) held a series of regular meetings dedicated to this subject between 1966
and 1991. Figure 2 shows the participants at the 1983 meeting in Banff, Canada, a clear
indication of the high interest in the topic. Fortunately, methods were developed to
decrease levels of N-nitrosamines in food, beer, and other consumer products and interest
in the topic waned somewhat in the early part of this century. Recently, however, concern
regarding N-nitrosamine contamination of consumer products has re-emerged as they were
found in certain pharmaceutical agents and drinking water [9]. It is worth noting that the
carcinogenic potency of most N-nitrosamines is so great that they are excluded from the
widely used Threshold of Toxicological Concern concept in the risk assessment of exposure
to potential carcinogens in food and other consumer products [10].

All N-nitrosamines require metabolism to exert their carcinogenic properties. The elec-
trophiles produced in these simple metabolic pathways, generally catalyzed by cytochrome
P450 enzymes, readily alkylate DNA initiating the carcinogenic process. These critical
pathways are the subject of this review of the 10 N-nitrosamines illustrated in Figure 1.
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Figure 2. Participants in the conference on N-Nitroso Compounds: Occurrence, Biological Effects 
and Relevance to Human Cancer, sponsored by the International Agency for Research on Cancer 
(IARC), Agriculture Canada, and the Alberta Heritage Foundation for Medical Research in Banff, 
Canada, 5–9 September 1983. (Reprinted with permission of the IARC). 
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2. Overview of Carcinogenic N-Nitrosamines to Which Humans Are Commonly Ex-
posed 

N-Nitrosamines are the products of nitrosation reactions occurring on the N atoms 
of secondary and tertiary amines. They can be formed during water and food processing, 
tobacco curing, and drug and cosmetics manufacturing; they can also be formed endoge-
nously. The compounds shown in Figure 1 represent an important family of carcinogens 
that are closely related to our daily lives [9,11].  

2.1. Carcinogenic N-Nitrosamines Occurring in Food 
The total N-nitrosamines occurring in food was estimated to be an average of 6.7 ± 

0.8 ng/g, ranging from 0 to 120.8 ng/g [9]. NDEA was most frequently detected in 387 
samples of agricultural food, whereas NDMA occurred at the highest concentration in 
seasoning, especially in processed fish (12.6–322.9 ng/g) and some oils (>10 ng/g) [12]. The 
average estimated concentrations of some common N-nitrosamines detected in food fol-
lows the descending order as NDMA (2.2 ± 0.3 ng/g), NDBA (1.5 ± 0.5 ng/g), NPYR (1.5 ± 
0.2 ng/g), NDEA (0.9 ± 0.3 ng/g), NPIP (0.5 ± 0.1 ng/g), NMOR (0.05 ± 0.01 ng/g), NMEA 
(0.04 ± 0.01 ng/g), and NDPA (0.02 ± 0.01 ng/g) [9].  
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(IARC), Agriculture Canada, and the Alberta Heritage Foundation for Medical Research in Banff,
Canada, 5–9 September 1983. (Reprinted with permission of the IARC).

2. Overview of Carcinogenic N-Nitrosamines to Which Humans
Are Commonly Exposed

N-Nitrosamines are the products of nitrosation reactions occurring on the N atoms
of secondary and tertiary amines. They can be formed during water and food processing,
tobacco curing, and drug and cosmetics manufacturing; they can also be formed endoge-
nously. The compounds shown in Figure 1 represent an important family of carcinogens
that are closely related to our daily lives [9,11].

2.1. Carcinogenic N-Nitrosamines Occurring in Food

The total N-nitrosamines occurring in food was estimated to be an average of 6.7± 0.8 ng/g,
ranging from 0 to 120.8 ng/g [9]. NDEA was most frequently detected in 387 samples of
agricultural food, whereas NDMA occurred at the highest concentration in seasoning, especially
in processed fish (12.6–322.9 ng/g) and some oils (>10 ng/g) [12]. The average estimated
concentrations of some common N-nitrosamines detected in food follows the descending order as
NDMA (2.2± 0.3 ng/g), NDBA (1.5± 0.5 ng/g), NPYR (1.5± 0.2 ng/g), NDEA (0.9± 0.3 ng/g),
NPIP (0.5 ± 0.1 ng/g), NMOR (0.05 ± 0.01 ng/g), NMEA (0.04± 0.01 ng/g), and NDPA
(0.02± 0.01 ng/g) [9].

2.2. Carcinogenic N-Nitrosamines Occurring in Water

NDMA has been detected in potable water and gave rise to regulatory concerns regard-
ing its presence in drinking water. The occurrence of NDMA is considered to be due to chlo-
ramination during water disinfection [13,14]. NDMA is the most prevalent N-nitrosamine
contaminant in drinking water (average: 17.7 ± 4.7 ng/L), accounting for 5–13% of the
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total observed N-nitrosamines (average: 39.4 ± 10.5 ng/L; range: 2.8–309.0 ng/L) in
water. The other carcinogenic N-nitrosamines detected in potable water include NPIP
(7.9 ± 4.0 ng/L), NPYR (5.5 ± 2.6 ng/L), NDEA (4.2 ± 0.8 ng/L), NDBA (1.7 ± 0.6 ng/L),
NMOR (0.9 ± 0.2 ng/L), NMEA (0.6 ± 0.1 ng/L), and NDPA (0.4 ± 0.03 ng/L) [9].

2.3. Carcinogenic N-Nitrosamines Occurring in Drugs

Drug contamination with N-nitrosamines has attracted great attention due to the
recent recalls of more than 1400 lots of drugs from the U.S. market [15]. The presence of
NDMA has been confirmed by the U.S. Food and Drug Administration (FDA) in some
batches of ranitidine, nizatidine, metformin, and valsartan since 2018 [16]. Similarly, the
detection of NDEA has caused the withdrawal of some types of irbesartan, losartan, and
valsartan from the market [16]. The discovery of NDMA and NDEA has led regula-
tory agencies to conduct further analysis of the N-nitrosamine impurities in the affected
drug products [17]. The U.S. FDA has identified 5 N-nitrosamines that were detected
in drugs; they are NDMA, NDEA, N-nitroso-N-methyl-4-aminobutanoic acid (NMBA),
N-nitroso-isopropylethylamine (NIPEA), and N-nitrodiisopropylamine (NDIPA). Two N-
nitrosamines—NDBA and N-nitrosomethylphenylamine (NMPA)—are also considered to
be theoretically present in drug products. The FDA-recommended acceptable intake limits
for the carcinogenic N-nitrosamines discussed in this review are 96 ng/day (NDMA) and
26.5 ng/day (NDEA) [17].

2.4. Carcinogenic N-Nitrosamines Occurring in Cosmetics

The total N-nitrosamines occurring in cosmetics was estimated to be 1507 ± 752 ng/g,
ranging from 0 to 49,000 ng/g. The relatively high concentrations of N-nitrosamines ob-
served in cosmetics including hair care products, soaps, shampoos, lotions, and others
are predominantly contributed by NDELA. It accounted for 99% of total N-nitrosamines
in these products. The other minor N-nitrosamine contaminants are NMOR (~0.99%)
and NDMA (~0.01%) [9]. NDEA has also been detected in cosmetics at levels rang-
ing from 0–40.9 ng/g [18]. NDELA is formed by nitrosation of triethanolamine and di-
ethanolamine [19] since they are readily present in cosmetics together with the nitrosating
agents such as nitrite [18].

3. Metabolic Activation and DNA Interactions of Carcinogenic Acyclic
N-Nitrosamines

As shown in Figure 1, there are seven carcinogenic acyclic N-nitrosamines (NDMA,
NMEA, NSAR, NDEA, NDPA, NDELA, and NDBA) to which humans are commonly
exposed. We discuss them in order based on their increasing structural complexity.

3.1. N-Nitrosodimethylamine (NDMA)
3.1.1. Exposure and Carcinogenicity

NDMA (1, Figure 1) is easily formed by nitrosation with sodium nitrite of an acidified
solution of dimethylamine. It was used in industry for several purposes, the most common
of which was as a precursor to the rocket fuel 1,1-dimethylhydrazine [20]. However, such
uses of NDMA essentially ended after the study of Magee and Barnes [1]. Exposure to
NDMA in humans occurs in low concentrations in daily life from food, water, and cosmetics
to some contaminated drugs as noted in Section 2.

The IARC summarized the laboratory animal data of NDMA comprehensively in 1978
and reaffirmed its Group 2A classification in 1987. NDMA is a strong carcinogen primarily
targeting the liver but it can also induce kidney tumors when given at high doses [7].
The cancer risk of NDMA exceeds many known strong carcinogens including asbestos,
benzo[a]pyrene, and polychlorinated biphenyls [9]. A linear dose-response relationship was
observed at low dose rates (lower than 1 ppm) in a study with 4080 rats. No indicated safe
threshold concentration was observed for NDMA in the rats [21,22]. NDMA is tumorigenic
in multiple animal models including Syrian golden hamsters, mastomys, guinea pigs,
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rabbits, and ducks [7]. The toxicity of NDMA in humans has been demonstrated by
some unfortunate poisonings [20]. The currently available data suggest that the IARC
classification of NDMA should be re-evaluated. The U.S. government classifies NDMA as
“reasonably anticipated to be a human carcinogen” [23].

3.1.2. Metabolism

The bioactivation of NDMA to reactive intermediates is primarily catalyzed by P450 2E1 in
human liver microsomes [24]. The oxidation of the methyl group (α-methyl hydroxylation) leads
toα-hydroxyNDMA (11, Scheme 1), an unstable and mutagenic intermediate that spontaneously
decomposes generating two reactive species—formaldehyde 12 and methyl diazohydroxide
14 [24,25]. Formaldehyde can be oxidized sequentially producing formic acid 13 and CO2 [26,27];
methyl diazohydroxide will spontaneously form the highly electrophilic methyldiazonium ion
15 and alkylate DNA [28] or be solvolyzed to methanol [29]. The evolution of 15N2 from 15N-
labeled NDMA metabolism suggested that approximately 33–67% of NDMA was metabolized
in vitro via α-methyl hydroxylation [30–32]. A deuterium isotope effect has been observed
with a slight reduction of the NDMA metabolic oxidation rate for NDMA-d6 with the ratio of
VH/VD = ~1.2. The effect was more prominent based on the concentrations of DNA adducts
formed in the liver and kidneys after oral administration [33]. The methylating species or
its immediate precursor 11, although highly reactive, were sufficiently stable to pass out of
rat hepatocytes [34]. The enzymatic denitrosation of NDMA has also been observed in liver
microsomes and is considered a detoxification pathway. The major denitrosation product of
NDMA is methylamine 17, formed via the proposed intermediate methyliminium ion 16; the
other product is formaldehyde [35–37].
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3.1.3. Methyl DNA Adducts Formed by NDMA Metabolism

The mutagenicity and genotoxicity of NDMA are well-established [38]. It alky-
lates DNA and protein via the two reactive intermediates—methyldiazonium ion 15 and
formaldehyde 12. Methyl DNA adducts formed by the methyldiazonium ion are consid-
ered to play a major role in carcinogenesis by NDMA [39]. Formaldehyde, on the other
hand, can also form DNA adducts such as cross-links or hydroxymethylene adducts [40].

A comprehensive analysis of methyl DNA adducts in liver DNA was conducted in
rats treated with NDMA by a single i.p. dose of 10 mg/kg [41]. Adducts were detected
after deglycosylation. Methyl DNA adducts (Figure 3), including N3- and N7-Me-Ade
(19 and 20), O2- and N3-Me-Cyt (21 and 22), N3-, O6-, N7-Me-Gua (23, 24 and 27) and
Me-Fapy-Gua (29), O2-, N3-, and O4-Me-Thy (31, 33 and 35), and methyl DNA phosphate
adduct 36, were formed 2 h after administration. The preferential methylation sites in liver
DNA were Gua-N7, Gua-O6, and Ade-N3. The half-lives of methyl DNA adducts were
relatively short, ranging from 4 to 17 h for the methyl base adducts and up to 7 days for the
methyl phosphate adduct Tp(Me)T 37 [41]. The adduct profile in NDMA-exposed Syrian
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golden hamsters was different from that in the rats. O6-Me-Gua was the most persistent
adduct, whereas N7-Me-Gua was extensively excised, especially in the liver. Other minor
methyl adducts including N1-, N3-, N7-Me-Ade, and N3-Me-Gua were also detectable in
most hamster tissues [42].
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In the rat study, after a 2 mg/kg dose of NDMA by stomach tubing daily (workdays
only) for up to 24 weeks, N7-Me-Gua 27 predominated in the liver, exceeding that in the
kidneys and lungs [43] by approximately 16 times. This is consistent with the liver being
the primary tumor site observed in carcinogenicity studies with low doses of NDMA. The
other most commonly quantified adduct, O6-Me-Gua 24, accounted for 6.7% and 12.0% of
N7-Me-Gua, 4 h and 24 h after a single s.c. dose of 0.055 mmol/kg NDMA, respectively [44].
Although the levels of N7-Me-Gua remained constant in the rat liver, increased excision
of O6-Me-Gua was observed after chronic administration of NDMA [45,46]. This was
due to the enhanced activity of O6-alkylguanine-DNA alkyltransferease (AGT) in the
rat liver after repeated low-dose exposure to this carcinogen [47–49]. However, a clear
interspecies difference has been noted, with a partially depleted AGT activity observed in
mice chronically treated with low doses of NDMA [49]. The formation and persistence of
O6-Me-Gua were also greatly affected by the co-treatment with ethanol, a known inhibitor of
NDMA hepatic metabolism [50]. A remarkable 10-fold increase was observed in mammary
gland DNA adducts in rats co-exposed to NDMA and ethanol. This is probably due to a
reduced hepatic first-pass effect, which also resulted in slightly decreased concentrations of
the liver DNA adducts [51].

3.1.4. Mutagenicity and Genotoxicity of Methyl DNA Adducts

DNA methylation, especially as related to the activation of proto-oncogenes, has been
linked to the induction of pulmonary neoplasia by N-nitrosomethylamines [52]. There is
convincing evidence that the formation and removal of O6-Me-Gua 24 (Figure 3) in DNA
is related to the risk of tumor induction in different organs [53,54]. O6-Me-Gua, formed
from alkylating agents such as NDMA, is possibly one of the most extensively studied
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of all DNA adducts. Its persistence in specific rat tissues where tumors developed after
treatment with N-methyl-N-nitrosourea was established in early studies, supporting the
hypothesis that it caused miscoding in DNA [55]. Elegant experiments by the Essigmann
group demonstrated unequivocally that O6-Me-Gua causes G to A transition mutations,
which is consistent with G-A transition mutations in the ras oncogene in laboratory animals
treated with NDMA and other methylating carcinogens [56,57]. The repair enzyme AGT
can remove the methyl group or other alkyl groups, returning the DNA to its unmodified
structure [58].

Methylated thymidines such as O4-Me-Thd 34 (Figure 3) are poorly repaired [59]. The
persistence of the Thd adducts likely contributes to the mutagenicity and carcinogenicity of
NDMA. Two adducts, O2-Me-Thd 30 and O4-Me-Thd, blocked DNA synthesis and induced
A to G transitions mediated by human DNA polymerase κ (pol κ) [60]. This result echoes
that of Singer et al. published in 1983 [61].

The methyl Fapy-dGuo adduct 28 blocked eukaryotic high-fidelity polymerases but
can be efficiently bypassed by translesion polymerases. Misreplication products, accounting
for 8–29% of total extension products, included C to T/G/A mutations and an interesting
one-nucleotide deletion [62].

Wang et al. first investigated the mutagenicity of methyl DNA phosphate adduct 36
(Figure 3) [63]. Due to the stereochemistry of the phosphorus atom, two diastereomers are
formed upon DNA phosphate methylation. The (S)-isomer can be efficiently bypassed,
causing TT to GT and GC mutations in the flanking TT dinucleotide site. This mutation
was induced in an AGT (also termed as Ada)-dependent manner. On the other hand, the
(R)-isomer moderately blocked the replication of the DNA synthesis [63].

3.1.5. Methyl DNA Adducts in Human Tissues

The major DNA adducts caused by NDMA incubated with cultured esophagus from
human patients were O6-Me-Gua 24 and N7-Me-Gua 27, in a ratio of 0.3. A 10-fold in-
terindividual variation was observed for adduct levels due to NDMA in human esophageal
DNA [64]. In the liver DNA of an NDMA-poisoning victim, O6-Me-Gua and N7-Me-Gua
were detected at levels of 273–317 and 1363–1373 µmol/mol Gua, respectively. These
adducts were not detected in the liver and kidney DNA from unrelated cases [65].

Methyl DNA adducts have been widely detected in human tissues likely due to
exposure to various methylating agents that can originate from multiple sources both
endogenously and exogenously [66–68]. For example, Foiles et al. developed a monoclonal
antibody for O6-Me-Gua and used it in a competitive enzyme-linked immunosorbent assay
coupled with HPLC resulting in the first identification of O6-Me-Gua in human placental
DNA [69]. In Japanese donors, this adduct was detected in both leukocyte and liver DNA. In
contrast, O4-Me-Thy 35 was only detected in the liver DNA [70]. Similarly, in the liver and
leukocyte DNA of humans who were not exposed to known alkylating agents, O6-Me-Gua
and O4-Me-Thy were detected in nearly all the liver DNA samples, at levels of 1.1–6.7 and
0.1–14 adducts/107 nucleotides, respectively. Only O6-Me-Gua was detected in peripheral
leukocyte DNA, accounting for 3.6% of that in the liver [71]. Using a radioimmunoassay
with a monoclonal antibody against O6-Me-dGuo, this adduct has been detected at rela-
tively high levels in the esophagus and liver DNA of esophageal cancer patients in China
who were considered exposed to high levels of dietary N-nitrosamines [72].

Peter Magee would frequently conclude his lectures by noting that NDMA is a potent
hepatocarcinogen in rats, but we have insufficient data to conclude that it is a human
carcinogen. Now we have massive biochemical, molecular biological, and laboratory
animal testing data in support of its potential human carcinogenicity, resulting in increased
regulatory vigilance that has decreased NDMA exposure in most situations to extremely
low levels. This appears to be an excellent example of cancer prevention through research
and application.
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3.2. N-Nitrosomethylethylamine (NMEA)
3.2.1. Exposure and Carcinogenicity

NMEA (2, Figure 1) has been found in a variety of processed foods [73,74]. It can
be formed as a byproduct during water disinfection with chlorine [75]. It is also one
of the contaminants found in some drug products at trace levels [76]. NMEA has been
documented as a tobacco constituent at very low concentrations [73,77].

The carcinogenicity of NMEA was demonstrated in rats in 1967. Hepatocellular
carcinomas are the primary cancer type induced by NMEA administered in drinking water
at doses of 1 or 2 mg/kg body weight per day [6]. As part of an extensive program on the
chemistry and biology of N-nitroso compound [5], Lijinsky et al. showed that deuterated
NMEA-d3 38 (Figure 4) led to a high incidence of esophageal tumors when compared to
undeuterated NMEA administered at an identical dose [78,79].
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3.2.2. Metabolism

It is generally considered that NMEA is bioactivated by two α-hydroxylation pathways
(Scheme 2). When the α-hydroxylation occurs on the ethyl group (as illustrated by 41),
NMEA is converted to methyldiazonium ion 15, the same intermediate as formed from
NDMA metabolism; the other product is acetaldehyde 42. When the α-hydroxylation
occurs on the methyl group (as illustrated by 43), the ethyldiazonium ion 45 is formed
along with formaldehyde 12. The two diazonium ions 15 and 45 can alkylate DNA and
form methyl or ethyl DNA adducts correspondingly. A detailed discussion of the pathway
by which α-hydroxylation occurs in the ethyl group can be found in the metabolism study
of NDEA in Section 3.4.
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3.2.3. DNA Adducts Formed by NMEA Metabolism

After a single i.p. injection of NMEA to F344 rats, N7-Me-Gua 27 (Figure 3) was
readily detected in the liver, kidneys, and esophageal DNA. However, O6-Me-Gua 24 was
only quantifiable in the liver and kidneys. N7-Et-Gua 54 (Figure 5) was also detected in
the hepatic DNA [80]. The level of N7-Me-Gua in hepatic DNA exceeded N7-Et-Gua by
170–200 times. N7-Me-Gua occurred at the highest concentration in the liver, followed by
the kidneys (15-fold lower), esophagus (100-fold lower), and lung (200-fold lower) [81]. In
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another study in which F344 rats were administered [1-ethyl-14C]NMEA 39 (Figure 4) by a
single i.p. injection, N7-Et-Gua and O6-Et-Gua 52 (Figure 5) were the two major ethyl DNA
adducts identified in the liver after 4 h exposure. N3-Et-Gua 51, N3-Et-Ade 47, and N7-Et-
Ade 48 were also identified as minor products resulting from NMEA metabolism [82].
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Quantitative differences of methylation and/or ethylation in hepatic DNA were clearly
observed in F344 rats administered NMEA or the related N-nitrosamines NDMA and
NDEA by i.p. injections. Although DNA methylation by NMEA was comparable to that
observed upon the administration of an equimolar mixture of NDMA plus NDEA, DNA
ethylation by NMEA was ~4-fold lower [83]. Thus, the ratio changes of methyl/ethyl
DNA adducts formed by NMEA in the tissue DNA of rats may explain the shift of organ
specificity of NMEA-d3 carcinogenicity reported by Lijinsky et al. [78,79]. After a single
i.p. injection of [methyl-14C]NMEA-d3 40 (Figure 4) to F344 rats, the levels of N7-Me-Gua
decreased by ~30% in the liver but were 160% greater in the esophagus compared to
non-deuterated [methyl-14C]NMEA. The increase in esophageal DNA methylation seems
to correlate with the increased esophageal carcinogenicity of NMEA-d3 because of the
increased α-hydroxylation of its ethyl group since pharmacokinetic differences between
NMEA and NMEA-d3 have been ruled out [80].

3.3. N-Nitrososarcosine (NSAR)
3.3.1. Exposure and Carcinogenicity

NSAR (3, Figure 1) has been detected in food such as smoked meat (2–56 µg/kg) [73,84],
malt (5.6–11.3 ppb), and beer (trace—6.0 ppb) [85]. It is also one of the carcinogenic compo-
nents of tobacco smoke (22–460 ng/cigarette) [84] and some smokeless tobacco products
(30–550 ng/g) [86,87]. It may also be formed endogenously from nitrosation of sarcosine
and dimethylglycine (but not creatine) [88–90]. Human exposure to NSAR has been demon-
strated by the detection of urinary NSAR, ranging from 0.1 to 3.4 µg/day, in multiple
countries [73].

The carcinogenicity of NSAR has been demonstrated in mice and rats. The dietary
administration of NSAR caused nasal tumors in mice; oral exposure from drinking water
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caused esophageal tumors in rats. Liver tumors were observed in newborn mice adminis-
tered NSAR by i.p. injection [73,84]. Rat studies administering a combination of sarcosine
ethyl ester hydrochloride and NaNO2 suggested esophageal carcinogenicity of the NSAR
derivative N-nitrososarcosine ethyl ester 70 (Figure 6) [91,92].
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3.3.2. Metabolism

NSAR is not extensively metabolized in rats; 88% of dosed NSAR is excreted un-
changed in the urine [93]. Metabolic activation of NSAR starts from α-methyl hydroxylation
(Scheme 3). The reactive intermediate carboxymethyldiazonium ion 78 and formaldehyde
12 are formed after the spontaneous decomposition of α-hydroxyNSAR 76. Both products
resulting from NSAR α-hydroxylation are able to react with DNA [94]. By analogy to
N-nitroso-2-oxopropylpropylamine metabolism [95–98], it also seems possible for NSAR to
form the methyldiazonium ion 15 via the intramolecular attack by the diazotate oxygen
of 77 on the carbonyl carbon and consecutive decomposition. The proposed methylating
agent 15 is likely to be responsible for the observed methyl DNA adducts in DNA exposed
to nitrosated glycine derivatives [99–103].
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3.3.3. Carboxymethylating and Methylating Intermediates Formed by NSAR Metabolism

O6-Carboxymethylguanine 81 (O6-CM-Gua, Figure 7) has been detected in DNA
treated with mesyloxyacetic acid 71 (Figure 6) [99] and glycine reacted with nitric ox-
ide [104] and related compounds including N-(N′-acetyl-L-prolyl)-N-nitrosoglycine 72
(APNG), azaserine 73 (AS), potassium diazoacetate 74 (KDA), and N-nitrosoglycocholic
acid 75 [99–103,105]. However, O6-CM-Gua was not detected in physiological concentra-
tions of glycine and nitric oxide, which does not support the hypothesis that the resulting
carboxymethylating species is an etiological agent for human gastrointestinal tumors [104].
In addition, O6-Me-Gua 24 (Figure 3) has been detected concomitantly with O6-CM-Gua
in vitro; it is proposed to be formed via the putative methyldiazonium ion 15 after decar-
boxylation (Scheme 3) [99–104]. This may also partially explain the reported relatively high
occurrence of O6-Me-Gua in human gastrointestinal DNA [72,106–110] since nitrosation of
glycine—abundant in food sources—could occur there [111,112].
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The other carboxymethyl DNA adducts N6-(carboxymethyl)-2′-deoxyadenosine 79
(N6-CM-dAdo, Figure 7), N4-(carboxymethyl)-2′-deoxycytidine 80 (N4-CM-dCyd), N3-
(carboxymethyl)thymidine 83 (N3-CM-Thd), and O4-(carboxymethyl)thymidine 84 (O4-
CM-Thd) have also been detected in vitro in 74 (KDA)-treated calf thymus DNA [113,114].
In cultured human skin fibroblasts and human colorectal carcinoma cells exposed to aza-
serine 73, O6-(carboxymethyl)-2′-deoxyguanosine 82 (O6-CM-dGuo), N6-CM-dAdo, and
O6-Me-dGuo were simultaneously measured, with O6-CM-dGuo predominating among
the three determined adducts [115].

3.3.4. Mutagenicity and Genotoxicity of Carboxymethyl DNA Adducts

KDA 74 (Figure 6) caused GC to AT transitions in the p53 gene in equal amounts
to GC to TA and AT to TA transversions. This contrasts with the methylating agent
methylnitrosourea which causes predominantly GC to AT transitions. The difference is
hypothesized to be due to the different mutagenicity of O6-CM-dGuo 82 compared with
O6-Me-dGuo [105].

O6-CM-dGuo is not a substrate of bacterial and mammalian AGT [103] but can be
repaired by human O6-methylguanine-DNA methyltransferase (MGMT) [116]. It may also
be repaired by nucleotide excision repair (NER) [117]. In E. coli cells, O6-CM-dGuo strongly
impeded DNA replication. It caused exclusive G to A transitions during the bypass that
uniquely requires the involvement of DNA polymerases IV and V [118]. Pol η and ζ were
also likely involved in bypassing O6-CM-dGuo lesions [119].

In a primer extension assay, N4-CM-dCyd 80 (Figure 7) strongly blocked the extension
reaction, causing relatively few C to A or T mutations; N6-CM-dAdo 79 blocked the
extension reaction to a lesser extent but caused a higher frequency of A to T mutations [114].
Pol η was able to readily bypass N6-CM-dAdo lesions with high fidelity. However, it
bypassed N4-CM-dCyd lesions inefficiently with a substantial frequency of dCMP and
dAMP misincorporation [120]. N3-CM-Thd 83 and O4-CM-Thd 84 were highly resistant to
the bypass of the yeast Pol η. Preferential T to C mutations caused by those two lesions
were observed [120].

The five carboxymethyl DNA adducts N6-CM-dAdo, N4-CM-dCyd, O6-CM-dGuo, N3-
CM-Thd, and O4-CM-Thd (Figure 7) were investigated individually for their mutagenicity
and genotoxicity in human HEK293T cells. Among the five adducts, O6-CM-dGuo was
moderately genotoxic by blocking DNA replication and weakly mutagenic by inducing
6.4% G to A mutations. In contrast, two Thd adducts, N3-CM-Thd and O4-CM-Thd,
were strongly mutagenic, inducing 81% T to A mutations and 68% T to C mutations,
respectively [119].

3.3.5. Carboxymethyl DNA Adducts in Human Tissues

Based on the evidence of human exposure to NSAR and its potential metabolic ac-
tivation mechanism, it is reasonable to anticipate the detection of carboxymethyl DNA
adducts in humans. In the blood DNA of healthy volunteers restricted to a standardized
high-meat diet, O6-CM-Gua 81 (Figure 7) was detected at levels of 35–80 adducts/108

nucleotides [104]. The formation of O6-CM-Gua in the colonic exfoliated cells of healthy
volunteers has been positively associated with the consumption of red meat. Levels of
O6-CM-Gua were also positively correlated with the concentrations of apparent total fecal
N-nitroso compounds [121]. These results provide some evidence supporting the etiologi-
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cal role of dietary N-nitroso compounds such as NSAR or nitrosated glycine derivatives,
which can decompose to form carboxymethylating and methylating agents, in human
gastrointestinal carcinogenesis. However, further studies are required.

Interestingly, we could not detect N7-(carboxymethyl)guanine 85 (N7-CM-Gua, Figure 8)
in any human liver samples but its analog N7-(2′-carboxyethyl)guanine 86 (N7-CE-Gua)
occurred at a relatively high mean level of 373 ± 320 fmol/µmol Gua in 100% of the same
human livers. One possible source of N7-CE-Gua is 3-(methylnitrosamino)propionic acid 87
(MNPA) metabolism [94].
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3.4. N-Nitrosodiethylamine (NDEA)
3.4.1. Exposure and Carcinogenicity

Human exposure to NDEA (4, Figure 1) occurs through water, food, and cosmetics [18,73].
Some batches of drugs including irbesartan, losartan, and valsartan have been recalled due
to contamination with NDEA since 2018 [16]. It has also been identified in tobacco smoke,
with greater concentrations found in sidestream smoke compared to mainstream smoke [73].
However, the levels of NDEA in current cigarette smoke and smokeless tobacco products are
extremely low [77].

The carcinogenicity of NDEA has been demonstrated in multiple laboratory animal
species including mice, rats, Syrian golden hamsters, guinea pigs, rabbits, dogs, pigs, and
monkeys [73]. Tumors caused by NDEA primarily occurred in the liver, often with lung
metastases in mice and rats after oral administration [73]. Peto et al. conducted a large
study of rats treated with NDEA in drinking water for their lifetime starting from 6 weeks
of age. Various types of liver cancers were observed primarily in the NDEA-treated rats;
esophageal cancers were also observed exclusively with NDEA but not NDMA treatment.
A few nasopharyngeal tumors were also caused by NDEA in the rats [21,22]. The IARC
upgraded NDEA to Group 2A in 1987, but as is the case with NDMA, re-evaluation may
be appropriate.

3.4.2. Metabolism

NDEA metabolic activation for carcinogenicity is principally catalyzed by P450 2E1
and P450 2A6 [24,122,123]. When the P450-catalyzed hydroxylation occurs at the α-carbon
of the ethyl group of NDEA, the electrophilic ethyldiazonium ion 45 (Scheme 4) is formed
after decomposition of the unstable intermediate ethyl diazohydroxide 44. Intermediate
44 reacts with DNA producing ethyl DNA adducts such as N7-Et-Gua and O6-Et-Gua.
Acetaldehyde 42 is also formed by NDEA α-hydroxylation [124]. When the β-carbon is
hydroxylated, the reactive intermediate 2-hydroxyethyldiazonium ion 100 can be formed
by a secondary α-hydroxylation on the other ethyl group of NDEA (as illustrated by 90).
The 2-hydroxyethyldiazonium ion 100 alkylates DNA and forms DNA adducts such as
N7-HOEt-Gua 69 (Figure 5) that have been detected in the hepatic DNA of NDEA-treated
rats [82]. The denitrosation reaction competes with bioactivation in NDEA metabolism,
suggesting a dual role played by P450s in the biotransformation of NDEA [35].
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3.4.3. Ethyl DNA Adducts Formed by NDEA Metabolism

Ethyl DNA adducts are readily formed by NDEA metabolism in vivo after a single
administration of the carcinogen [125,126]. Although the main ethyl DNA adducts (as
shown in Figure 5) were ethyl DNA phosphate adducts B1p(Et)B2 61 (58%), ethyl DNA base
adducts after deglycosylation were also produced as expected. N7-Et-Gua 54 (12%), O6-Et-
Gua 52 (8%), O2-Et-Thy 55 (7%), and N3-Et-Ade 47 (4%) represented the most abundant
ethyl DNA base adducts in the same sample mixture. The other minor base adducts
observed were N1-Et-Ade 46, N7-Et-Ade 48, O2-Et-Cyt 49, N3-Et-Cyt 50, N3-Et-Gua 51,
N3-Et-Thy 57, and O4-Et-Thy 59 [125,126]. In addition, trace levels of N7-HOEt-Gua 69
were also detected in the hepatic DNA of rats exposed to NDEA, comprising less than 2%
of N7-Et-Gua 54 [82].

Variation in ethyl DNA base adduct accumulation has been investigated in the liver
DNA of rats exposed to NDEA in drinking water for 77 days [127,128]. O4-Et-Thd 60
accumulated in the first 28 days and persisted at such levels until the end of the experiment.
O6-Et-dGuo 53, in contrast, did not accumulate after repeated exposure to NDEA. The
concentration of O6-Et-dGuo was highest after 2 days of administration of NDEA and
decreased throughout the 77-day study course [127,128]. This was attributed to a rapid
repair mechanism for O6-Et-dGuo when compared with O4-Et-Thd [129].

3.4.4. Mutagenicity and Genotoxicity of Ethyl DNA Adducts

The dynamic change in the accumulation of O6-Et-dGuo and O4-Et-Thd after contin-
ued exposure to NDEA clearly indicates the different repair mechanisms of these ethyl
DNA adducts. O6-Et-dGuo can be repaired by AGT without the excision of the DNA
base [130]. On the contrary, O4-Et-Thd is not a good substrate of rat liver AGT; the half-life
of O4-Et-Thd reaches 11–19 days in vivo [41,129,131,132]. A similar result was also ob-
served for O2-Et-Thd 56 (Figure 5) [133]. The DNA repair protein AGT repairs O4-Et-Thd,
however, to a lesser extent compared to its analog O4-Me-Thd 34 (Figure 3) [134–136].

Diverse mutagenic consequences have been observed for the 3 regioisomers of ethyl
thymidine adducts. O4-Et-Thd, a major-groove lesion, induces a large number of A to
G transitions when incorporated into polynucleotides. However, O2-Et-Thd (a minor-
groove lesion) was only slightly mutagenic and N3-Et-Thd 58 (Figure 5) did not induce
mutations [137]. O4-Et-Thd is also genotoxic by moderately blocking DNA replication with
a bypass efficiency of 20–33% in human cells [138].

The DNA polymerases responsible for bypassing the three regioisomeric ethyl thymi-
dine lesions have been extensively investigated. DNA polymerase I and RNA polymerase
II can recognize the ethyl Thd lesions and direct the dGMP misincorporation opposite
to O4-Et-Thd but not O2-Et-Thd [139,140]. Human Pol η similarly can bypass all 3 ethyl
Thd lesions and generate the replication product with a substantial frequency of A to G
transitions caused by O4-Et-Thd [141–143]. In E. coli cells, both Pol IV and Pol V are essen-
tial for the misincorporation of dCMP opposite to O2-Et-Thd, whereas Pol V is necessary
for the T to A transversions caused by this lesion [144]. In human cells, Pol η and ζ are
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the predominant polymerases mainly responsible for bypassing O2- and O4-Et-Thd, and
causing the respective T to A/G and T to C mutations [138,145].

3.4.5. Ethyl DNA Adducts in Human Tissues

Ethyl DNA adducts have been detected in various human tissues. They may arise from
the metabolism of the N-nitrosamines NDEA and NMEA, or from structurally unknown
directly acting ethylating agents present in tobacco and tobacco smoke [146]. Levels of O2-,
N3-, and O4-Et-Thd (56, 58, and 60, Figure 5) in the leukocyte DNA of 20 smokers were
44.8 ± 52.0, 41.1 ± 43.8, and 48.3 ± 53.9 adducts/108 nucleotides, respectively, significantly
exceeding those in the 20 nonsmokers. The formation of each ethyl thymidine adduct
was statistically associated with that of the other two ethyl Thd adducts [147]. O4-Et-Thd
was detected in the lower respiratory tract DNA of smokers but not in nonsmokers [148].
O4-Et-Thd levels in the lung DNA of smokers (3.8 adducts/108 nucleotides) were higher
(p < 0.01) than in nonsmokers (1.6 adducts/108 nucleotides) [149]. The smoking-related
formation of this adduct in lung DNA was further confirmed in Hungarian lung cancer
patients [150].

Similarly, levels of N3-Et-Ade 47 and N7-Et-Gua 54 (Figure 5) were also significantly
higher in the leukocyte DNA from smokers (16.0 ± 7.8 and 9.7 ± 8.3 adducts/108 nu-
cleotides, respectively) than those from nonsmokers (5.4 ± 2.6 and 0.3 ± 0.8 adducts/108

nucleotides, respectively). The levels of N3-Et-Ade and N7-Et-Gua were positively corre-
lated [151]. N3-Et-Ade and N7-Et-Gua were also detected in the salivary DNA of smok-
ers and nonsmokers. The occurrence of N7-Et-Gua in the saliva of smokers (14.1 ± 8.2
adducts/108 nucleotides) was significantly higher than that of nonsmokers (3.8 ± 2.8
adducts/108 nucleotides, p < 0.0001). The levels of N7-Et-Gua were also strongly asso-
ciated with tobacco smoking [152]. However, there are some contradictory results that
question the robustness of applying ethyl DNA adducts as biomarkers for smoking-related
cancer etiology studies. We have quantified the levels of N7-Et-Gua in human leukocyte
DNA from 30 smokers and 30 nonsmokers. No statistical difference was observed in
the levels of this adduct in the leukocyte DNA from the two subject groups (smokers:
49.6 ± 43.3 fmol/µmol Gua; nonsmokers: 41.3 ± 34.9 fmol/µmol Gua) [153].

In addition to human tissue DNA, ethyl DNA adducts have been detected in human
urine showing a potential correlation with smoking status. Urinary excretion of N3-Et-Ade
has been observed to increase 5–8-fold with tobacco smoking [154,155] but not from dietary
origin [156]. At 50%, the mean level of N-terminal N-ethylvaline in the hemoglobin of
smokers was also significantly higher than in the nonsmokers [157].

Other than smoking, dietary exposure to ethylating agents derived from N-nitrosamines
or possibly other sources may play an important role in human carcinogenesis, especially
in some particular geographic areas. In Linxian, the incidence of esophageal cancer was
comparably higher than its surrounding area in the same region of China. In the esophageal
and hepatic DNA of esophageal cancer patients from Linxian, relatively high levels of O6-
Et-dGuo 53 (Figure 5) were detected by radioimmunoassay. This appeared to be consistent
with the relatively high exposure levels of dietary N-nitrosamines in those who lived in
this area [72].

The endogenous formation of ethylating agents may be important in the formation
of ethyl DNA adducts in the human liver. In the liver DNA of 15 autopsy specimens,
O4-Et-Thd occurred at levels of 0.5–140 adducts/107 nucleotides [71]. It was not detected in
the peripheral leukocyte DNA in the same study [70,71]. N7-Et-Gua was detected in 25 of
26 human hepatic DNA samples, occurring at a level of 42.2 ± 43.0 fmol/µmol Gua [158].

3.5. N-Nitroso-di-n-propylamine (NDPA)
3.5.1. Exposure and Carcinogenicity

Human exposure to NDPA (5, Figure 1) may arise from the consumption of drinking
water, food, and beverages, contact with pesticides and wastewater, or from endogenous
formation due to the use of nitrite- or secondary amine-containing food or drugs [73,159].
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The carcinogenicity of NDPA has been demonstrated in laboratory animal studies
with rats, mice, hamsters, and monkeys. After the oral administration of NDPA to rats,
tumors primarily occurred in the liver, nasal cavity, and esophagus [73,159].

3.5.2. Metabolism

NDPA is metabolized via α-, β-, and γ-hydroxylation of the propyl group (Scheme 5).
Of the three metabolic pathways, α-hydroxylation is regarded as the primary route for
NDPA bioactivation [159].
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Catalyzed primarily by P450 2E1 and P450 2B1 [160,161], N-nitroso-1-hydroxypropylpr
opylamine 101 is formed by the α-hydroxylation of NDPA. It decomposes to generate the
reactive intermediates propyl diazohydroxide 102 and propionaldehyde 106 [162]. The
diazohydroxide further reacts forming the electrophilic carbocations 104 and 107 via the
intermediate propyldiazonium ion 103. The solvolysis products of the two carbocations—
1-propanol 105 and 2-propanol 108—have been detected in vitro [163,164].

The β-hydroxylation of NDPA generates N-nitroso-2-hydroxypropylpropylamine 109
(NHPPA); its glucuronide is excreted, accounting for 5% of the administered NDPA in 24 h
rat urine [165]. NHPPA can be further oxidized to N-nitroso-2-oxopropylpropylamine 110
(NOPPA) [163,165]. NOPPA can be reduced back to NHPPA, accounting for nearly 50%
of the total dose of NOPPA in 24 h rat urine [165,166]; carbonyl reduction was similarly
observed in the metabolism of relevant metabolites such as N-nitroso-(2-hydroxypropyl)-(2-
oxopropyl)amine 118 (Figure 9) [167]. NOPPA also undergoes a secondary α-hydroxylation
(as illustrated by 111), generating the methyldiazonium ion 15 and acetic acid 113 via
an oxadiazoline intermediate resulting from a spontaneous intramolecular attack by the
diazotate oxygen on the carbonyl carbon of 112 [95–98]. P450 2E1 and P450 2B1 play a
major role in the consecutive hydroxylation of NOPPA [97].
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The γ-hydroxylation of NDPA forms N-nitroso-3-hydroxypropylpropylamine 114 and
N-nitrosopropyl-(carboxyethyl)amine 115. They were detected as minor metabolites of
NDPA in isolated rat hepatocytes [168].
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Considering the structural similarity of NDPA and other N-alkylnitrosamines such
as NDMA and NDEA, P450-catalyzed denitrosation is likely to occur through a radical
mechanism ultimately forming propylamine, propionaldehyde, and nitrate [37,169].

3.5.3. DNA Adducts Formed by NDPA Metabolism

In 1971 and 1973, Kruger first investigated the alkylation of nucleic acids using [14C]NDPA.
The simultaneous detection of N7-Me-Gua 27 (Figure 3) and N7-(n-propyl)guanine 119 (N7-
n-Pr-Gua, Figure 10) in the liver RNA of rats treated with NDPA strongly suggested the
metabolism of NDPA by both α- and β-hydroxylation pathways [96]. [14C]N7-Me-Gua was
only detectable in rat liver RNA and DNA when the rats were treated with [α-14C]NDPA, in
agreement with the methylating agent arising from the β-hydroxylation of NDPA [170]. When
the rats were treated with [β-14C]NDPA, only [14C]N7-n-Pr-Gua was detectable, consistent
with the metabolism mechanism of NDPA α-hydroxylation [96]. Similarly, [3H]N7-Me-Gua
was detected in the rat liver after application with [3H]NOPPA [171].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 16 of 47 
 

Catalyzed primarily by P450 2E1 and P450 2B1 [160,161], N-nitroso-1-hydroxypro-
pylpropylamine 101 is formed by the α-hydroxylation of NDPA. It decomposes to gener-
ate the reactive intermediates propyl diazohydroxide 102 and propionaldehyde 106 [162]. 
The diazohydroxide further reacts forming the electrophilic carbocations 104 and 107 via 
the intermediate propyldiazonium ion 103. The solvolysis products of the two carbo-
cations—1-propanol 105 and 2-propanol 108—have been detected in vitro [163,164]. 

The β-hydroxylation of NDPA generates N-nitroso-2-hydroxypropylpropylamine 
109 (NHPPA); its glucuronide is excreted, accounting for 5% of the administered NDPA 
in 24 h rat urine [165]. NHPPA can be further oxidized to N-nitroso-2-oxopropylpropyla-
mine 110 (NOPPA) [163,165]. NOPPA can be reduced back to NHPPA, accounting for 
nearly 50% of the total dose of NOPPA in 24 h rat urine [165,166]; carbonyl reduction was 
similarly observed in the metabolism of relevant metabolites such as N-nitroso-(2-hydrox-
ypropyl)-(2-oxopropyl)amine 118 (Figure 9) [167]. NOPPA also undergoes a secondary α-
hydroxylation (as illustrated by 111), generating the methyldiazonium ion 15 and acetic 
acid 113 via an oxadiazoline intermediate resulting from a spontaneous intramolecular 
attack by the diazotate oxygen on the carbonyl carbon of 112 [95–98]. P450 2E1 and P450 
2B1 play a major role in the consecutive hydroxylation of NOPPA [97]. 

 
Figure 9. Structures of NDPA analogs that form DNA adducts. 

The γ-hydroxylation of NDPA forms N-nitroso-3-hydroxypropylpropylamine 114 
and N-nitrosopropyl-(carboxyethyl)amine 115. They were detected as minor metabolites 
of NDPA in isolated rat hepatocytes [168]. 

Considering the structural similarity of NDPA and other N-alkylnitrosamines such 
as NDMA and NDEA, P450-catalyzed denitrosation is likely to occur through a radical 
mechanism ultimately forming propylamine, propionaldehyde, and nitrate [37,169]. 

3.5.3. DNA Adducts Formed by NDPA Metabolism 
In 1971 and 1973, Kruger first investigated the alkylation of nucleic acids using 

[14C]NDPA. The simultaneous detection of N7-Me-Gua 27 (Figure 3) and N7-(n-pro-
pyl)guanine 119 (N7-n-Pr-Gua, Figure 10) in the liver RNA of rats treated with NDPA 
strongly suggested the metabolism of NDPA by both α- and β-hydroxylation pathways 
[96]. [14C]N7-Me-Gua was only detectable in rat liver RNA and DNA when the rats were 
treated with [α-14C]NDPA, in agreement with the methylating agent arising from the β-
hydroxylation of NDPA [170]. When the rats were treated with [β-14C]NDPA, only 
[14C]N7-n-Pr-Gua was detectable, consistent with the metabolism mechanism of NDPA α-
hydroxylation [96]. Similarly, [3H]N7-Me-Gua was detected in the rat liver after applica-
tion with [3H]NOPPA [171]. 

 
Figure 10. Structures of propyl/hydroxypropyl and butyl/hydroxybutyl DNA adducts. Figure 10. Structures of propyl/hydroxypropyl and butyl/hydroxybutyl DNA adducts.

Alkylation of DNA has been clearly demonstrated using [α-14C]NDPA in vitro [172].
However, the chemical characterization of NDPA-DNA adducts is limited. Only some
related studies have been reported. Kokkinakis in 1992 reported a study of methyl
and hydroxypropyl DNA adducts in the tissues of hamsters and rats after a single s.c.
dose of 3H-labeled N-nitroso-bis(2-hydroxypropyl)amine 116 (Figure 9). Methyl DNA
adducts were preferentially formed over hydroxypropyl DNA adducts at low doses
(100–500 mg/kg body weight) but became secondary at higher doses. Both adducts
occurred at their highest concentrations in the liver, the primary metabolic activation
site. The methyl DNA adducts identified in this study were N7-Me-Gua 27 and O6-Me-
Gua 24 (Figure 3); the hydroxypropyl DNA adducts were N7-(2-hydroxypropyl)guanine
120, O6-(2-hydroxypropyl)guanine 121, and O6-(1-methyl-2-hydroxyethyl)guanine 122
(Figure 10) [173]. The formation of N7-Me-Gua and O6-Me-Gua was also confirmed in
hamsters and rats treated with the NDPA derivatives N-nitroso-bis(2-oxopropyl)amine 117
and N-nitroso-(2-hydroxypropyl)-(2-oxopropyl)amine 118 (Figure 9), both of which are
pancreatic carcinogens in hamsters [174,175]. Adduct 120 was also detected in the tissues
of hamsters and rats treated with 117 and 118 [175].

3.6. N-Nitrosodiethanolamine (NDELA)
3.6.1. Exposure and Carcinogenicity

NDELA (6, Figure 1) is an environmentally prevalent N-nitrosamine found in cosmet-
ics. It can also be detected in some food products, synthetic cutting fluids, and tobacco and
tobacco smoke [176–179].

The carcinogenicity of NDELA has been extensively studied in rats, mice, and ham-
sters [73,179]. After oral administration, NDELA induced primarily liver tumors in rats. It
also induced lung tumors in mice and some nasal tumors in rats. In hamsters, NDELA treat-
ment resulted in nasal cavity tumors and tracheal tumors regardless of the administration
pathways (s.c. injection, topical application, and oral swabbing) [73,179].
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3.6.2. Metabolism

The distribution of NDELA in Osborne-Mendel rats has been studied using two
administration pathways. After oral administration, NDELA was absorbed and distributed
rapidly and reached a peak concentration at 8 h; after topical application, NDELA was
slowly absorbed but rapidly distributed as when dosed orally. NDELA was excreted
mainly in the urine as the unchanged form and one metabolite [180,181]. The excreted
NDELA also represented a high percentage (60–90%) in the urine of male Sprague-Dawley
rats administered NDELA in drinking water [182]. A similar high urinary excretion rate
(73–89%) of unchanged NDELA was also determined in rats treated percutaneously and
intratracheally [19]. However, the absorption rate of NDELA was significantly lower in
Syrian golden hamsters. After s.c. injection, 49% and 11% of the dose appeared in the urine
and feces, respectively, in 16 h; 34% and 6% after oral swabbing; and only 21% and 4% were
detected after skin application [183].

An investigation of the rat urinary metabolites of NDELA suggested only one compound
containing the nitroso moiety, which was identified as N-nitroso-(2-hydroxyethyl)glycine 135
(NHEG, Scheme 6). It represented 6% of the dosed NDELA in the rats [184]. The glucuronide
of NDELA was also identified in rat urine after gavage [185]. However, no sulfate derivatives
were observed even though NDELA sulfate was considered a possible activated metabolite
that could react with DNA to form 2-hydroxyethyl adducts (as shown in Figure 5) [185–187]. N-
Nitroso-2-hydroxymorpholine 137 (NHMOR) was also observed as a minor metabolite in vitro
in rat liver S9 supernatant [188,189].
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The formation of NHEG 135 and NHMOR 137 strongly implies the important role
that β-hydroxylation may play in the bioactivation of NDELA in vivo (Scheme 6). This
reaction is catalyzed primarily by P450 2E1 [188]. NHMOR can be further metabolized
by α-hydroxylation on the two methylene groups. When the α-hydroxylation occurs
on the 3-carbon, the major metabolite has been identified as glyoxal 133 formed via 139
and 140; when the α-hydroxylation occurs on the 5-carbon, the major metabolite is 2-
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acetoxyacetaldehyde 144 formed via 142 and 143 [188]. It is noteworthy that NHMOR also
arises from NMOR metabolism which is discussed in detail in Section 4.3.2.

However, several lines of evidence raise questions regarding the importance of β-
hydroxylation in the carcinogenesis of NDELA. Although it is a stable precursor to potential
DNA alkylating agents such as glyoxal, NHMOR was inactive or marginally carcinogenic to
rats or mice when administered in drinking water [190]. Only the glyoxal-deoxyguanosine
adduct 145 (N1,N2-glyoxal-dGuo, Figure 11) was observed in vitro in NHMOR-incubated
calf thymus DNA (up to 48 h) and in vivo in the liver DNA of rats given NHMOR at a
single dose by gavage for 4 h [191]. The levels of N1,N2-glyoxal-dGuo formed by NHMOR
were also lower than those formed by NDELA [192]. Those findings taken together suggest
that additional metabolic activation pathways such as α-hydroxylation are involved in the
carcinogenesis of NDELA [193].
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Catalyzed primarily by P450 2E1, hydroxylation occurs on the α-carbon of NDELA
and forms the 2-hydroxyethyldiazonium ion 127 and glycolaldehyde 130 after spontaneous
decomposition [188,194]. The 2-hydroxyethyldiazonium ion forms the carbocation 128
after the loss of H2O and subsequently yields the solvolysis product ethylene glycol 129,
which can also undergo microsome-mediated oxidation to glyoxal 133. The carbocation 128
also undergoes elimination and forms acetaldehyde 42 [188,195]. O6-(2-Hydroxyethyl)-2′-
deoxyguanosine 68 (O6-HOEt-dGuo, Figure 5) arising from NDELA metabolism has been
detected in rat liver DNA; it is not derived from NHMOR metabolism [191]. Deuter-
ation on the α-carbon of NDELA greatly decreased the formation of glycolaldehyde
130 and O6-HOEt-dGuo 68, whereas β-deuteration oppositely affected the formation of
those products. This further suggests that O6-HOEt-dGuo mainly results from NDELA α-
hydroxylation [191,194]. One unexpected finding was that glycolaldehyde 130, other than
being classically converted to glycolic acid 131 and oxalic acid 132, was also transformed
to glyoxal 133 via the catalysis of P450 2E1 [188,194]. The collective evidence indicates the
necessity of the α-hydroxylation of NDELA for DNA adduct formation.

3.6.3. DNA Adducts Formed by NDELA Metabolism

O6-HOEt-dGuo 68 and N7-HOEt-Gua 69 (Figure 5) were characterized in the reaction
mixture of N-nitroso-3-acetoxy-2-hydroxymorpholine 138 (Scheme 6) with dGuo. However,
neither of these adducts was detected in the reaction mixture of N-nitroso-5-acetoxy-2-
hydroxymorpholine 141 with dGuo. This suggested that the α-hydroxylation of NHMOR
on the 5-carbon was unlikely to produce DNA adducts, whereas NHMOR α-hydroxylation
on the 3-carbon might yield a carcinogenic outcome [195]. However, this seems not to be
supported by an in vivo study, in which no 2-hydroxyethyl guanine adducts were detected
in the liver DNA of rats treated with NHMOR [188]. In contrast, 2-hydroxyethyl guanine
adducts were tentatively identified in the hydrolysates of the liver DNA of rats treated with
NDELA by gavage [185]. One adduct was later characterized as O6-HOEt-dGuo using the
synthesized authentic standard. It was detected in vivo in the liver DNA of rats treated
with NDELA [191,194,196]. Taken together, 2-hydroxyethyl adducts formed by NDELA
are reasonably considered to result from the α-hydroxylation pathway rather than the
β-hydroxylation pathway.
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Glyoxal DNA adducts formed by NDELA and its analogs were readily detected
in vitro and in vivo. In the reaction with dGuo in vitro, N1,N2-glyoxal-dGuo 145 (Figure 11)
was formed as the major adduct (65%) by N-nitroso-3-acetoxy-2-hydroxymorpholine 138;
N1,N2-etheno-dGuo 146 was formed as the major adduct (44%) by the less-reactive N-
nitroso-5-acetoxy-2-hydroxymorpholine 141 [195]. N1,N2-glyoxal-dGuo was also detected
in the liver DNA of rats treated with NDELA or NHMOR [192,196]. A few analogs of
NDELA also caused the same N1,N2-glyoxal-dGuo adduct in the rat liver DNA [192].
However, due to the complex potential origins of glyoxal, the formation of N1,N2-glyoxal-
dGuo does not necessarily reflect the preference of metabolic pathways of NDELA.

3.7. N-Nitrosodi-n-butylamine (NDBA)
3.7.1. Exposure and Carcinogenicity

NDBA (7, Figure 1) has been found in agricultural products, fish, processed meats,
seasonings, and contaminated water [12,73]. It was also formed at trace levels during the
production of the drug ranitidine [197]. Some early data suggested the presence of NDBA
in tobacco smoke but with no clear evidence in recent studies [73].

NDBA was classified by IARC in 1978 and reaffirmed in 1987 as a group 2B carcino-
gen. It is carcinogenic to the esophagus and bladder of laboratory animals including
mice, rats, Syrian golden hamsters, and guinea pigs. It also causes liver and forestom-
ach tumors [73,198–202]. In 1983, Lijinsky and Reuber reported that NDBA, even though
much weaker than NDPA, induced liver tumors in 60% of rats administered by gavage for
83 weeks. It also induced forestomach (50%) and bladder tumors (35%) [203]. Even after
a short-term (2 weeks) exposure to NDBA, preneoplastic lesions were positively found
in the liver, esophagus, forestomach, and bladder of rats 52 weeks post-treatment [204].
Mice with a p53 gene knockout had increased susceptibility to esophageal and bladder
carcinogenesis caused by NDBA [205].

3.7.2. Metabolism

By analogy to other N-nitrosodialkylamines, NDBA requires metabolic activation to ex-
ert its carcinogenicity. Four metabolic pathways can occur in NDBA metabolism (Scheme 7).
They are α-, β-, γ-, and δ-hydroxylation of the butyl group of NDBA, among which α-
hydroxylation has been suggested to be primarily involved in NDBA carcinogenesis [206].
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157. The α-hydroxylation products butyraldehyde 152 and/or 1-butanol 154 and 2-butanol 155
were also detected, indicating the formation of the butyl carbocations 150 and 151 [206,207]. In
rats, NDBA was extensively metabolized with no unchanged compounds being detected in
the urine. Two major metabolites N-nitroso-(3-carboxypropyl)butylamine 161 and N-nitroso-
(3-hydroxybutyl)butylamine 157 resulted from δ- and γ-hydroxylation, respectively. The third
minor metabolite was the β-hydroxylation product N-nitroso-(2-hydroxybutyl)butylamine 156. All
metabolites were detected in the urine as such and as their gluconides [208]. One of the major
urinary metabolites 161 arises from the consecutive oxidation of the initial δ-hydroxylation product
N-nitroso-(4-hydroxybutyl)butylamine 160 (BBN), a urothelial carcinogen [209]. It can be further
converted to several minor metabolites such as 162, 163, and 164 by β-oxidation and subsequent
biotransformations [210,211]. In contrast to rats, the primary metabolite of NDBA in hamsters was
the glucuronide of N-nitroso-(3-hydroxybutyl)butylamine 157 [212].

In the urine of rats treated with NDBA, the end products of NDBA-GSH conju-
gates were also detected. They are N-acetyl-S-butyl-L-cysteine 153 resulting from α-
hydroxylation of NDBA and N-acetyl-S-3-hydroxybutyl-L-cysteine 158 and N-acetyl-S-3-
oxobutyl-L-cysteine 159 that are hypothesized to result from γ-hydroxylation of NDBA
followed by a secondary α-hydroxylation [213].

3.7.3. DNA Adducts Formed by NDBA Metabolism

The butyl carbocation 150 (Scheme 7) resulting from the α-hydroxylation of NDBA is
considered to be the alkylating agent which attacks DNA forming n-butyl DNA adducts.
In the liver DNA of rats treated with 185 mg/kg NDBA by a single i.p. dose, O6-(n-
butyl)guanine 123 (O6-n-Bu-Gua, Figure 10) has been detected at a concentration of
0.34 µmol/mol Gua [214].

The sequential α-hydroxylation of NDBA metabolites such as BBN 160 can form the
other alkylating species and react with DNA to cause lesions. In the urothelial and hepatic
DNA of rats, both O6-n-Bu-Gua 123 and O6-(4-hydroxybutyl)guanine 124 (O6-(4-OH-n-Bu)-
Gua, Figure 10) were detected at 17.9 ± 7.23 and 12.2 ± 7.01 µmol/mol Gua, respectively,
after 24 h treatment with a single oral dose of 120 mg BBN. O6-n-Bu-Gua did not accumulate
after repeated exposure to a lower dose of BBN; O6-(4-OH-n-Bu)-Gua was not detected in
the same study [215].

4. Metabolic Activation and DNA Interactions of Carcinogenic Cyclic N-Nitrosamines

Three carcinogenic cyclic N-nitrosamines (NPYR, NPIP, and NMOR, Figure 1) are
discussed here due to their common human exposure. They are introduced in order based
on their increasing structural complexity.

4.1. N-Nitrosopyrrolidine (NPYR)
4.1.1. Exposure and Carcinogenicity

NPYR (8, Figure 1) is a simple symmetric cyclic N-nitrosamine. It has been exten-
sively investigated as a model compound for studies of N′-nitrosonornicotine (NNN),
and in its own right due to its common occurrence in food (1.5 ± 0.2 ng/g) and water
(5.5 ± 2.6 ng/L) [9]. It is also present in tobacco smoke and smokeless tobacco prod-
ucts [73,77,216]. Endogenous nitrosation is considered to be another possible pathway to
form NPYR, due to the relatively high human exposure to its precursor pyrrolidine, which
is excreted to the extent of ~20 mg per day in the urine [217].

NPYR is a strong hepatic carcinogen in mice and rats. The IARC reviewed some
early data on NPYR carcinogenicity in 1978 [73]. Since then, some new data have been
reported. In rats administered NPYR in drinking water, it primarily caused hepatocellular
carcinomas, many of which metastasized [218,219]. A dose-response relationship of hepatic
tumor formation was observed in rats administered NPYR in drinking water [220]. NPYR
also induced lung tumors in A/J mice after i.p. injection [221]. In Syrian golden hamsters,
NPYR induced tracheal and nasal cavity tumors when administered intraperitoneally [222]
but tracheal papillomas and hepatic neoplastic nodules when fed in the diet [223].
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4.1.2. Metabolism

NPYR is metabolized extensively in rats, with only ~1% of unchanged NPYR detected
in the urine [224]. It is ultimately excreted as volatiles such as CO2 and N2 [224,225].
To exert its carcinogenicity, NPYR requires metabolic activation primarily catalyzed by
P450 2E1 [224,226]. The identification of 2-hydroxytetrahydrofuran 171 (2-hydroxyTHF,
Scheme 8) [227–229], crotonaldehyde 177 [230], and 3-hydroxy-1-nitrosopyrrolidine 178
(3-hydroxyNPYR) [231,232] as metabolites of NPYR in rats indicated the occurrence of
the α- and β-hydroxylation pathways of NPYR metabolism. The nearly diminished car-
cinogenicity of the NPYR analog 2,5-dimethyl-N-nitrosopyrrolidine in rats suggested
the importance of α-hydroxylation for the metabolic activation of NPYR to express its
ultimate carcinogenicity.
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Catalyzed primarily by P450 2E1 [224,226], NPYR is metabolized via α-hydroxylation
to form 2-hydroxyNPYR 167, which decomposes spontaneously to the 4-oxobutyldiazonium
ion 169 through the intermediate 4-oxobutyl diazohydroxide 168. After the loss of one
molecule of N2 from the diazonium ion, carbocations 172 and 174 and the oxonium
ion 170 are suggested to be the reactive intermediates in forming the solvolysis prod-
ucts 4-hydroxybutanal 173 in equilibrium with 2-hydroxyTHF 171 and 3-hydroxybutanal
175 [227–229] and the elimination product crotonaldehyde 177 [230,233–235]. Among those
metabolites, 2-hydroxyTHF 171 is the most prevalent one [227].

α-Hydroxylation of NPYR predominated in explanted esophagus from rats and humans [236],
cultured human colon [237], and cultured bladder cells from rats and humans [238]. The rate of
NPYR α-hydroxylation by rat hepatic microsomes was 1.43 nmol/min/mg protein [228]; this rate
was lower in human hepatic microsomes (0.68 nmol/min/mg protein) [239]. The apparent Km for
rat lung microsomes and post-microsomal supernatant was approximately 20 mM but was much
smaller for rat liver microsomes (0.36 mM) [229,240]. NPYR α-hydroxylation was inducible in rats
and hamsters that were pre-treated with Aroclor or ethanol [228,241,242].

4.1.3. DNA Adducts Formed by NPYR Metabolism

As depicted in Scheme 8, the butanal carbocation 172 is considered to form the oxo-
nium ion 170 and the isomeric carbocation 174 after rearrangement. All 3 reactive species
can react with DNA and form the corresponding DNA adducts. Crotonaldehyde 177, the
elimination product of the isomeric carbocation 174, also reacts with DNA.
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DNA Adducts Formed by NPYR-Derived Carbocations

In 1982, Hunt and Shank first reported the detection of a fluorescent adduct, which
was formed dose-dependently in the liver DNA of rats treated with NPYR [243]. We later
structurally characterized this adduct to be 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido
[2,1-f ]purine-4(3H)-one 179 (N7,8-butano-Gua, Figure 12) [244], which was likely formed by
simultaneous alkylation at Gua-N7 and cyclization at Gua-C8 [245,246]. N7,8-Butano-Gua
was the predominant adduct formed among the NPYR-derived DNA adducts in the liver
DNA of rats (see Table 1) [247]. It occurred most abundantly in the target organ liver but
was also detected in the kidneys and lungs of NPYR-treated mice, rats, and hamsters [248].
In rats treated with NPYR by intragastric administration, this adduct peaked at 12–24 h
after dosing in a dose-dependent manner and persisted for at least 3 days [248]. N7,8-
Butano-Gua occurred to a higher extent in the RNA than in the DNA of rat liver (see
Table 1), suggesting that RNA could be superior for biomarker studies of this lesion [249].
It was also detected in rat urine [249].
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Table 1. Levels of DNA adducts in the tissues of laboratory animals exposed to NPYR.

Animal
Species

Administration
Pathway

Exposure
Amount

Exposure
Time

Target Tissue

DNA Adducts (µmol/mol dGuo Unless Otherwise Noted) Formed by NPYR Ref.

N7,8-
Butanoguanine

N7-(4-
Oxobutyl)-

dGuo

N1,N2-
Propano-Gua

a

N6-(4-HOB)-
dAdo

b

N2-(4-HOB)-
dGuo

b

O2-(4-HOB)-Thd
b

O4-(4-HOB)-Thd
b

Male F344 rats

Single dose by
gavage

3.1 mg/kg (8
mCi)

[3,4-3H]NPYR

16 h Liver

0.7 pmol/mg
DNA

[244]

6.7 mg/kg (15
mCi)

[3,4-3H]NPYR
ND

175 mg/kg
NPYR

320 pmol/mg
DNA

350 mg/kg
NPYR

390 pmol/mg
DNA

450 mg/kg
NPYR 24 h

Liver RNA 2860 ± 332 ND
[249]

Liver DNA 1430 ± 56 603

46 mg/kg
NPYR

16 h Liver

952 ± 180 0.231 ± 0.078 0.013 ± 0.006 0.369 ± 0.134 1.065 ± 0.349

[247]92 mg/kg
NPYR 1742 ± 245 0.499 ± 0.091 0.008 ± 0.004 0.478 ± 0.114 2.049 ± 0.361

184 mg/kg
NPYR 3032 ± 855 0.905 ± 0.240 0.016 ± 0.008 0.951 ± 0.193 3.767 ± 0.840

Single dose by
i.p. injection

450 mg/kg
NPYR 16 h Liver 1792 ± 87 643 ± 9 ND [250]

In the drinking
water

6 mM NPYR 14 days

Liver

0.06 [251]

600 ppm
NPYR 1 week 0.02 ± 0.01 3.41 ± 0.60 2.56 ± 0.84 2.28 ± 0.47

[252]200 ppm
NPYR 4 weeks 0.03 ± 0.01 4.84 ± 0.48 3.87 ± 0.97 3.83 ± 0.57

200 ppm
NPYR 13 weeks 0.04 ± 0.02 5.39 ± 0.39 3.52 ± 0.43 5.05 ± 1.68
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Table 1. Cont.

Animal
Species

Administration
Pathway

Exposure
Amount

Exposure
Time

Target Tissue

DNA Adducts (µmol/mol dGuo Unless Otherwise Noted) Formed by NPYR Ref.

N7,8-
Butanoguanine

N7-(4-
Oxobutyl)-

dGuo

N1,N2-
Propano-Gua

a

N6-(4-HOB)-
dAdo

b

N2-(4-HOB)-
dGuo

b

O2-(4-HOB)-Thd
b

O4-(4-HOB)-Thd
b

Male Sprague-
Dawley

rats

Single dose by
intubation

14–900 mg/kg
NPYR

12 h Liver

Dose-
dependently
formed; 0.1–3
equivalents of
N7-Me-Gua

[243]
0.63 mg

[14C]NPYR/
1 rat (207 g)

8- or 42.6-fold
of N7-Me-Gua
radioactivity

Intragastric
administration

900 mg/kg
NPYR 12 h

Liver 3983

[248]Kidney 159

Lung 159

Male Swiss
Webster mice

Intragastric
administration

900 mg/kg
NPYR 24 h

Liver 9987

[248]Kidney 699

Lung 499

Male Syrian
golden

hamsters

Intragastric
administration

900 mg/kg
NPYR 24 h

Liver 9000

[248]Kidney 900

Lung 1170

a The levels reported here contain the two diastereomers (6S,8S)- and (6R,8R)-N1,N2-propano-Gua. b The 4-hydroxybutyl (4-HOB) DNA adducts were the reduction products of their
tetrahydrofuranyl precursors. They were more stable for quantitation than their precursors.
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Two acyclic adducts—N7-(4-oxobutyl)guanine 180 and N7-(3-carboxypropyl)guanine
181—can also be formed by the carbocation resulting from NPYR α-hydroxylation. They
were both identified in vitro in calf thymus DNA incubated with α-acetoxy-N-nitrosopyrroli
dine 165 (α-acetoxyNPYR, Scheme 8); N7-(4-oxobutyl)guanine predominated among these
two adducts [245,246]. There was little evidence in support of the cyclization of N7-(4-
oxobutyl)guanine to N7,8-butano-Gua 179 [245]. N7-(4-Oxobutyl)guanine occurred at
about one-third of the level of N7,8-butano-Gua, at a concentration of 643 ± 9 µmol/mol
Gua in the hepatic DNA of rats administered NPYR by i.p. injection [250]. A similar
concentration (603 µmol/mol Gua) was also observed in the liver DNA but not the liver
RNA of rats administered NPYR by gavage [249].

DNA Adducts Formed by an NPYR-Derived Oxonium Ion

The NPYR-derived oxonium ion 170 reacts with DNA forming a group of tetrahy-
drofuranyl DNA adducts, some of which have been identified both in vitro and in vivo.
Quantitation of those adducts has been performed by reducing them to the corresponding
4-hydroxybutyl adducts (see Table 1).

In the reaction of dGuo and calf thymus DNA withα-acetoxyNPYR 165, N2-(tetrahydrofuran-
2-yl)-2′-deoxyguanosine 185 (N2-THF-dGuo, Figure 12) was characterized as the first identified
tetrahydrofuranyl DNA adduct derived from NPYR metabolism [253,254]. The levels of this
adduct exceeded those of other adducts formed by α-acetoxyNPYR in the in vitro DNA hy-
drolysate samples [253]. After neutral thermal hydrolysis, 2-hydroxyTHF 171 (Scheme 8) was
released as the major product from the treated DNA in vitro; N2-THF-dGuo 185 is considered the
major precursor of this product [235]. The reduction of N2-THF-dGuo forms N2-(4-hydroxybutyl)-
2′-deoxyguanosine 190 (N2-(4-HOB)-dGuo, Figure 12), which occurred in relatively low abun-
dance compared to other types of NPYR DNA adducts in the liver DNA of rats. However, it
remains one of the most abundant adducts among those formed by the oxonium ion 170 [247,252].

The other tetrahydrofuranyl DNA adducts N6-(tetrahydrofuran-2-yl)-2′-deoxyadenosine
184 (N6-THF-dAdo) and N4-(tetrahydrofuran-2-yl)-2′-deoxycytidine 186 (N4-THF-dCyd) were
also identified in calf thymus DNA incubated with α-acetoxyNPYR. Two unstable Thd
adducts, O2-(tetrahydrofuran-2-yl)thymidine 187 (O2-THF-Thd) and O4-(tetrahydrofuran-
2-yl)thymidine 188 (O4-THF-Thd), were also formed and verified by their reduction prod-
ucts [255]. Some of the tetrahydrofuranyl DNA adducts were also observed in the reactions of
oxidized THF with deoxyribonucleosides in vitro [256]. In a study in which F344 rats were
gavaged with a single dose of NPYR and sacrificed after 16 h, O2-THF-Thd 187 (quantified
in the reduced form 192) predominated among the tetrahydrofuranyl DNA adducts at all
3 doses (see Table 1) [247]. In the chronic rat study with doses of NPYR administered in
drinking water at 600 ppm for 1 week or 200 ppm for 4 or 13 weeks, dGuo and Thd adducts
persisted in much higher abundance than the dAdo adduct. However, they did not seem to
accumulate over the study course [252].

DNA Adducts Formed by NPYR-Derived Crotonaldehyde

In the reactions of dGuo with two stable regiochemically activated compounds, α-
acetoxyNPYR 165 and 4-(carbethoxynitrosamino)butanal 166 (Scheme 8), two diasteromeric
DNA adducts, (6S,8S)- and (6R,8R)-N1,N2-propanodeoxyguanosine 194 and 195 (N1,N2-
propano-dGuo, Figure 12), were the major products, identical to the products formed
by crotonaldehyde 177 [257]. Those two adducts were also formed by the reaction of α-
acetoxyNPYR with dGuo, DNA, or RNA in vitro [244,245,249]. In the hepatic DNA of rats
treated with NPYR in drinking water for 14 days, N1,N2-propano-dGuo (194 and 195 to-
gether) occurred at the level of 0.06 µmol/mol Gua. This adduct was also formed in the skin
DNA of mice topically treated with crotonaldehyde. However, the concentration of N1,N2-
propano-dGuo (194 and 195 together) in the rat liver DNA was significantly lower (~10,000-
fold) than N7,8-butano-Gua 179 [251]. The diastereomer (6S,8S)-N1,N2-propano-dGuo 194
was preferentially formed over its (6R,8R)-counterpart 195 by crotonaldehyde [233].
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In addition to the methyl-substituted N1,N2-propano-dGuo adducts, two new exo-
cyclic 7,8-guanine adducts, cis- and trans-2-amino-7,8-dihydro-8-hydroxy-6-methyl-3H-
pyrrolo [2,1-f ]purine-4(6H)-one 196 and 197 (N7,8-Cro-Gua, Figure 12), were also identified
in vitro in calf thymus DNA treated with α-acetoxyNPYR or crotonaldehyde but not in vivo
in rat liver DNA [244,245]. They are likely formed via initial Michael addition followed by
cyclization, the same mechanism for the selective formation of N1,N2-propano-dGuo [258].
The same two diasteromeric adducts 196 and 197 were also detected in crotonaldehyde-
treated DNA in vitro and in vivo [244,251].

Other DNA Adducts Related to NPYR Metabolism

As depicted in Scheme 8, the metabolite 3-hydroxybutanal 175 can dimerize to
form paraldol 176, which has been detected in the hydrolysates of DNA treated with α-
acetoxyNPYR. Paraldol was also released from crotonaldehyde-treated DNA after neutral
thermal hydrolysis but in much higher abundance, suggesting the presence of the unstable
paraldol-releasing adduct(s) formed by α-acetoxyNPYR is likely via the intermediate croton-
aldehyde [235]. Two paraldol-dGuo adducts were characterized in crotonaldehyde-treated
DNA. They are N2-(2-(2-hydroxypropyl)-6-methyl-1,3-dioxan-4-yl)-2′-deoxyguanosine
198 (N2-paraldol-dGuo, Figure 13) and N2-(2-(2-hydroxypropyl)-6-methyl-1,3-dioxan-4-
yl)deoxyguanylyl-(5′–3′)-thymidine 199 (N2-paraldol-dGuo-(5′–3′)-Thd) [233]. The major
paraldol-releasing DNA adduct was later characterized to be N2-(3-hydroxybutylidene)-2′-
deoxyguanosine 200, a Schiff base that was unstable at the nucleoside level but appeared
to be stable in DNA. The level of 200 exceeded the Michael addition products of tricyclic
N1,N2-propano-dGuo adducts 194 and 195 in crotonaldehyde- and α-acetoxyNPYR-treated
DNA [234,259].
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In the reaction of α-acetoxyNPYR 165 with dGuo, N7-(N-nitrosopyrrolidin-2-yl)guanine
202 (Figure 13) was identified as the first example of a nitrosamine adduct retaining the
N-nitroso moiety [259]. It was considered to be formed through the intermediacy of the nitrosi-
minium ion 201 [260]. A new cyclized adduct 2-(2-hydroxypyrrolidin-1-yl)-2′-deoxyinosine
203 (N2-Py(OH)-dI) was for the first time identified and confirmed by its synthetic stan-
dard in the reaction of α-acetoxyNPYR with both dGuo and DNA; it can be reduced to
2-(pyrrolidin-1-yl)-2′-deoxyinosine 204 (N2-Py-dI) [259].
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4.1.4. Mutagenicity and Genotoxicity of NPYR-Derived DNA Adducts

NPYR is mutagenic towards E. coli and S. typhinurium after hepatic microsomal activa-
tion [261,262]. A few DNA adducts formed by NPYR metabolism such as N1,N2-propano-
dGuo can also arise from crotonaldehyde. The mutagenicity and genotoxicity of these
types of DNA adducts have been extensively reviewed before [263–265]. However, the
mutagenicity and genotoxicity of the other types of NPYR DNA adducts, such as 184–186
and their reduced forms 189–193, still warrant investigation.

4.1.5. Human DNA Adducts Related to NPYR Metabolism

The N1,N2-propano-dGuo adducts have been detected in human tissues [266,267]. We
have quantified (6S,8S)-N1,N2-propano-dGuo 194 and (6R,8R)-N1,N2-propano-dGuo 195 in
human liver, lung, and white blood cells [268]. (6S,8S)-N1,N2-Propano-dGuo 194 occurred
at a mean (±SD) concentration of 6.70± 2.92 and 7.19± 4.14 fmol/µmol dGuo, respectively,
in liver and lung DNA. However, the detection rates were low; only 4 out of 23 liver samples
and 16 out of 45 lung samples were positive. Similarly, (6R,8R)-N1,N2-propano-dGuo 195
occurred at mean (±SD) concentrations of 7.87 ± 4.47 and 12.8 ± 7.6 fmol/µmol dGuo,
respectively, in the same liver and lung DNA. No statistically significant difference was
observed between the occurrence of the two diastereomers. Neither of the two isomers was
detected in the DNA of 11 human white blood cell samples [268]. However, considering
the fact that the most abundant NPYR DNA adduct, N7,8-butano-Gua 179, has not been
detected in the human tissues, the origin of N1,N2-propano-dGuo is likely not due to the
exposure of NPYR but rather to other pathways such as the endogenous formation of
crotonaldehyde from lipid peroxidation [269]. Presently, there is no direct evidence for the
presence of NPYR-DNA adducts specifically in human tissues. However, the studies on
NPYR-DNA damage did lead to research on crotonaldehyde-DNA interactions and their
detection in human tissue samples as noted above.

4.2. N-Nitrosopiperidine (NPIP)
4.2.1. Exposure and Carcinogenicity

NPIP (9, Figure 1) has been reported in water, spices, and foods such as cheese, smoked
fish, and processed meat [73,270]. The average concentration of NPIP was 0.5 ± 0.1 ng/g
in food and 7.9 ± 4.0 ng/L in potable water [9]. The formation of NPIP by the nitrosation
of amine precursors such as piperidine has been associated with concentrations of sodium
nitrite during the production of dry fermented sausages [271]. The presence of NPIP in
tobacco products has been documented but is currently at extremely low levels [73,77].

The IARC reviewed the carcinogenicity data of NPIP in 1978 and reaffirmed its Group
2B classification in 1987. It has shown carcinogenic effects in multiple laboratory animals
such as mice, rats, hamsters, and monkeys [73]. In mice, NPIP induced primarily liver and
lung tumors when administered in the diet and caused lung adenomas when administered
in the drinking water or by i.p. injection. In rats, esophageal and hepatic tumors were
induced by NPIP administered in drinking water. However, the target organ shifted to the
nasal cavity when administered by s.c. injection. Carcinomas of the esophagus and pharynx
were mainly observed by i.v. injection of NPIP [73]. The ability of NPIP to cause esophageal
tumors is striking when compared to its close analog NPYR, which never causes esophageal
tumors in rats. This was confirmed by Gray et al. in a large 2-year study. The incidence of
hepatic and esophageal tumors in rats was dose-responsive to the concentration of NPIP in
the drinking water [220]. In hamsters, the trachea appears to be the primary target organ
by NPIP after s.c. injection. In monkeys, hepatocellular carcinomas were observed after
oral dosing with NPIP [73].

4.2.2. Metabolism

NPIP is primarily biotransformed by hepatic P450s with the additional contribution
of cytosolic proteins [272–274]. Catalyzed primarily by P450 2As [226,275,276], NPIP
undergoes α-hydroxylation to form the unstable α-hydroxyNPIP 206 (Scheme 9). This
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intermediate has been trapped in the form of α-hydroxyNPIP phosphate ester 221 under
near-ultraviolet irradiation conditions [277]. After the decomposition of α-hydroxyNPIP
and the spontaneous loss of H2O and N2, the electrophilic intermediate carbocation 213 is
formed. The carbocation 213 can form the oxonium ion 216 via intramolecular cyclization or
the isomeric carbocation 211 via a 1,2-H shift. Their solvolysis products, 5-hydroxypentanal
214 (in equilibrium with 2-hydroxytetrahydropyran 217 (THP-OH)) [278–280] and the
reduced form 1,5-pentanediol 215 [272] and 4-hydroxypentanal 212 (in equilibrium with 2-
hydroxy-5-methyltetrahydrofuran 210) [278] or the potential elimination/oxidation product
4-oxopent-2-enal 209 (acetylacrolein) [278], have been identified in support of the proposed
mechanism of NPIP α-hydroxylation. It is noteworthy that 4-oxopent-2-enal 209 may also
result from the metabolism of 2-methylfuran [281].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 29 of 47 
 

the reduced form 1,5-pentanediol 215 [272] and 4-hydroxypentanal 212 (in equilibrium 
with 2-hydroxy-5-methyltetrahydrofuran 210) [278] or the potential elimination/oxidation 
product 4-oxopent-2-enal 209 (acetylacrolein) [278], have been identified in support of the 
proposed mechanism of NPIP α-hydroxylation. It is noteworthy that 4-oxopent-2-enal 209 
may also result from the metabolism of 2-methylfuran [281].  

 
Scheme 9. Mechanisms of NPIP metabolism. 

Beta- and γ-hydroxylation of NPIP have also been suggested as potential metabolic 
pathways (Scheme 9). N-Nitroso-4-hydroxypiperidine 219 and N-nitroso-4-piperidone 
220 were detected in vitro in early studies with rat liver microsomes [282,283]. N-Nitroso-
3-hydroxypiperidine 218 and N-nitroso-4-hydroxypiperidine 219 were minor products 
compared to 5-hydroxypentanal 214 in studies with guinea pig liver microsomes [280].  

The metabolic bioactivation pathways illustrated in Scheme 9 were also supported 
by the structure-carcinogenicity studies. Methyl substitution at the α-carbons of NPIP sig-
nificantly decreased tumor formation in rats administered NPIP or its methyl analogs in 
drinking water [284]. The β- or γ-substitutions (methyl and hydroxy) did not affect the 
carcinogenicity of NPIP in rats [284,285]. 

4.2.3. DNA Adducts Formed by NPIP Metabolism 
In the reaction mixture of 𝛼-acetoxy-N-nitrosopiperidine 205 (𝛼-acetoxyNPIP, 

Scheme 9) with dGuo, a peak corresponding to 7-(2-oxopropyl)-5,9-dihydro-9-oxo-3-β-D-
deoxyribofuranosylimidazo [1,2-a]purine 222 (7-(2-oxopropyl)-N1,N2-etheno-dGuo, Fig-
ure 14) was observed. Its formation was proposed to occur via the intermediate 4-oxopent-
2-enal 209 [254,278]. The unstable hemiaminal precursor for 7-(2-oxopropyl)-NN1,N2-
etheno-dGuo has been identified in vitro, as such or in its reduced form. It was character-
ized as 7-(2-oxopropyl)-5-hydroxy-5,6,7,9-tetrahydro-9-oxo-3-β-D-deoxyribo-
furanosylimidazo [1,2-a]purine 223 [286]. 

 

Scheme 9. Mechanisms of NPIP metabolism.

Beta- and γ-hydroxylation of NPIP have also been suggested as potential metabolic
pathways (Scheme 9). N-Nitroso-4-hydroxypiperidine 219 and N-nitroso-4-piperidone
220 were detected in vitro in early studies with rat liver microsomes [282,283]. N-Nitroso-
3-hydroxypiperidine 218 and N-nitroso-4-hydroxypiperidine 219 were minor products
compared to 5-hydroxypentanal 214 in studies with guinea pig liver microsomes [280].

The metabolic bioactivation pathways illustrated in Scheme 9 were also supported
by the structure-carcinogenicity studies. Methyl substitution at the α-carbons of NPIP
significantly decreased tumor formation in rats administered NPIP or its methyl analogs
in drinking water [284]. The β- or γ-substitutions (methyl and hydroxy) did not affect the
carcinogenicity of NPIP in rats [284,285].

4.2.3. DNA Adducts Formed by NPIP Metabolism

In the reaction mixture of α-acetoxy-N-nitrosopiperidine 205 (α-acetoxyNPIP, Scheme 9)
with dGuo, a peak corresponding to 7-(2-oxopropyl)-5,9-dihydro-9-oxo-3-β-D-deoxyribofur
anosylimidazo [1,2-a]purine 222 (7-(2-oxopropyl)-N1,N2-etheno-dGuo, Figure 14) was observed.
Its formation was proposed to occur via the intermediate 4-oxopent-2-enal 209 [254,278]. The
unstable hemiaminal precursor for 7-(2-oxopropyl)-NN1,N2-etheno-dGuo has been identified
in vitro, as such or in its reduced form. It was characterized as 7-(2-oxopropyl)-5-hydroxy-
5,6,7,9-tetrahydro-9-oxo-3-β-D-deoxyribofuranosylimidazo [1,2-a]purine 223 [286].
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A pair of two diastereomeric N2-(3,4,5,6-tetrahydro-2H-pyran-2-yl)-2′-deoxyguanosine
224 (N2-THP-dGuo, Figure 14) were identified as the major products in the same reaction
mixture of dGuo compared to 7-(2-oxopropyl)-N1,N2-etheno-dGuo 222 [254]. Similarly,
in the reaction mixture of α-acetoxyNPIP 205 with calf thymus DNA, N2-THP-dGuo was
clearly formed, whereas 7-(2-oxopropyl)-N1,N2-etheno-dGuo was minimally observable.
THP-OH 217 (Scheme 9) was released in the DNA hydrolysate after neutral thermal
hydrolysis, probably resulting from N2-THP-dGuo [253].

4.2.4. Human DNA Adducts Related to NPIP Metabolism

In 2019, Totsuka et al. reported their DNA adductome investigation of esophageal
cancer patients in China [287]. They found that a distinctive pattern of NPIP-derived
DNA adduct N2-THP-dGuo 224 (Figure 14) formed in the tissues of esophageal cancer
patients in the high-incidence area versus those in the low-incidence area. The difference in
the occurrence of this adduct was also statistically significant (p < 0.01) in the peripheral
blood samples of patients from the two areas. The exposure to NPIP was not likely due
to smoking or drinking since all the samples were from patients who were nonsmokers
and nondrinkers. Drinking water and vegetables were potential sources that have been
preliminarily investigated [287].

NPIP induced preferentially AT to CG transversions in gpt delta transgenic rats.
However, the predominant somatic mutation of esophageal tumor samples was CG to TA
transitions; no distinctive mutational pattern was identified to associate with esophageal
cancer in the high-incidence area. In the p53 genes of ~90% of patients, GC to AT transitions
predominated, in agreement with the findings from their previous study in 2005 [288].
There was only a weak correlation observed between one of the mutational signatures
(signature 17 in the COSMIC database) and the N2-THP-dGuo levels among 19 subjects
(r = 0.44; p < 0.05). Taken together, this study suggests that NPIP-induced DNA adducts
can at least partially contribute to esophageal carcinogenesis [287].

4.3. N-Nitrosomorpholine (NMOR)
4.3.1. Exposure and Carcinogenicity

NMOR (10, Figure 1) has been detected in water, food, cosmetics, and occupational
airspaces [289–295]. It has also been documented to occur in smokeless tobacco products
but at very low concentrations [77]. Similar to other N-nitrosamines, NMOR can be
formed easily by nitrosation of its parent amine morpholine with NaNO2. It is one of the
most rapidly formed nitrosamine products [296]. When morpholine was administered in
combination with nitrite to rats by gavage, the formation of NMOR was readily measured
in the urine, with the extent of morpholine nitrosation being 0.5–12% depending on the
doses [297]. Mice exposed to 15NO2 and administered morpholine by gavage also formed
NMOR with the highest concentrations detected in the skin followed by the stomach [298].
Human exposure to morpholine and its analogs has been considered substantial from food
and drugs [270,299,300], tobacco usage [301], and rubber and tire manufacturing [302,303].
Thus, the in vivo formation of NMOR has been considered likely to occur in humans. Low
levels of NMOR have been detected in human urine and gastric juice [304–306].
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The carcinogenicity data of NMOR was reviewed by IARC in 1978 and 1987, and it
was classified as a group 2B carcinogen. NMOR primarily induces liver, bile duct, and
kidney tumors in mice and rats when given in the drinking water or by i.v. injection;
it causes tumors of the respiratory system (trachea and nasal cavity) of hamsters by s.c.
injection [73]. After 1978, there were some new carcinogenicity data reported. When NMOR
was administered in the drinking water to A/J mice, lung tumors occurred at a relatively
low total dose of 53–55 µmol/mouse. It induced 100% liver tumor incidence in F344 rats at
a high total dose of 1.1 mmol/rat [190]. It is interesting to note that 2-/6-methylation of
NMOR shifts its organospecificity. In Syrian golden hamsters treated by gavage, NMOR
induced primarily nasal cavity tumors whereas N-nitroso-2-methylmorpholine induced
tumors in the nasal cavity and liver [307]; N-nitroso-2,6-dimethylmorpholine caused liver
and pancreas tumors [308]. In rats, NMOR is a potent liver carcinogen whereas N-nitroso-
2,6-dimethylmorpholine is carcinogenic to the esophagus and nasal cavity [7,309].

4.3.2. Metabolism

After a single i.p. injection, NMOR was rapidly distributed throughout the rat tissues
and metabolized to a relatively high extent with 24% of the dose excreted unchanged in
the urine after 18 h [310]. It is metabolized via both α- and β-hydroxylation pathways
(Scheme 10).
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Hydroxylation on the 2-carbons of NMOR appears to be the major biotransformation
pathway, since NHEG 135, derived from the β-hydroxylation product NHMOR 137 via
the intermediate 136, has been detected predominantly among the rat urinary metabo-
lites, accounting for 33% or 37% of total metabolites [311]. It has been used as a reliable
biomarker to monitor the in vivo formation of NMOR [297]. However, NHEG can also be
formed by NDELA and N,N-dinitrosopiperazine, although to the lesser extent of <10%
and 22% from each compound, respectively [184,312]. It is noteworthy that the group 2B
carcinogen NDELA 6 is also formed by the reduction of intermediate 136 during NMOR
metabolism, accounting for 12% of total urinary metabolites [311,313]. NDELA can be
reversibly oxidized to form the same products 135, 136, and 137 (see Scheme 6) as in the
case of NMOR.

When the hydroxylation occurs on the 3-carbon of NMOR, the unstable product
N-nitroso-3-hydroxymorpholine 228 (α-hydroxyNMOR) is formed. By analogy to NPIP
metabolism, a potential α-hydroxyNMOR acetate ester 234 has been suggested to be simi-
larly formed under near-ultraviolet light irradiation conditions [314]. α-HydroxyNMOR
decomposes quickly to form the diazohydroxide 229, which can also result from the regio-
chemically activated precursors α-acetoxy-N-nitrosomorpholine 225, N-nitrosomorpholine
hydroperoxide 226, and (2-(carbethoxynitrosamino)ethoxy)ethanal 227 [315–317]. The dia-
zohydroxide spontaneously loses one molecule of H2O and N2 and forms the carbocation
231 and its isomeric forms, 232 and 233. The carbocation 231 forms the solvolysis product,
2-(2-hydroxyethoxy)acetaldehyde 235, in equilibrium with 2-hydroxy-1,4-dioxane 236; the
carbocation 232 forms acetaldehyde 42 and glycolaldehyde 130 after solvolysis; the other
carbocation 233 forms glyoxal 133 [311,318]. The major ultimate product arising from
NMOR α-hydroxylation was (2-hydroxyethoxy)acetic acid 237 in rat urine. A significant
isotope effect was observed in the formation of 237 when the α-carbons of NMOR were
deuterated (16% vs. 3.4%) [311]. It has been shown that 1,4-dioxan-2-one 238 exists in aque-
ous solutions in equilibrium with 237 with an equilibrium constant KOA of 0.034 ± 0.002 M.
It appears to be a common non-carcinogenic metabolite of the carcinogens NMOR, dioxane,
and diethylene glycol [319].

The β-hydroxylation product of NMOR—NHMOR 137 (Scheme 10)—is highly muta-
genic [189,320,321] and forms DNA adducts in vitro [315]. It is, however, non-tumorigenic
or marginally tumorigenic to laboratory animals [190]. To explain the apparent lack of
carcinogenicity of NHMOR, Loeppky et al. investigated the metabolic profiles of two
NHMOR α-hydroxylation metabolites—N-nitroso-2,3-dihydroxymorpholine 139 and N-
nitroso-2,5-dihydroxymorpholine 142—using their stable precursors, N-nitroso-3-acetoxy-
2-hydroxymorpholine 138 and N-nitroso-5-acetoxy-2-hydroxymorpholine 141. The hy-
drolytic decomposition products of 139 were glyoxal 133 (95%), ethylene glycol 129 (55%),
acetaldehyde 42 (10%), and acetic acid; the hydrolytic decomposition products of 142
were 2-acetoxyacetaldehyde 144 (65%), glycol aldehyde 130 (15%), glyoxal 133 (trace), and
acetic acid. The high yield of 2-acetoxyacetaldehyde 144 may be responsible for the low
carcinogenicity of NHMOR if it is primarily hydroxylated at the 2-carbons [195].

4.3.3. DNA Adducts Formed by NMOR Metabolism

A study by Stewart et al. in 1974 using [14C]NMOR suggested that six radioac-
tive DNA adducts are formed by NMOR metabolism. One of those compounds was
putatively identified to be N7-HOEt-Gua 69 (Figure 5) [310]. Fishbein et al. incubated
nucleosides and calf thymus DNA with NMOR hydroperoxide 226 (Scheme 10) and iden-
tified a panel of 2-ethoxyacetaldehyde purine adducts as shown in Figure 15. These
include N3-, N6-, and N7-(2-oxoethoxyethyl)adenine (245, 246, and 248) and N1-, emphN2-,
O6-, and N7-(2-oxoethoxyethyl)guanine (249, 250, 252 and 253), among which N7-(2-
oxoethoxyethyl)guanine 253 and O6-(2-oxoethoxyethyl)guanine 252 are the two most
abundant and N3-(2-oxoethoxyethyl)adenine 245 is the third, however, in much lower
concentrations. Those 2-oxoethoxyethyl adducts slowly decayed to the corresponding
hydroxyethyl adducts (62–67 and 69, Figure 5) with a faster rate in duplex DNA than in
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nucleosides. Interestingly, the two 2-oxoethoxyethyl adducts 246 and 250, occurring at the
exocyclic amino groups, also formed the corresponding intramolecular ring closure prod-
ucts 247 and 251, respectively, during chemical standard synthesis. However, 247 and 251
were not detected in the treated nucleosides or calf thymus DNA [317]. The same group also
identified the first cross-link DNA adduct 6-(2-(2-((9H-purin-6-yl)amino)ethoxy)ethoxy)-
9H-purin-2-amine 254 (Figure 15) derived from α-hydroxyNMOR upon reduction. It was
proposed to be formed by the carbocation 231 (Scheme 10) attacking the O6-OH of guanine
first, followed by the pendant aldehyde reacting with N6-NH2 of adenine [322].
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We conducted an in vitro study of [2-(carbethoxynitrosamino)ethoxy]ethanal 227
(Scheme 10) reacting with dGuo and demonstrated the formation of N1,N2-glyoxal-dGuo
145 (Figure 11) probably via glyoxal resulting from NMOR α-hydroxylation [309]. In the
reaction mixture of NHMOR with dGuo, adduct 145 was also formed. The proposed
mechanism of the formation of this adduct by NHMOR is depicted in Scheme 11 [315].
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Consistent with their metabolic profiles, the two precursors of α-hydroxyNHMOR 138
and 141 (Scheme 10) showed different reactivity toward dGuo. In the in vitro incubation
mixture with dGuo, compound 141 was less reactive compared to 138. The dGuo adduct
formed by 141 was N1,N2-etheno-dGuo 146 (Figure 11). The dGuo adduct primarily
formed by 138 was N1,N2-glyoxal-dGuo 145 (Figure 11) along with two minor adducts,
N7-HOEt-Gua 69 and O6-HOEt-Gua 67 (Figure 5) [195].
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5. Concluding Remarks

The structural simplicity of the powerful carcinogen NDMA provided a unique oppor-
tunity to understand the role of metabolism and DNA adduct formation in carcinogenesis.
This research has clearly demonstrated the main requisite steps in tumor formation by
N-nitrosamines and other related organic carcinogens: formation of electrophilic inter-
mediates catalyzed by cytochrome P450 enzymes, binding of those intermediates to sites
in DNA, the role of DNA repair systems, mutagenesis resulting from certain unrepaired
DNA adducts such as O6-Me-Gua, and consequent permanent mutations in critical growth
control genes. This sequence of events is also quite well-established for NDEA and NMEA
and forms the basis for the investigation of more structurally complex N-nitrosamines as
described here. For these other N-nitrosamines, there are still gaps in our understanding of
their metabolic activation pathways and the DNA adduct structures, repair mechanisms,
and mutagenic properties of the persistent adducts. This review has presented an overview
of the current status of this research.

Studies of the metabolic activation and DNA adduct formation of carcinogenic N-
nitrosamines have long been part of the critical mass of research on these compounds.
The focus of many cancer researchers on N-nitrosamines produced an overall heightened
awareness of their ease of formation, levels of contamination in consumer products, and car-
cinogenic effects among other topics. This heightened awareness led to significant decreases
in human N-nitrosamine exposures from the 1970s to the present. However, constant vigi-
lance is necessary to maintain these lower exposure levels. The recent manufacturing errors
leading to N-nitrosamine contamination of drugs would have been unimaginable in the
1980s and 1990s when the ease of N-nitrosamine formation under certain conditions was
prominent in the eyes of chemists and toxicologists.

There are approximately 200 different N-nitrosamines that have been documented to
be carcinogenic in more than 30 animal species [323]. Humans exposed to these compounds
are, no doubt, susceptible to their carcinogenic effects. The continuous evaluation of po-
tential N-nitrosamine contamination such as N-nitrosomethyl-n-alkylamines in medicines
is in progress by other groups [324]. Among those many N-nitrosamines, the compounds
listed in Figure 1 comprise the most commonly detected carcinogenic N-nitrosamines from
human daily exposure, occurring in food, water, drugs, and cosmetics. An understanding
of the metabolism of these carcinogens and their mechanisms of DNA interactions is nec-
essary basic knowledge for evaluating and controlling their potential carcinogenic effects
in humans, and some metabolites and/or DNA adducts that are specific to carcinogen
exposure in humans may serve as biomarkers for cancer etiology studies.

With advances in bioanalytical methods, especially in the development of mass spec-
trometry, metabolism studies have evolved from radioisotope-labeling technology to high-
resolution mass spectrometry. Furthermore, mass spectrometry-based metabolomics stud-
ies may provide rich chemical information on structures of potential metabolites of inter-
est [325]. Similarly, DNA adductomics [326] is also emerging as a useful tool to investigate
DNA adducts that are potential biomarkers for cancer etiology studies, as illustrated in the
NPIP section [287].

In summary, the recent occurrence of NDMA and NDEA in some batches of FDA-
approved drugs has heightened global awareness of the carcinogenic effects of N-nitrosamines,
which comprise a significant number of carcinogens to which humans are exposed on a daily
basis through food, water, drugs, cosmetics, and tobacco products. In this review, we provide
a comprehensive and updated review of 10 N-nitrosamine carcinogens with a focus on their
mechanisms of metabolic activation and DNA interactions. A better understanding of the
metabolism and DNA adduct formation of N-nitrosamines can hopefully provide clues for
relevant cancer etiology and prevention studies.

Author Contributions: Conceptualization, Y.L. and S.S.H.; writing—original draft preparation, Y.L.;
writing—review and editing, Y.L. and S.S.H. All authors have read and agreed to the published
version of the manuscript.



Int. J. Mol. Sci. 2022, 23, 4559 34 of 47

Funding: Financial support for tobacco-specific N-nitrosamine studies in our laboratory was provided
by the U.S. National Cancer Institute through grant CA-81301. Mass spectrometry was carried out in
the Analytical Biochemistry Shared Resource of the Masonic Cancer Center, University of Minnesota,
funded in part by Cancer Center Support grant CA-77598.

Acknowledgments: Editorial assistance from Robert (Bob) Carlson is greatly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

α-AcetoxyNPYR α-acetoxy-N-nitrosopyrrolidine
AGT O6-alkylguanine-DNA alkyltransferease
APNG N-(N′-acetyl-L-prolyl)-N-nitrosoglycine
AS azaserine
BBN N-nitroso-(4-hydroxybutyl)butylamine
E. coli Escherichia coli
FDA Food and Drug Administration
GSH glutathione
α-hydroxyNMOR N-nitroso-3-hydroxymorpholine
IARC International Agency for Research on Cancer
i.p. intraperitoneal
i.v. intravenous
KDA potassium diazoacetate
MGMT O6-methylguanine-DNA methyltransferase
MNPA 3-(methylnitrosamino)propionic acid
N2-THF-dGuo N2-(tetrahydrofuran-2-yl)-2′-deoxyguanosine
N2-(4-HOB)-dGuo N2-(4-hydroxybutyl)-2′-deoxyguanosine
N7-CE-Gua N7-(2′-carboxyethyl)guanine
N7-CM-Gua N7-(carboxymethyl)guanine
N7-Et-Gua N7-ethylguanine
N7-Me-Gua N7-methylguanine
N7-n-Pr-Gua N7-(n-propyl)guanine
N7,8-butano-Gua 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido [2,1-f ]purine

-4(3H)-one
N7,8-Cro-Gua 2-amino-7,8-dihydro-8-hydroxy-6-methyl-3H-pyrrolo

[2,1-f ]purine-4(6H)-one
NDBA N-nitrosodi-n-butylamine
NDEA N-nitrosodiethylamine
NDELA N-nitrosodiethanolamine
NDIPA N-nitrodiisopropylamine
NDMA N-nitrosodimethylamine
NDPA N-nitrosodi-n-propylamine
NER nucleotide excision repair
NHEG N-nitroso-(2-hydroxyethyl)glycine
NHMOR N-Nitroso-2-hydroxymorpholine
NHPPA N-nitroso-2-hydroxypropylpropylamine
NIPEA N-nitrosoisopropylethylamine
NMBA N-nitroso-N-methyl-4-aminobutanoic acid
NMEA N-nitrosomethylethylamine
NMOR N-nitrosomorpholine
NMPA N-nitrosomethylphenylamine
NOPPA N-nitroso-2-oxopropylpropylamine
NPIP N-nitrosopiperidine
NPYR N-nitrosopyrrolidine
NSAR N-nitrososarcosine
7-(2-oxopropyl)-N1,N2-etheno-dGuo 7-(2-oxopropyl)-5,9-dihydro-9-oxo-3-β-D-deoxyribofura

nosylimidazo [1,2-a]purine
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O2-Me-Thd O2-methylthymidine
O4-Me-Thd O4-methylthymidine
O6-n-Bu-Gua O6-(n-butyl)guanine
O6-CM-Gua O6-(carboxymethyl)guanine
O6-Et-Gua O6-ethylguanine
O6-(4-OH-n-Bu)-Gua O6-(4-hydroxybutyl)guanine
O6-HOEt-dGuo O6-(2-hydroxyethyl)-2′-deoxyguanosine
O6-Me-Gua O6-methylguanine
pol κ polymerase κ

ppm parts per million
s.c. subcutaneous
S. typhinurium Salmonella typhinurium
THP-OH 2-hydroxytetrahydropyran
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