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On Gaussian curvature 
and membrane fission
Mara Denisse Rueda‑Contreras1, Andreu F. Gallen2, J. Roberto Romero‑Arias3*, 
Aurora Hernandez‑Machado2,4 & Rafael A. Barrio1

We propose a three-dimensional mathematical model to describe dynamical processes of membrane 
fission. The model is based on a phase field equation that includes the Gaussian curvature contribution 
to the bending energy. With the addition of the Gaussian curvature energy term numerical simulations 
agree with the predictions that tubular shapes can break down into multiple vesicles. A dispersion 
relation obtained with linear analysis predicts the wavelength of the instability and the number 
of formed vesicles. Finally, a membrane shape diagram is obtained for the different Gaussian and 
bending modulus, showing different shape regimes.

Vesicle formation is a fundamental process in many biological systems, e.g., the Golgi apparatus1,2, the synaptic 
system3,4, or enveloped viruses5,6. The Golgi apparatus constantly releases transport vesicles filled with proteins 
that are carried to other parts of the cell. In the synaptic nerve terminals, vesicles are filled with neurotransmit-
ters and released by exocytosis3. Moreover, many viruses are enveloped by a lipid membrane which mediates 
the fusion of the virus with the host cell membrane; some examples are HIV-1, herpesviruses, the Ebola virus5, 
and coronaviruses7 like SARS-CoV-2.

There is a fair amount of research on cellular membrane deformation and morphology8,9. However, there 
is little understanding when topological transitions occur and Gaussian curvature plays a role8–10. The Gauss-
Bonnet theorem states that the integral of the Gaussian curvature over a surface is proportional to the surface 
Euler characteristic11. This assures that the Gaussian curvature term is topologically invariant. This leads to the 
term being ignored for homogeneous systems. However, it is fundamental for topological transitions like fusion 
or fission. Lipid bilayers exhibit different stable configurations, depending on the values of the Gaussian and 
bending energetic moduli. There are no direct experimental measurements of the Gaussian modulus, although 
a method has been proposed recently12. Indirect measurements give a negative value of about κ̄ ′ ≈ −15KBT

13, 
and molecular dynamics simulations give similar results14. The negative sign implies that the energetic term of 
the Gaussian curvature favors fission, since fission increases the Euler characteristic. The most common fission 
event is the formation of a vesicle.

In all cases what seems a necessary requirement for fission is a large membrane curvature on the area where 
a vesicle is to be generated, which can be modeled with a spontaneous curvature. The final fission of the vesicle 
is often mediated by very specific proteins, although this is not always the case. Large spontaneous curvature can 
suffice to produce fission15–17. This can be accomplished by interactions among membrane-bound proteins15 or 
by a osmotically induced pearling instability16.

There has been extensive research for protein mediated fission. The dynamin superfamily8,18–20 or the ESCRT 
machinery5,21,22 are two different sets of proteins that mediate in budding and fission. For example, the dynamin 
Drp1 is considered a major component in mitochondrial division; other dynamics are considered to either help 
or be necessary for the fission process. Previous numerical work23,24 on budding or fission at mesoscopic scales are 
based on the evolution of the membrane up to the instant prior to fission. Pearling of tubes has also been studied 
with the inclusion of the Gaussian energy25,26, and some regimes where the Gaussian modulus makes the tube 
topologically stable are studied in those works. In some instances, on the other hand, the neck which connects 
the vesicles being formed may be stabilized by lateral segregation of membrane components27–31.

We have developed a three-dimensional model to study the dynamical evolution of a membrane, including not 
only the mean curvature energy term but also the Gaussian energy term. This is done by a phase-field methodol-
ogy, which has been used to study a variety of systems based on the Helfrich theory for cellular membranes32–41. 
Our description is mesoscopic considering a two dimensional diffuse interfase, in contrast to the microscopic 
view, which describes the rearrangement of bilayers13. The phase field approach allows to study not only the 
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equilibrium shapes, but also the dynamics of the formation of vesicles, in the same spirit as the Landau-Ginzburg 
framework.

Numerical integration results show that without the inclusion of the Gaussian curvature the system exhibits 
a pearling instability, which has been already observed in many simulations33,42,43 and experiments44,45. Pearling 
happens in membranes due to the spontaneous curvature, and the Gaussian curvature may lead to the fission of 
the pearls. Our phase field model explores the fission events where the Gaussian curvature is relevant, and the 
results compare extremely well with the ones observed in experiments.

Methods
The model.  Phase-field approaches are suitable to model the dynamics of membranes that change their 
shape under certain conditions32–40. As the Gaussian curvature is an intrinsic property of the surfaces, no matter 
their dimensions or the metric relations that can be exerted within them46, it certainly has an influence on the 
way membranes can change their shape. However, Gaussian curvature has not been considered in phase field 
models because its contribution to the energy is a topological invariant. Nonetheless, it has to be included in 
the study of membrane dynamics because the whole curvature energy depends on it and not only on the usual 
bending rigidity modulus due to the mean curvature. Minimization of the entire curvature energy allows to 
describe, not only the shape changes that membranes must acquire, but some processes that involve a change of 
genus, such as fission and fusion.

Starting off from the expression for the bending energy due the mean curvature H and the Gaussian curvature 
K we have

where κ̄ and κ̄ ′ are the bending modulus and Gaussian modulus, c0 is the spontaneous curvature and the integral 
is calculated over the whole membrane surface Ŵ . In here we include the influence of the Gaussian curvature K 
in the dynamics of the system in order to model situations in which the genus of the membrane changes.

In terms of the principal curvatures of the surface, the free energy of Eq. (1) can be written as follows:

where Ri are the principal radii of curvature. Note that the mean curvature has dimensions of inverse length, 
and the Gaussian curvature has dimensions of inverse length squared.

A phase-field model of the Cahn–Hilliard type can be defined from Eq. (1), as in Ref.32, in which the authors 
express the free energy F of the system as an expansion of powers of a smooth scalar field φ : � ⊂ R3 −→ R , 
that acts as an order parameter:

Assuming that the system is isotropic and homogeneous, and given that the order parameter must have 
two stable phases, the energy density L can be written as L = (�[φ])2 , where the functional is defined as 
�[φ] = −φ + φ3 − ε2∇2φ.

The parameter ε represents the width of the interface between the two phases. One of the stable phases, typi-
cally defined by φ = 1 , corresponds to the interior of the volume delimited by the membrane located at φ = 0 , 
whereas φ = −1 represents the outer environment.

It can be demonstrated that Eq. (3) with L = (�[φ])2 is equivalent to the expression of the bending energy 
of the surface in terms of the mean curvature H32. This would model the first half of Eq. (1), only the Gaussian 
term remains to be portrayed in a phase field approach.

The Gaussian curvature term can be defined in terms of the curvature tensor Qαβ of the surface as

which in turn can be defined in terms of the gradients of the order parameter φ as47,

where ∂α = ∂/∂xα , and ∂αβ = ∂2/∂xα∂xβ.
The free energy F = FSC +FG of the system is then represented by the spontaneous curvature model
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where κ ′ = 3
√
2εκ̄ ′/4 . Both terms determine the complete bending energy of the system. The time evolution 

of the phase-field is set according to the Cahn–Hilliard dynamics, since the volume is supposed to be locally 
conserved32–37. The variations of the free energy with respect to φ must then be subjected to diffusion, yielding 
a dynamic equation for the phase-field governed by32,

We can express this last equation in terms of the order parameter and its spatial variations only (see “Appendix 
A”). The final result, after some algebra, is,

where µ = (φ − εC0)(φ
2 − 1)− ε2∇2φ . The terms FKi represent the Gaussian curvature effect and are, explicitly,

and

The parameter σ [φ] is a Lagrange multiplier that depends on the field φ and assures area conservation47. One 
can determine σ [φ] by calculating the area S ∝

∫

�
|∇φ|2dV  and demanding that dS/dt ≈ 0 . Using that Eq. (8) 

guarantees the conservation of the field φ , one obtains

Results
Numerical simulations.  In principle, by solving Eqs. (9–10), it is possible to model situations in which 
the topological genus of the membrane changes, as in vesicle formation. Thus, we performed three dimensional 
calculations using the same method of integration as in32. We used a finite-difference scheme for the spatial dis-
cretization and an Euler method for the temporal derivatives with the appropriate small time step of dt = 10−5 
to ensure enough accuracy and avoid artefacts48. For the Gaussian curvature term in Eq. (9) we implement the 
integration using the residue theorem over the positive complex plane. As the initial membrane, we choose a 
cylindrical shape of radius R and length L closed at the top and open at the bottom. Its base is in contact with the 
wall of the domain and we are using zero flux boundary conditions.

We start with the simplest phenomenon, the formation of two closed membranes from one, the Gaussian 
curvature controlling the fission of a single vesicle. The results are shown in Fig. 1 for the cases when (a) the 
Gaussian curvature term is not included in the free energy, and (b) solving the complete dynamical equation (9).

For the case when the Gaussian curvature is not considered ( κ ′ = 0 in Fig. 1a) a single neck forms, but there 
is no fission of the membrane. These results are consistent with previous works in which the Gaussian curvature 
is ignored33.

The addition of the Gaussian term in Eq. (9) makes the fission of the membrane energetically favorable and 
a vesicle is formed from the initial cylinder (Fig. 1b). We take −κ̄ ′ ≈ κ̄ , as estimated in experiments and simula-
tions alike13,14 and in the figure we indicated the local free energy in units of κ̄ . The size of this system only allows 
the cylinder to make a single vesicle. The dimensions of the vesicles can be predicted by a dispersion relation 
calculation shown below.

For longer cylinders multiple fission events are possible. In Fig. 2, we show the results for a cylinder of length 
45. We obtained a sequence of single fission events from the tip of the cylinder downwards. After ∼ 270, 000 
time iterations, the cylinder splits into five separate closed vesicles. Shape changes start simultaneously through 
the entire tube, but the speed of pearling and fission is not equal. The tip of the cylinder changes shape faster 
and splits first. In Fig. 2a we show the initial and final configurations of φ = 0 for a longitudinal medial section 
of the tube. Although Helfrich–Landau bending energy was originally derived for nearly-flat membranes it has 
been successfully used to explain membranes with large curvatures49.

The time evolution of the volume, the area and the energy contributions is shown in Fig. 2b. The bending 
energy (open circles) and the Gaussian energy (open triangles) terms are drawn in absolute units of κ̄ . The 
changes in the Gaussian energy is half that of bending energy, which is in agreement with previous works9. The 
oscillating behavior is associated with the formation of vesicles in which the energy peaks are related to the necks 
narrowing and the following energy reduction is correlated with the formation of vesicles.
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Calculations on a longer cylinder are shown in Fig. 3. A pearling instability and an ordered fission is still 
observed. The onset of the pearling instability in Fig. 3 also appears on previous works33, but here the pearls fis-
sion due to the Gaussian curvature contribution. We conclude that Gaussian curvature controls the formation 
of many small vesicles from one big elongated vesicle as seen in the experimental results15,16.

All simulations were carried out having a reservoir of volume and area at the base of the cylinder. Therefore, 
global conservation of area and volume is not necessary. However, conservation of area and volume for individual 
vesicles should hold. As the vesicles fission from the main membrane, they lose contact with any reservoir of 
volume and area. Thus, from the moment they split, the vesicles must maintain their area and volume. In Fig. 2b 
it can be noticed that the area and volume vary slightly, although these values for the individual vesicles remain 
stable.

In order to analyse the stability of neck formation, it is possible to study the effects of small perturbations 
around the flat interface. These perturbations are taken as plane waves of the form φ = φ0e

iq·x−ωt , near φ = 0 , 
with small amplitudes, φ0 ≪ 1 . Substituting these expressions into Eq. (9), and considering isotropic perturba-
tions, one obtains the dispersion relation

Here, δ represents terms of order O (φ2) . The detailed derivation of the dispersion relation is given in “Appen-
dix B”. The main contribution to the instability comes from the first term in Eq. (11), in which the spontaneous 
curvature predominates. As the Gaussian curvature (due to κ ′ ) is not present in Eq. (11), it does not alter the 
region of unstable wavelengths. The Gaussian curvature acts by causing topological changes of the membrane 
right in the sites where the instability occurs. The periodicity of the instability is determined by a critical length, 
lc = π/qc , where qc > 0 given by the point in which the unstable branch ceases to be positive (ω(q) = 0) . This 
quantity represents a scale for the formation of the necks. The dispersion relation for typical values of the param-
eters is depicted in Fig. 4. There, the corresponding values of the critical length in domain units are: lc ≈ 7.6 and 
lc ≈ 10 when C0 = −0.3 and C0 = −0.5 , respectively. This is in agreement with the size (number) of vesicles 
formed in Figs. 1, 2, and 3 and ε = 1 which is small, compared with the size of the system50. For instance, in 
Fig. 3 eight vesicles can be formed in a tube of length L = 75 and a spontaneous curvature of C0 = −0.5 , as the 
critical length is lc ≈ 10 in domain units for this case. Similar results are observed for shorter cylinders and the 
corresponding values of C0 in Figs. 1 and 2.

(11)ω(q) = 3q2κ
[

(1− 2ε2C2
0)+ 12δεC0

]

− 9q4κε2
[

2(1+ 4δεC0)
]

− 9q4κσ + 27q6κε4.

Figure 1.   (a) Time evolution of the interface φ = 0 without considering Gaussian curvature ( κ ′ = 0 ). 
Snapshots of the membrane shape after two thousand, four million and ten millions of iterations (left to right). 
(b) Considering the Gaussian curvature contribution with κ ′ = −10 . The snapshots are taken at the same time 
as in (a). The last snapshot depicts the exact moment when the vesicle breaks from the main membrane. The 
color code represents the local free energy in units of κ̄ . The initial condition for φ = 0 is taken after solving Eq. 
(9) 2000 iterations. The parameters used were: R = 5 and L = 26 in units of the domain grid and, ε = 1 , κ = 1 , 
C0 = −0.3.
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Finally, we explore the regime in which the Gaussian bending modulus κ ′ determines whether vesicle forma-
tion happens or not. The results in Fig. 5 show the equilibrium configurations for a single continuous membrane 
with tubular shape. For negative κ ′ the transition from a single vesicle to to many small vesicles, occurs along 
the line where 8ε4κ + κ ′ = 0 (dotted line in Fig. 5). When κ ′ is positive there is the formation of a multiple self-
connected membrane, a continuous single membrane with multiple holes.

Discussion
In previous works29 the Gaussian term has been worked out only in the case when the tube is stable, and pearled 
tubes are obtained, without pinching. Other works51 focus on the microstructure of the membrane, which is 
basically a liquid crystal film, and suggest that topological defects could produce fission. By contrast, our model 

Figure 2.   Time evolution of a longer membrane tube with Gaussian curvature. (a) Contour plots on the plane 
x, z of the initial (red) and final (black) φ = 0 configuration. (b) Time variations of the volume (yellow dashed 
line), the area (purple dotted line), the bending energy (open blue circles) and the Gaussian energy (open red 
triangles). The open black diamonds represent the times when the vesicle is formed. The parameters used were: 
R = 6 and L = 45 , ε = 1 , κ ′ = −10 and C0 = −0.5.

Figure 3.   Snapshots of the evolution of the pearling instability in a long cylinder. Vesicles fission in sequence 
from the tip to the base. The parameters used were: R = 6 , L = 75 , ε = 1 , κ = 1 , κ ′ = −10 and C0 = −0.5.
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is focus in the mesoscopic description of the fission process, which may include proteins that could influence 
the local curvature of the membrane.

In some experimental works16, pearling on tubes is obtained and after some time one observes fission of the 
pearls. In other experiments44 pearls occur in sequence, starting at the tip but without fission. It our numerical 

ω

q

Figure 4.   Dispersion relation with different values of spontaneous curvature. The parameter values are: κ = 1 , 
ε = 1 , δ = 0.001 and σ = 0.1.

Figure 5.   Membrane shape diagram for the ( κ , κ ′ ) landscape with ε = 1 . (a) Multiple self-connected membrane 
with positive κ ′ , (b) neck formation without fission for κ ′ > −8κ , and (c) vesicle formation with a magnitude of 
κ ′ < −8κ.
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results vesicle pearling and fission occur in sequence, starting at the tip, it is possible that new experiments with 
the appropriate proteins exhibits this behavior.

Here we have studied the fission of membranes (vesicle formation) by extending the bending free energy 
model through the introduction of the Gaussian curvature. The Gaussian energy term provides the pearling 
instability the ability to fission from the initial membrane and maintain the stability of the system. With this 
model, multiple fission events can be obtained in a single computation.

The dynamics of vesicle formation was studied numerically and an ordered fission of the tube, from the tip 
to the base of the tube, was obtained. The number of formed vesicles depends on the dimensions of the tubular 
domain and the value of the spontaneous curvature. This number could be predicted using the dispersion rela-
tion obtained from a linear analysis of the model.

Topological changes were explored taking into account the two bending modules, giving us a membrane 
shape diagram. We corroborate the existence of multiple vesicles for negative κ ′ for the values κ ′ < −8ε4κ . For 
Gaussian modulus κ ′ > −8ε4κ no topological transition occurs. For positive κ ′ the result is a multiple self-
connected membrane.

To summarize, numerical calculations based on this model describe fission of membrane tubes into multiples 
vesicles. Pearling and vesicle fission occur in sequence from the tip of the tube to the base. Using the bending 
modulus and the Gaussian modulus we can obtain a membrane shape diagram, and we explored the different 
regimes. The model can represent systems where appropriate proteins are required for fission by means of the 
Gaussian energy.

Appendix
Appendix A: Calculation of the complete dynamic equation for φ.  Variations of FSC in Eq. (8) 
are explicitly,

where

is the chemical potential and σ [φ] is the surface tension coefficient, which is implemented as a Lagrange multi-
plier that ensures local area conservation.

It is necessary to express Eq. (1) in terms of φ so we might be able to establish the variations of the energy 
due to the Gaussian curvature similar to Eq. (12). These variations must also be subject to diffusion so we can 
obtain the dynamic equation that dictates the evolution of the surface. Variations of the free energy due to the 
Gaussian curvature can be written as

We write this last equation in terms of the curvature tensor Qαβ , that is, in terms of the gradients of φ , and then 
calculate each of the terms of Eq. (14) separately.

First, variations of K̃ with respect to φ can be written as:

The second term of Eq. (14) is

and the third term is:

By adding up Eqs. (15), (16) and (17), and grouping similar terms we have:

It is possible to express the variations of the free energy due to the Gaussian curvature in terms of K̃ itself:
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It is notable that the second term has a singularity when φ = ±1 (that is, in the bulk) and it also approaches 
to zero near the interface φ = 0 . Thus, the main contribution to the curvature energy of the surface comes from 
the first term of Eq. (19), which depends on the variation of the Gaussian curvature with respect to the order 
parameter φ.

It is more appropriate to write the dynamical equations in terms of φ . Thus, Eq. (19) is equivalent to

The dynamic equation that dictates the evolution of the surface is

which is defined only in terms of φ and its gradients and κ ′ = 3
√
2εκ̄ ′/4.

Appendix B: Dispersion relation.  In order to analyse the stability of the membrane, one can study 
the effect of small perturbations of the flat interface. In particular, one considers that perturbations take the 
form of plane waves: φ = φ0e

iq·x−ωt , where q = qα and x = xα are the wave vector and Cartesian coordinates 
( α = 1, 2, 3 ), around the membrane φ = 0 . We assume that the amplitude φ0 ≪ 1 is small.

Taking into account Eq. (9) of the main text and substituting the approximation in each term, one obtains

since

The next term on the right hand side of Eq. (9) is,

On the other hand, one obtains,

The last equality is to be expected since in the plane wave approximation the functional associated with the 
Gaussian curvature is

Now, if one substitutes Eqs. B1–B4 in Eq. (9), one obtains

Assuming an isotropic perturbation qα = q with small wave number, and using φ := δ for the terms of the order 
O (φ2) , one finally obtains the dispersion relation

From this result, one observes that the spontaneous curvature is responsible for the onset of the instability and 
that the mean and Gaussian curvature do not affect the region of the unstable wavelengths.
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[

∂ααφ∂ββφ − (∂αβφ)
2
]

)

− κ ′∇2

(

2(3φ2 + 1)

(1− φ2)2

[

∂ααφ(∂βφ)
2 + ∂ββφ(∂αφ)

2
]

)

+ κ ′∇2

(

4(3φ2 + 1)

(1− φ2)2

[

∂αβφ∂αφ∂βφ
]

)

,

(22)

∇2
(

(3φ2 − 1− 2φεC0)µ
)

= −q2αφ
[

(3φ2 − 1− 2φεC0)
2 + (6φ − 2εC0)(φ − εC0)(φ

2 − 1)
]

− q4αε
2φ

[

(3φ2 − 1− 2φεC0)

+ φ(6φ − 2εC0)
]

,

(23)∇2µ = −q2αφ(3φ
2 − 1− 2φεC0)− q4αε

2φ.

(24)∇(−ε2∇µ) = −q4αε
2φ

[

(3φ2 − 1− 2φεC0)+ φ(6φ − 2εC0)
]

− q6αε
4φ.

(25)FK1
= FK2

= 0.

(26)K̃ =
∑

α<β

(1− φ2)2
[

QααQββ − Q2
αβ

]

= 0.

(27)

ω(q)φ = q2ακφ
[

(6φ − 2εC0)(φ − εC0)(φ
2 − 1)+ (3φ2 − 1− 2φεC0)

2
]

+ q4ακε
2φ

[

2φ(6φ − 2εC0)

+ 2(3φ2 − 1− 2φεC0)
]

− q4ακσφ + q6ακε
4φ.

(28)ω(q) = 3q2κ
[

(1− 2ε2C2
0)+ 12δεC0

]

− 9q4κε2
[

2(1+ 4δεC0)
]

− 9q4κσ + 27q6κε4.
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